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RENE DaAHMS, Basel

A Loss Reserving Method for Incomplete Claim Data

1 Motivation

We want to describe a method which is able to deal with some kind of incomplete
triangles of payments and reported amounts. As an example you may keep in mind
the following situation. Assume your company covers motor liability. Some years
ago one decided to distinguish between bodily injury and property damage claims.
All new claims, all still open claims and all reopened claims have been migrated
to the new claims handling philosophy. This implies that for old years only some
claims can be identified as bodily injury or property damage claims and therefore
one cannot apply the Chain Ladder method on the separated triangles of bodily
injury and property damage claims.

For a more precise definition let S; , and 7} denote the incremental payments
and incremental reported amounts of accident year ¢ and development year k, for
I < i, k < n. Here, n denotes the number of observed years. By incomplete
data we mean that ; j and Tj , are missing, for ¢ + & < Y for some accounting
year Y < n. Clearly, in this situation the Chain Ladder method doesn’t work
properly. But, if a good measure of the underlying risk for each accident year can
be obtained, the Complementary Loss Ratio method, see [3], could be applied to
both the incremental triangle of payments and the incremental triangle of reported
amounts,

We will extend the idea of the Complementary Loss Ratio method using the
case reserves (outstanding) at the end of the previous development year as risk
measure. [n other words, payments and adjustments to the reported amount during
the year are assumed to be proportional to the opening reserves, which are the
case reserves at the end of the previous year. In order to do this we need all
case reserves 12,y ;, i < Y. We will present unbiased estimators for the total
necessary reserves. Moreover, we will use the ideas of Mack [2] to present an
estimator for the corresponding conditional mean squared error.

2 Definition of the model
We want to extend the idea of incomplete triangles in the way, that we introduce

non-negative weights w; 4, ¢ + k < n, which measures our confidence in the
observed developing during the year £ of accident year . The situation of the
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incomplete triangles described in the previous section is the special case of

weights w; , = 0, for 2+ &k < Y, and w; = 1, for Y <14+ k < n. We

will use the following basic notations:

Sik the payments during development year £ of all claims of accident year i.

T} the adjustments to the reported amount during development year & of all
claims of accident year 1.

R, the outstanding (case reserves) at the end of development year £ of all
claims of accident year 7.

We consider S;, 15, and R;jp as random variables for which we have

observations for ¢ + & < n - 1. This variables are linked via

Rik+1t = Rig — Sikr1 + Tikt1, for l <i<nmand 0 <k <n,

where we take £2; o = 0.
As usual we assume the accident years, i.e.

{SUN Ti g, it 1 €k < n}, Cey {Sn.,k: Ty Bag: 1 £ k< 'n,}, (2.1)

are independent.
The minimum and maximum of two real numbers we denote by

aVb:=max(a,b) and aAb:=min(a,b).

Moreover, we define the information Dy, of the run-off triangles up to development
year 1 < k < n by the o-algebra

Dy =0 (U Bz,m(mn—a)) (2.2)

i=1
with
Bir:i=0({Sis, Tiu: 1 <1<k}, (2.3)

the run-off information of accident year 4 up to development year .
The idea of case reserves being a good risk measure for incremental payments
and reported amounts can be formalised as follows:

Assumption 2.1 For | <1< nand | <k <n we assume that

E[Sik+1|Bix] = anRi g, (2.4)
E (T k41|Bik) = BrRik (2.5)
Si k-}-l) (55 k+|> } (02, %) .
Cov [ ("), (o ,Bi | = (%% Rix = T2Rij 2.6)
KTL‘,A-H L5 ket s T T ik kTR (

for some constants «v, and 3, and some positive definite, symmetric matrices >y,
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Assumption (2.6) ensures that our weighted estimator for the necessary reserves
will be of minimal variance under all linear estimators. Morcover, (2.6) also
implies that all reserves have to be non-negative and together with (2.4) and
(2.5) we even get that all reserves have to be positive up to the time where no
development is assumed to be taken place.

