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C.J. BEvErRIDGE, D.C.M. DicKksoN, X. Wu, Melbourne

Optimal Dividends under Reinsurance

1 Introduction

The study of optimal dividends problems goes back to de Finetti (1957), and in
recent years there have been many papers in the actuarial literature on optimal
dividends problems. See, for example, Gerber and Shiu (2004, 2006), Dickson
and Waters (2004), and references therein. Much of this literature concerns a
model with a constant dividend barrier, and under such a barrier, the insurer’s
ultimate ruin is certain. Thus, the insurance operation is essentially being used
to generate dividend income for the insurance company’s shareholders, and a
natural question of interest is how to maximise the expected present value of the
shareholders’ income. By ‘income’ we shall mean net income, as we shall apply
the modification to de Finetti’s idea introduced by Dickson and Waters (2004),
and further studied by Gerber et al (2006), under which the shareholders are
required both to provide the initial surplus and to cover the deficit at ruin.

In this paper we investigate whether the expected present value of net income to
the shareholders can be increased by effecting reinsurance. We consider two forms
of reinsurance, namely proportional and excess of loss. Our approach is to conduct
an empirical investigation rather than a mathematical one. The reason for this is
that it is difficult to obtain analytical solutions to our problem, especially in the
case of excess of loss reinsurance. Therefore, we shall apply two approximation

methods.

We first apply De Vylder’s (1978) approximation to (net of reinsurance) surplus
processes. There are three main reasons for applying this approximation. First,
the computational time involved in applying this procedure is negligible. This is
important as conclusions in this paper are based on grid searches over a range
of values for retention levels and dividend barriers. Second, it has been shown to
be a remarkably accurate approximation in other studies of dividend problems.
See Hgjgaard (2002) and Dickson and Drekic (2006). Third, it has the advantage
over other types of approximation to a surplus process (such as a Brownian
motion approximation) that it produces a non-zero deficit at ruin. The importance
of this can be seen in formula (2) below. However, like any approximation,
De Vylder’s approximation has limitations. It appears to work best when the
moment generating function of the individual claim amount distribution (without
reinsurance) exists. This was certainly the case in the original setting of the
approximation, as illustrated by the numerical examples in De Vylder (1978).
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Our second approximation is the discrete time model described and tested in
Section 5 of Dickson and Waters (2004). Based on the numerical results presented
in that paper, we view this model as providing very accurate numerical solutions
to dividends problems. In the context of this paper, however, its drawback is that it
is a computationally intensive tool for grid searches, particularly when compared
with applying De Vylder’s approximation. In the remainder of this paper we will
refer to this approach as the DW approach.

2 Model and notation

[n this paper we aim to draw conclusions about a classical risk model modified
both by reinsurance and by the inclusion of a constant dividend barrier. We assume
that claims occur as a Poisson process with parameter A, and let N () denote the
number of claims up to time £, so that N(t) is distributed as Poisson(At). Let
{X;}72, be a sequence of independent and identically distributed positive random
variables, independent of the Poisson process, where X; denotes the amount of
the ith claim (before reinsurance). Let X represent a generic claim, and let f
denote the density function of X. The insurer’s premium income per unit time is
(I +O)ANE[X]| where 6 > 0, and we assume that this is received continuously.
Now let i denote a reinsurance arrangement that applies to an individual claim,
so that if the individual claim amount is x, the reinsurer pays @ — h(x) and the
insurer retains A (x) where 0 < h(x) < x. The reinsurance premium per unit time
is (1 +0r)AE[X — h(X)], and we assume that this is paid continuously. In our
numerical illustrations we further assume that €/ > . Then the insurer’s net of
reinsurance premium income per unit time is

¢t = (1+0) A E[X] - (1 +0g) AE[X — h(X)].

If we further assume that reinsurance recoveries are made as soon as claims occur,
the insurer’s net of reinsurance surplus process, starting from initial surplus u, is

N (t)

U(t) =u+c't— Z h(X;), (1)

i=]

where the sum is zero if N(t) =0,

We now modify the net of reinsurance surplus process by a dividend barrier, which
we denote b. When the surplus attains b, dividends are paid out to sharecholders at
rate ¢ per unit time until the next claim occurs, so that the modified surplus
process remains at b until the next claim occurs, then falls by the (net of
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reinsurance) amount of that claim. On any subsequent occasion that the net of
reinsurance surplus process attains b, dividends are again payable at rate ¢*. Ruin
occurs when the surplus process falls below zero, and no dividends are payable
after the time of ruin.