Standard calculations using conditional expectations gives us.

Corollary 2.2 Assumption 2.1 implies the standard Chain Ladder assumptions
for the reserve, i.e.

E[R; t11|Bik] = (1 — ax + Bi)Ri i := fRik, (2.7)

Var [Ri k41|Bik] = (0% — 27k + 70) Rik - (2.8)

Remark 2.3

1) Hence Corollary 2.2 immediately implies | — oy + 3y > 0, for all k > 1.

k T
1’5“‘,' the

; : ~k @
2)  Looking at cumulative data C; ;. 1= LJ- _19i; and Dy = ijl

assumptions (2.4) and (2.5) imply that
E[C;kt1|Bik] = (1 —ax)Cik + axDi
E[D;k1|Bik) = (1 + Be)Dik — BeCik -

3 Estimator of the necessary reserves

The main aim of this section is to define weighted estimators for the parameter
oy and (3, and for the unknown values S; i, 15 1 and R; g, for i + & > n + 1.
Moreover, we will derive some useful conclusions.

Proposition 3.1 Under the assumptions stated in Section 2

n—k
> Wi k Skt

Ok 1= t:Ik and 3.1)
>, wisRix
i=1
n—k
>_4 ‘H’i,kr['i,kﬂ
B = S (3.2)

Z '(Ui'k[.l),-i.k

=]

are conditionally unbiased estimators for oy, and [y, respectively, given Dy,
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Moreover, fi = (1 — ay + By) is the Chain-Ladder estimator for fi, that means

n—k
Y Wi kR gt
o i=l
= = (3.3)
> wikRik
=1
The estimators oy, By and fi are correlated via
g E‘Eg
Cov [ Bk || B ) |Diak| =0, fork#I, (3.4)
i Ji
and
AW o o T — 0%
o o) . 7] 2
Cov || B |,| Br ||Px| = Yk T Tk — Yk
-~ ~ 2 2 2 2
Sk Sk Ve =0k T =Wk O — 2% + 75
n—k 5
_ZI wi Bk
-‘}:
s (3.5)
n—k
2 Wikl
J=l1

Proof: Using (3.1), (3.2) and the definition (2.7) of fx, formula (3.3) can be

easily verified.

The conditional unbiasedness of the given estimators is a direct consequence of

n—k .
Z w; k& [S'é,k-r-l |Dk]
E [ag|Dy) = &=

n—k
> wikRik

|
n—k
Z w; kO B
=]

== = (¥
n—k t

> Wik Rk

1= |

and similar calculations for (3.
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Moreover, for k > [ we get

ae\ /o o ar\
E\Be | (G| |D| =E|E{|B]||De| | 5] |D
S i fx /i
s e b
(Y} (&7]
= I O | B Hg D,
i fi
ik ar\
=E || B ||D]E| 5] |D],
Sk fi

which proves (3.4).
Finally, in order to prove (3.5) we will only compute Var[o,|Dg|. The other
covariances can be obtained in the same way. We get

n—k n—k
El w? . Var(S; k1| D] Zl Wi Bk
) =

Vil['[(f)\.';\-"'Dk] o L n—k : — Tk n—k 2 =
( Z wW; k HJ',A;) ( Z 'l”j,k[f.j,k)
j=1 =1

Now we can look at the random variables .S; g, 15 . and R; i, for i + k& > n + 1.

Theorem 3.2 Let the assumptions of Section 2 be fulfilled. Then

k-2
Sk = Qg Rig—1 = O B b1 —4 H fi. (3.6)
=n+1—i
ko2
Lo 1= Bl R o] = Pt 214 H It (3.7)
(=n+1—1
k—1 N
Big=Rinspis || T (3.8)
l=n+I1—1

are conditionally unbiased estimators for E[S; ;|Dyy1-il, BT 5Dy 1] and
E[R; k|Dyi1-i], for i +k > n + 1, respectively.
Moreover; if there is no tail development, that means Ry, =0, then

n n
A~

Z gi,k = Ri,n.-l |—i T Z ' rrll,k' . (39)

k=n+4+2—1 k=n+2—1i
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Proof: The unbiasedness of the estimators gi,k, _’/[\’,;,k and [A?Lk are direct conse-
quences of Proposition 3.1 and Corollary 2.2.

Now, let us assume that R ,, = 0. Then we get ﬁ,,q = 0, which yields f?:.,;’n = i),
for 2 < ¢ < n. Therefore, it follows

n T
> (Sik—Tik) = Rimpi—i — Rinpa—it > (Rip—1 — Rig)
k=n-+2—i k=n-+3—i
= Ri,n-H—i - ﬁi,n
— Ri,n+l—i )
which completes the proof. ]

Equation (3.9) shows that there is no gap between the estimations of the total
necessary reserves using payments 5; ; and using reported amounts 7; ;. This
is an advantage over the standard Chain Ladder method, where one may have
a systematically gap between the estimator using payments and the one using
reported amounts, see Braun [l]. Therefore, the presented extension of the
Complementary Loss Ratio method is in this respect comparable with the Munich
Chain Ladder method, which extends the Chain Ladder method in order to
eliminate this gap, see Mack and Quarg [4]. Unfortunately, for the Munich Chain
Ladder method an estimator for the mean squared error of the estimated necessary
reserves is still missing.

4 Estimator of the mean squared error

[n this section we want to derive an estimator for the conditional mean squared
error

n 2
mse(Rl) = E[( Z (Si,k - S‘i,k)) ‘D”:|. (4[)
k=n+2—1
of the estimated necessary reserves
T
I f'i = Z S’i,ﬂ
k=n+2—1

under the knowledge D,, of the whole run-off triangle, see also (3.9).
We want to skip problems of dealing with tail factors. That’s why we assume

Ri,n =0. (42)
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[n order to get further on we need estimators for O’i and T,f for I < k < n, and
for v, for I < k <mn —I.

We take the following weighted conditionally unbiased estimators:

n—k - 2
Si k- -
~2 rr—1 i,k+1 .
e Wy kB -0 | 3
T k ; Wi ke 4 k ( 1 m) (4.3)
n—k
=27 S wikRin (T"”"+' - fil-)z (4.4)
k k i R ) R-i,[\; ; ) .
n—k '
N . Siktl Tik+1 =
o= 2t Y wikBi ( . = (wc> ( ) (4.5)
i=1 i i
where
n—k
"k Z wy R«
Zri= Y wik— :
=) Z Wi kI

for | <k < n — 1. Note that K[c;|Dx] = o, and analogously for 7} and 77,

We still lack estimators for o2 | and 77 _,. If there is even no development after
year n — | we set

Otherwise, one can extrapolate > | and 7., in the same way as described by
Mack [2]. In our examples we take

~4

a
~2 L n—2 =2 =2
Op—1 = min (Az 1 In-3 Un—Z) )

Tn-2
~2 L i n—" ~2 ~2
Tp—1 += Min (AW 1 Th—3 Tn,—2) :

Now, fix n+ 1 — i < k <n and let

*
B; = Binsi-i-
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Then we obtain

n 2
E K Y. (Sik— Si,k)) Du} (4.6)
k=n+2—1
n " 2
— Var Z S; k’ nl| + ( Z (Er[gi,f\: |D1L] - SL,A))
“k=n-+2—1i k=n-+2—i
n N 2
— Var Z Sl ke } -l— ( Z (E[.S‘_i,k ’B:] . S@',!«))
~k=n+2—1 k=n-+2—1

- Z Cov[Si ks Sik, | B;]
ki ka=n+2—1i

i

+ > (BlSik | Bl = Bi )(ESik, | BY] = Sis)
ki ky=n+2—i

Note, the first term corresponds to the process variance and the second term to
the parameter estimation error, see, e.g., Wiithrich-Merz [5].