Our analysis in this paper is based on the function denoted L(w,b) by Dickson
and Waters (2004) and defined by

L(u,b) = V(u,b) —u— Ble ™Y, 2)

Here 4 is the force of interest per unit time, V'(u, b) is the expected present value
of dividend payments to the shareholders until ruin occurs, T, is the time of ruin
and Y, is the deficit at ruin. Thus E[(E“W'“ Y| is the expected present value of
the deficit at ruin, and hence L(u,b) represents the expected present value of net
income to the shareholders — income coming from dividends, and outgo from the
provision of the initial surplus and the deficit at ruin.

Dickson and Waters (2004, pages 55 and 59) give formulae for both V (u, b) and
Ele 07wy, ] for a classical risk model without reinsurance with individual claim
amounts being exponentially distributed, and so from these we have a formula
for L(u,b) for this claim size distribution. Therefore, we can apply De Vylder’s
approximation to the surplus process given by (1), and as the individual claim
amount distribution is exponential in De Vylder’s approximation, we can thus
apply Dickson and Waters’ results to calculate L(u,b) for the approximating
surplus process. To compute our second approximation to L(u,b), we apply the
approach described in Section 5 of Dickson and Waters (2004), with a simple
modification to the Poisson parameter in their discrete time model to ensure that
the premium income per unit time, net of reinsurance, is 1.

The introduction of reinsurance will have a number of effects. First, as the rate
of premium income is reduced under reinsurance, the time at which dividends
can first be payable increases for w < b. Second, the rate of dividend payment is
reduced as ¢* < ¢. These two effects should act to reduce the expected present
value of dividend payments. However, as reinsurance reduces the amount of
individual claims, we might expect the time of ruin to be later under a reinsurance
arrangement, resulting in a larger number of dividend streams, and a smaller
expected present value of the deficit at ruin. We will see in Section 4 that these
contrasting effects produce outcomes which are not uniform across different claim
size distributions and which can be difficult to interpret.



3 Proportional reinsurance

We first consider proportional reinsurance, with h(z) = ax where 0 < a < 1.
Our methodology in applying the De Vylder approximation, which also applies
in the next section (with appropriate adjustments), is as follows. For given values
of @ and Og, we calculate both ¢* and the moments of the net of reinsurance
individual claim amount distribution. Using these, we then calculate the parame-
ters of De Vylder’s approximating surplus process. Given the parameters of this
approximating surplus process, we can then use the final formula on page 64 of
Dickson and Waters (2004) to calculate the value of b, which we denote by 6%,
that maximises L(u,b). We can then calculate L(u,b*) using formulae (2.7) and
(4.4) in Dickson and Waters (2004). We performed this calculation for values of «
that are integer multiples of 0.01 which also satisfy the condition ¢* > ANE[h(X)].
From this set of values for a, we can find (numerically) the value of a which
maximises the expected present value of net income to shareholders, and if a
higher degree of accuracy is required, we can apply the same approach with a
larger set of values for a, say integer multiples of 0.001. We remark that the
optimal barrier varies with a, but for brevity we write b* rather than 0*(a) (or
b*(M) in the next section).

For our study, in cases where the computed value of b* under the De Vylder
approximation was less than u, we assumed that the excess u—b* was immediately
returned to the shareholders as dividends, resulting in an expected present value
of net income to the shareholders of

V(b*,b*) — b* — Ele™To* Y],

with similar adjustments being made under the DW approach. This is consistent
with Gerber et al (2006) who show that for a classical risk model without
reinsurance, the optimal barrier level b* is independent of u, provided that
u < b*, and they suggest that this is also the optimal barrier when u > b*
for many cases. Further, in the specific case when the individual claim amount
distribution is exponential, Dickson and Waters (2004) show that the optimal
barrier is independent of .

Our study of proportional reinsurance, which included calculations by both
approaches, led us to the conclusion that proportional reinsurance cannot be used
to increase the expected present value of net income to shareholders. Figure [ is
typical of our findings and illustrates the situation when « = 10, the individual
claim amount distribution is mixed exponential with density function

f(’L) — %(2(3_2:1:) 4 %(51(3—-:::/2)
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(so that £[X] = 1), A =100, § = 0.1 and & = 0.1. We have plotted L(10,5*)
based on De Vylder approximations for three values of 0z, namely 0.1, 0.15
and 0.2. Throughout this paper we have limited our investigations to situations
where ¢* > AE[h(X)], although as ultimate ruin is certain, this restriction is not
of great importance. However, it accounts for the different minimum values of
proportion retained for the different values of ¢/z. We can see in Figure 1 that
for each value of €, the expected present value of net income is an increasing
function of the proportion retained which is maximised when a = I, i.e. when
there is no reinsurance.