We split the analysis of the addends of the first sum of the last line into the two
parts: k; = k; and k| < k. For k:= k| = k; we get

Var[S; | Bf] = E [Var[S.i,k | Bi k1] l BZ‘] + Var [E [Gs.k | Big—1] | Bf}
= o | B[Rin—1 | Bf] + o Var[R; k1 | Bf].
And for ky < k; we compute
Cov[S; &, Si.k, | B} ]
_ E[Cov[si,k, Gt [ Bl ’ 3]

+ Cov [E[S«,:,k1 | Bi ky—1], E[Si
= Oy — 1COV[\S ks R o~ 1 | 57 ]

By joee ] ’Bf}

= Qky—1fkp—2 " fr, CoV[S; gy, Ri gy | B;]
= ky—1fky—2 " i COV[Sikeys Riy—1 — Sk, + Ty | Bi]

= g1 fhr—2 " [, ((YA-.l.flk:leill’[Ré,k| 1| Bf]

+ (V-1 — (Tizalf—w)E[Ri,Aq—-l !B‘f]) .



Because of Corollary 2.2, we can use the same arguments as in Mack [2] and get

k1
E[Rix|B|=Rin+i-i || £,
l=n+1—1
k—1
Vill’[Rl"HB:] - R-i.n b1—i Z .fn—H——i et .ft’—l(("‘gZ = 2'}"1 + le)j‘?,} [ Fee- f,‘zl
l=n+1-—1
forall k >n+ 1 —1i.
Using the notation
g =l
%, for ki =k, =101+1,,
ap
RS QU for ky > hp =1+ 1 or ky > ky = L+ 1,
afi
o? — 29 + 7}
! A_J L forky > ky>l+1lorka >k >1+1,
\ JI

(4.7)

and replacing all unknown variables by their estimators we get for the addends
of the first sum of the last line of (4.6)

(kinky)—1 <
{‘\‘ 1 1 E /: ,\1 (t’\llﬂk'l*t
(,OV[.‘),;‘A-, g bi‘;,;: i B;] = i ,j','»-iﬁ,:,,l\:l Z ~ )
=n-+tl—i RM

where we used the notation R = R, fori +k <n+ I
In order to estimate the addends of the second sum of the last line of (4.6) we

start with

b2 k-2
(lu’[b}‘;\.wf] g,,,k) = Rs,n-|-1--i((u:| H fo — H ft)-

l=n-+I1—1 l=n+1—1

Using the abbreviation

~ ~

F. = (ﬂk---l - ar'\:~l)fk ~2 et fn—H o) for [ =k — 1 i
Lol = N . : < B o .
e Sroa o fro(fr = f)fir oo fagpi—i,  otherwise,

(4.8)
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we can proceed with

(B1Six, 187~ S, ) (H[Siks |B7] ~ B )
ky—1 ky—1

2 § §
= Fﬁ'!:,n,“}‘lﬁ'l: maklyllFisklytl &

L=nt+tl—t bh=ntl—2

Now as in Mack [2] we approximate Ik, 1, Fi k.1, bY ElEik 0 Eikt | Piivi)-
This means we take the average over as little data as possible keeping as much
as possible values S; , and 7} ; from the observed data fixed. Using the same
arguments as in the proof of Proposition 3.1 we get

EF k1 Fikyta | Diyviy) =0, for 1y # by,

and

E[F; gy 1 Fikyt | D

( Var[r?k,_l JDkl‘d]‘Zi—Z o ]‘?L+|~‘i? for ki =k =1+1,
”i.mlfiz.ﬁz T fﬁHVar[ﬁ | /Dl]};{l T -}?L—Fl—'i yfor ky = ky > 1+ 1,

(Ykl—lf/vl—2 e szcov[ﬁt‘z—“al’v"z*l |’Dr'€2'*|]flg_;—2 o 'jlz--l—lmii
for ky > ky =1+ 1,

k1 oy -2 f’v‘z*[a}ﬂrlflzg—z T flz-rklvar[fl |Di]f?—| e E—H-—i ’
for ky > ko > 1+ 1.

Now we use (3.5) and definition (4.7) and replace all unknown variables by their
estimators, This and similar arguments for 75 ,, with the definition

( 72

T fOl'k|=k2:[+l,
Gr
by = 4 =, for ky > ky =L+ Lor ky >k =1+ 1,
B fi
e R R
af fz‘“l D forky S hy >l lork >k >4,
\ !

yield
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Estimator 4.1 Let the assumptions of Section 2 be fulfilled. Then the conditional
mean squared errors of the estimated necessary reserves R; and of the estimated
IBNR

n

5 5
L .
i = § L1,k

k=n+2—i

can be estimated by

n—I
Hind
n (ki Aka)—1 [ Z “}j,llzjl
D g a & j=1
m"e(Rp) = Z ‘Si,klé'i,kz z (k) ksl ﬁ + 1 .
ki ky=n-+2—i -l o ( > 'm.;.zR;j.i)
=1
n—I )
mn (/\‘.|/\Af)_)'"l 1 Z “);‘lRJ,l
T moom 3 J=I
mse(/;) := Z L k) T iy Z Dk ot R Lo >
ki ky=n+2—i I=n+1—i b ( > 'f”_-;\tl?j,t)
j=1

Corollary 4.2 Let the assumptions of Section 2 be fulfilled and assume that there
does not exist any tail development. Then

o~

mse(R;) and msc([A)

are estimators for the conditional mean squared error of the ultimate reserves

~

mse( ;) .

Proof: Since we assume that there does not exists any tail development, it follows
from Theorem 3.2 that

n

ﬁi: Z SLA—RJH-H-"L + Z sz_ i,n41- Jrl?z

k=n+1—1 k=n+1-—1i
This and the measurability of £, ; with respect to D,, proves

~

mse(R;) = mse(fi) ;

which implies our statement.
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Often an estimator for the mean squared error of the estimated total necessary
reserve

n
== E R}-‘
=2

is of interest, too. Since I; and R;, i # j, depend on the common parameter

estimates v, and (3, we cannot simply take the sum of all ‘mse(2;). But using
the same techniques as for the derivation of the result of Estimator 4.1 we obtain:

Estimator 4.3 Assume the assumptions of Section 2 are fulfilled. Then the
conditional overall mean squared error of the reserves can be estimated by

n
ﬁé(i Ri) E mse( R;) ;
n—|

g
(ki Aka)—1 Z wj 11
‘I- 2 Z Z Z ‘Si,, kl !) .’ﬂ Z aklaklsl ,:[
2<i <ip<n ki =n+42—i ky=n+2—i st ( Z het l[?j l)
J=1

Moreover, the conditional overall mean squared error of the IBNR can be
estimated by

n
ﬁ\(z f) nge :
n—I

)
(kiAk2)—1 Z "Uj,IRjJ
; =1
+ 2 Z Z Z i“ A] i, k2 Z [’lu,hg, - 5
2<ii<i¥n ki=n+42—1 kx=n+2—1i [=n+1—1, ( Zl “)J lR] !)
j=

Derivation: We start with

mse (Z R; ) Z mse( ;)

1=2 =2

+2 ) Z Z ( ot [Pr] = & k.)( [Si2 k| D) = nkz)-

2<i1 < <n kj=n+2—i ky=nt+2—i

Similar to the derivation of Estimator 4.1 we substitute

k—1

ElSin|Dul = Sik= D> Fiks,

l=n+1—1
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where F; 4 is defined by (4.8). This leads to

n

mse iff', :stc(ﬁi)

1=2 1=2
n n ki—1 ka—1
+2 Z Z l(il Ko [?I'g\,’\?g.{: .
2<i1<iz<n ky=n+2—1i; ky=n+2—i2 Lh=n+l—4 L=ntl-i

We proceed with the product Fj g 15, &0, in the same way as with
Fi gy 1, ik, in the derivation of Estimator 4.1 and obtain our claimed estima-
tor for the overall mean squared error of the reserves by replacing all unknown
parameters with their estimators.