Proportion retained, a

' . . Lo

w0 o~ s] - o
- -

32 4
28
24 4
20 -

Figure 1: L(10, %), mixture of two exponential distributions, proportional reinsurance

a0
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This general pattern emerged in all calculations we performed using different
claim amount distributions and different parameter values, so we will not
analyse proportional reinsurance further. Based on our numerical investigations,
we conjecture that the optimal strategy to maximise L(w,b) under proportional
reinsurance is to set a = .

4 Excess of loss reinsurance

We now consider excess of loss reinsurance with retention level M, so that the
insurer pays the lesser of an individual claim amount and M. Our empirical
findings are illustrated below for different individual claim amount distributions,
namely mixed exponential and lognormal distributions. Unlike the case of propor-
tional reinsurance, we observe that the insurer can increase the expected present
value of net income to shareholders by effecting excess of loss reinsurance, and
the increase can be substantial.

In each of the numerical illustrations below, the mean individual claim amount
(before reinsurance) is 1, and we have set A = 100, § = 0.1, and ¢ = 0.1. Results
are given for a range of values for 0. For a given set of parameters, we found the
optimal retention level and barrier under De Vylder’s approximation as described
in the previous section, searching over values of M rather than a. In the case of
Tables 1 to 3, the values of M considered were integer multiples of 0.1, with the
minimum value of M being determined by the condition ¢* > AE[h(X)].

4.1 A mixture of two exponential distributions

We first consider the same mixed exponential individual claim amount distribution
as in the previous section. Figures 2 and 3 show De Vylder approximations to
L(u,b*) as a function of M when u = 10 (Figure 2) and when « = 30 (Figure 3)
for five different values of @, and we see from these figures that reinsurance can
increase the expected present value of net income to shareholders. The expected
present value with no reinsurance is shown as a horizontal dotted line in each
figure.
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Figure 2: L(10,*), mixture of two exponential distributions, excess of loss
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Figure 3:
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Table | shows some numbers relating to these figures. These include the optimal
value of M and the corresponding value of b*, the expected amount of dividends
payable until ruin denoted by E[D,,] (as opposed to the expected present value of
dividends, V'(u, b)), and the expected time of ruin, denoted by F[T,,|. The former
can be calculated from the results given for the distribution of the total amount
of dividends by Dickson and Waters (2004, Section 3) and the latter from Lin et
al (2003, p.562). The final column (headed %) shows the percentage increase in
the expected present value of net income as a result of effecting reinsurance, and
the final row for each value of u shows values when there is no reinsurance.

u Or b* L(u,b*) M E[Dy]  E[T,) %
10 0.1 31.22 37.47 2.1 387.00 49.42 23.4
10 0.125 39.21 33.69 34 282.53 32.06 11.0

10 0.15 44.12 32.01 4.7 244.89 25.84 5.5
10 0.175 47.16 31.22 6.0 227.93 23.00 2.9

10 0.2 49.03 30.83 7.3 219.29 21,53 1.6
10 51.79 30.36 00 208.06 19.62
30 0.1 42.68 47.71 4.2 441.60 44.71 6.2

30 0.125 40.71 46.37 5.7 393.59 38.07 3.3
30 0.15 48.75 45.72 7.0 373.19 35.24 1.8
30 0.175 4991 45.38 8.2 362.84 33.78 I.1
30 0.2 50.59 45.19 9.3 357.19 32.98 0.6
30 51.79 4491 e’} 348.13 31.63

Table 1 : Mixture of two exponential distributions

For each value of w in Table 1, we see that as fp increases, the percentage
increase in the expected present value of net income decreases, as do both the
expected amount of dividends and the expected time to ruin. However, as 6p
increases, the optimal barrier level and retention level both increase. It is perhaps
not surprising that the optimal retention level increases as @ increases since this
feature appears in other reinsurance problems such as maximising the adjustment
coefficient under reinsurance. (See, for example, Dickson (2005).) Indeed, we
observed this feature in all examples where it was optimal to effect reinsurance.
Given that the optimal value of M increases with @5, it seems that increased net
individual claim amounts are causing a decrease in the expected time to ruin.