Moreover, the same procedure leads to the claimed estimator for the overall mean
squared error of the IBNR. ]
Finally, the same arguments as in the proof of Corollary 4.2 yield

Corollary 4.4 Let the assumptions of Section 2 be fulfilled and assume that there
does not exist any tail development. Then

Tﬁ:ﬁ(z ﬁ’,) and ﬁﬁ?(z f,)

i=2 1=12

are estimators for the conditional overall mean squared error of the ultimate

reserves

mse (i E‘,)

1=2

Note, there are also other methods that lead to an estimate for the estimation
error (second term in (4.6)). An alternative would be to apply the conditional
resampling approach, see Wiithrich-Merz [5].
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5 Two examples

As first example we choose some complete triangles and no weights in order to
compare the standard Chain Ladder method, see Mack [2], with our method. The
triangles are shown in Table 4 and Table 5. As estimators for the parameters we
get the values shown in Table 1, Table 2 and Table 3.

k l 2 3 4 5 6 j 8 9

fk 1.2343  1.2904  1.1918 1.1635 1.1457 11013 10702  1.0760  1.0444
3',29 6658 9884 8707 1497 27321 5522 17850 8024 1'850

Table |: Chain Ladder parameters for payments of Example |

k | 2 3 4 5 6 7 8 9

fk 1.6502  0.8561 0.8718 0.9614 0.9812 09833  0.9900 0.9917 0.9949
o7 | 31586 7885 5771 538 235 10 13 4 l

Table 2: Chain Ladder parameters for reported amounts of Example |

k 1 2 3 4 5 6 7 8 9

ap | 01174 0 0.0922  0.1114  0.1764  0.2424 03002 03271 04279  0.8923
By | 09761 -0.1896 -0.2026 -0.0802 -0.0501 -0.0663 -0.0564 -0.0548 -0.1077

o1 | 4241 5560 5103 2796 16724 9625 18536 20 0
?,3 48855 10044 11535 856 300 | 025 567 345 210
Yt | 1931 2771 [ 403 -175 —47 -895 -3 130 =95

Table 3: Extended Complémentary Loss Ratio parameters of Example |



1 2 3 4 5 6 7 8 9 10

1 1°'216°632  1'347°072 1'786'877 2281606 2656224 2°909°307 37283388 3'387°549 3754403 3921258
2 798924  1°051'912 1215785 1'349°939  1°655°312 1926210 2°132°833 2287311 2567056

3 1'115°636  1°387°387 1°930°867 2'177°002 2°513'171 2'931°930 3°047°368 37182°511

4 | 1°052°161 173217206 17007132 1°971°303 27298349 2°645°113 3°003°425

5 808864 17029523 1229626 1390338 1°842'662 2 150°351

6 | 1016862 17251'420 17698052 2105143 2'385°3390

7 948°312  1°108°791 1'315°524  1°487°'577

8 917°530 1°082°426 1'484°405

9 | 1001238 1'376'124

10 841930
Table 4: Cumulated triangle of payments of Example 1

1 2 3 4 5 6 7 8 9 10

1] 373627115 5217243 4754900 4°381°677 47136'883 4094140 4'018°736 3'971'59‘1 3'941°391 39217258
2 ] 2640443  4'643'860 3'869°954 37248'558 3°102°002 3°019°980 2°976°064 2946941 2919955

3| 2879697 4785531 4045448 3°467'822 3°377°540 3341934 3°283'928 3°257'827

4 | 27933345 5299146 4°451°963 3°700°809 3553391  3°469°505 3413921

S| 277687181 4658933 37936455 3512735  3°385°129  3°298°998

6 | 37228439 5271304 4'484°946 37798384 37702427

71 29277033 5067768 4066526 3704113

8 | 3'083°429 4°790°944  4°408°097

9 | 27761163 4°132'757

10 | 3°045°376

Table 5: Cumulated triangle of reported amounts of Example 1

71
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The resulting estimated reserves are shown in Table 6. Table 7 and Table 8 list the
corresponding standard errors and the standard errors in percent of the reserves. In
this example the extended Complementary Loss Ratio method leads to reserves
which lie for almost all accident years between the two corresponding Chain

Ladder reserves.