Although reinsurance does increase the expected present value of net income,
the percentage increase is not significant for most combinations of u and 0
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considered in Table 1. We remark that results obtained by application of the DW
approach are virtually identical. Our methodology in applying this approach was
to use the same scaling factor of 100 to the individual claim amount distribution
without reinsurance, as in Dickson and Waters (2004), and to consider values of
M and b which are integer multiples of 0.1 and 0.01 respectively, so that in the
approximating discrete time surplus process, the surplus always took an integer
value. (We have chosen these two numbers to match our search under the De
Vylder approach, i.e. searching for M to one decimal place and recording b* to
two decimal places.)

4.2 A mixture of three exponential distributions

As a second illustration, we consider the mixture of three exponential distributions
introduced by Wikstad (1971), namely

3

Flm) = Z(.t.,; B; exp{—piz}

i=l

where «; = 0.0039793, o, = 0.1078392, o3 = 0.8881815, 3, = 0.014631,
3 = 0.190206 and (33 = 5.51451. This distribution contrasts the distribution in
the previous section in that it has a much larger variance (of 42.2) and is more
heavily skewed. Consequently, we might expect excess of loss reinsurance to
eliminate large claims and hence increase both the expected time to ruin and the
expected present value of net income. However, in our numerical experiments
with this distribution, this was generally not the case. Figure 4 shows both
approximations to £L(20,b6*) for 0 = 0.1, 0.125 and 0.15 — results from the
De Vylder approximation are given by the bold lines — with calculations being
performed at integer values of M only. In the case when 0/ = 0.1, reinsurance
can increase the expected present value of net income, but it does not for
Or = 0.125 and 0.15. For the values of #p illustrated, the expected present
value of net income is not a monotonically increasing function of M, although
it is for larger values such as 0 = 0.2. It is difficult to explain this behaviour
and we can only attribute it to the differing effects of reinsurance described at
the end of Section 2. We also observed this behaviour for small values of w for
the individual claim amount distribution of Section 4.1.



18 4

L(20,b*)
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Figure 4: Both approximations to L(20, b*), mixture of three exponential distributions, excess of loss
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In terms of the approximations, we see that for values of M less than about 50,
both approximations perform similarly. For larger values of M we view the DW
approach as providing the more accurate approximation. An interesting feature of
the results produced by the DW approach is that as a function of M, L(u,b*) has
a local minimum around 60 for each value of fz. What appears to underlie this
feature is that there is a considerable change in the value of the optimal barrier.
For example, when 0 = 0.1, we observe that the optimal barrier increases with
M up to 67.9 when M = 62, but then drops to 48.6 when M = 63. It is not clear
why this should happen. For each integer value of M up to 62, we found that
the optimal barrier was above M, so that reinsurance could effect how much the
surplus fell in each time period in the discrete model. However, for each value of
M above 62, we found that the optimal barrier was below M, so that the effect
of reinsurance is limited to the premium income, and the amount of the deficit
at ruin.

4.3 Lognormal distributions

We now consider the situation when the individual claim amount distribution is
lognormal. Results obtained by applying the DW approach are shown in Table
2 when the individual claim amount distribution has variance 3 and in Table
3 when the variance is 6, in each case for the same values of u and 0p as
in Table 1. Each distribution has a greater variance than the mixture of two
exponential distributions from Section 4.1, but a considerably smaller variance
than the mixture of three exponential distributions from Section 4.2.

The pattern in Table 2 is basically the same as in Table 1. However, the main
difference between Tables 1 and 2 is that the percentage increase in expected
present value of net income is much greater in Table 2. Indeed, the percentage
increases in this table are substantial, and this is also a feature of Table 3. Figure 5
shows L(10,6*) as a function of M when the individual claim amount distribution
has variance 3 (calculated by the DW approach as in Table 2), with the horizontal
dotted line again showing the expected present value of net income without
reinsurance. This figure is very similar to Figure 2, and highlights the greater
percentage increase in expected present value of net income than was observed
in Figure 2.

Figure 6 shows both approximations to L(10,6%) when the individual claim
amount distribution has variance 6 and when i = 0.175. The bold lines show
De Vylder approximations, with the horizontal dotted lines showing L(10,b*) as
M — oo. This figure illustrates a weakness of the De Vylder approximation.
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u Or b* L(u, b*) M E[D,] E(Ty] %
10 0.1 29.46 37.72 1.98 406.22 53.72 44.6
10 0.125 36.12 33.12 3.12 283.05 34.34 27.0
10 0.15 41.10 30.55 4.45 234.13 26.60 17.1
10 0.175 44.45 28.99 5.85 206.51 22.41 11.1
10 0.2 47.01 27.98 7.38 190.04 19.91 7.3
10 55.66 26.09 o0 144.86 12.97

30 0.1 39.77 46.59 3.96 448.48 47.71 247
30 0.125 43.77 44.21 5.40 381.59 39.07 18.3
30 0.15 46.43 42.64 6.83 345.11 34.38 14.1
30 0.175 48.31 41.53 8.24 322.36 31.45 11.2
30 02 49.71 40.72 9.63  307.00  29.48 9.0
30 55.66 37.36 00 239.68 20.37

Table 2 : Lognormal distribution with variance 3

u dn b* L(u, b*) M ED. E[T.) %
10 0.1 28.05 32.04 2.01 310.36 45.84 61.7
10 0.125 36.85 26.26 3.57 192.06 25,12 32.6
10 0.15 43.13 23.19 5.51 146.22 17.36 17.1
10 0.175 48.09 21.43 7.92 124.55 13.68 8.2
10 0.2 50.92 20.31 10.01 [12.91 [1.88 2.5
10 60.49 19.81 o 93.73 7.36

30 0.1 39.78 39.66 4.20 343.04 38.67 422
30 0.125 45.24 36.10 6.13 271.49 28.80 29.4
30 0.15 48.97 33.75 8.17 234.79 23.75 21.0
30 0.175 51.69 32.12 10.31 212.80 20.71 15.2
30 0.2 53.73 30.92 12.51 198.39 18.72 10.9
30 60.49 27.89 00 156.63 11.45

Table 3 : Lognormal distribution with variance 6
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Whilst we see that both approximations give similar results for small values of M,
and essentially identify the same retention level as optimal, as M increases, the
De Vylder approximation becomes less accurate. Although it correctly identifies
L(10,b%) as being an increasing function of M for M greater than about 60, it
produces an approximation in the case M — oo that results in the conclusion
that no reinsurance is the optimal strategy. We see from the results of the DW
approach that this is not the case. Thus, the De Vylder approximation is very
useful in that it gives a very good indication of the optimal retention level and
barrier — which is very helpful when we have to perform a grid search using
the DW approach — but it ultimately provides the wrong conclusion. This is
perhaps not surprising as the examples in De Vylder’s original paper suggest it
is not a great approximation when the individual claim amounts are lognormally
distributed.

5 Concluding remarks

This has been an empirical study, and as such it is difficult to draw firm
conclusions. One conclusion is clear and important — it is possible to increase
the expected present value of net income to shareholders by effecting reinsurance.
Our investigations have ranged over a greater set of distributions and over a wider
range of parameter values than reported here. From these wider investigations,
no clear picture has emerged as to the circumstances under which excess of
loss reinsurance can increase the expected present value of net income. Although
De Vylder’s approximation can lead to incorrect conclusions, it has the merit
that it is generally good at identifying the value of M at which L(u,b*) has a
local maximum. Compared with the DW approach, De Vylder’s approximation is
computationally much more efficient and is therefore a very useful tool in helping
to identify an optimal reinsurance strategy.

C.J. Beveridge
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X. Wu

Centre for Actuarial Studies

Department of Economics

University of Melbourne c.beveridge2@pgrad.unimelb.edu.au
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Abstract

We investigate whether the expected present value of net income to shareholders when there is
a constant dividend barrier can be increased by the insurer effecting reinsurance. We analyse the
problem numerically, using both De Vylder’s approximation to a classical surplus process and
Dickson and Waters’ discrete time model. We find that excess of loss reinsurance can be used to
increase the expected present value of net income to shareholders.

Zusammenfassung

Wir untersuchen, ob der Versicherer den erwarteten Barwert des Nettoeinkommens fiir Aktioniire
durch den Einsatz von Riickversicherung erhdhen kann, wenn es eine konstante Dividendenschranke
gibt. Wir analysieren das Problem numerisch, unter Anwendung von De Vylders Approximation
eines klassischen Gewinnprozesses sowie dem zeitdiskreten Modell von Dickson und Waters.
Wir stellen fest, dass eine Schadenexzedenten-Riickversicherung verwendet werden kann um den
erwarteten Barwert des Nettoeinkommens fiir die Aktioniire zu erhéhen,

Résumé

On étudie la possibilité que la réassurance augmente 'espérance de la valeur actuelle des revenus
nets de l'actionnaire, dans le cas ou les dividendes ont une limite constante. On analyse cette
question numériquement, en utilisant 'approximation de De Vylder pour un processus de gains
classique ainsi que le modele temps discret de Dickson et Waters. On constate que la réassurance
en excédent de sinistres peut €tre utilisée pour augmenter I'espérance de la valeur actuelle des
revenus nets de |’actionnaire.
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