Chain Ladder Ext. Compl.

Paid Incurred Loss Ratio

| 0 0 0
2 1147086 337984 3147902
3 3947121 31°884 66994
+ 6087749 3317436 359384
5 697742 1°018°350 981°883
6 12347157 171037928 ["115°7768
7 1138623 | "868 664 7867947
8 16387793 1'997°651 119427518
9 2'359°939 1°418°779 15697057
10 1'979°401 2'556°612 2°590'718
Total 107165612 107665287 107728771

Table 6: Estimated reserves of Example |

Chain Ladder Ext. Compl. Loss Ratio
Paid Incurred Paid Incurred

|
2 89423 2°553 194 14°639
3 234°652 57186 4°557 5°538
4 2557590 9264 107541 12°566
3 261272 10°874 367792 38250
§ 323859 337243 437940 44835
7 274914 55°884 65055 65909
8 373°587 165°086 176°706 176°977
9 492°815 2097162 197°78 1 197917
10 468 074 321°560 322900 323049
Total 1'517°480 455794 467°814 471°873

Table 7: Estimated standard errors of the reserves of Example |



Chain Ladder Ext. Compl. Loss Ratio

Paid Incurred Paid Incurred

|

2 78.4% 0.8% 0.1% 4.6%
3 59.5% 16.3% 6.8% 8.3%
4 42.0% 2.8% 2.9% 3.5%
5 37.4% 1.1% 3.7% 3.9%
6 26.2% 3.0% 3.9% 4.0%
24.1% 3.0% 3.6% 3.7%
22.8% 8.3% 9.1% 9.1%
9 20.9% 14.7% 12.6% 12.6%
10 23.6% 12.6% 12.5% 12.5%
Total 14.9% 4.3% 4.4% 4.4%

Table 8: Estimated standard errors in percent of the reserves of Example |

[t is remarkable that although we have to estimate 44 parameters for the extended
Complementary Loss Ration method compared to 18 for the Chain Ladder
method, we don’t get much higher and for some years even smaller standard
errors. This may be caused by the estimated negative correlations 7., for & > 3.
And because you combine two sources of information, that is, you have more
parameters to estimate but you also have more observations to do this parameter
estimation.

For the second example we take some part of a motor liability portfolio. We took
all small bodily injury claims. Because of the lack of good information, we can
trust the split into bodily injury and property damage claims only for the last 6
business years. The corresponding incremental triangles are shown in Table 9 and
Table 10. The opening reserves R;s ., | <@ <5, are given by Table |1
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1 2 3 4 3 6 7 8 9 10
1 609570 5867185 4287927 2517449 3937286
2 9237457 5937791 227°078 92°196 237°614
3 2088845 1'078°031 1°218°159 608392 1887167
4 473087763 1°554°327 936°982 6857698 611920
5 7°768'561 51357659 1°822°280 972°849 776484
6 | 552074 8°531'821 5170716  2°002°110 8327309
i 5417244 8743124 5'597°618 2°441°332
8 642'910 1078807562 672047158
9 6127030 10°560°382
10 8437267
Table 9: Incremental triangle of payments of Example 2
I 2 3 4 5 6 7 8 9 10
1 ~1°300°429 165398 449931 -375°029 -202°553
2 —605°101 -320°520 -318715 37429 475913
3 -305°795 -84'808  —287°127 -1'111'628 -1'142'698
4 2'951°080 -1'206"168 -5737665 —863°962 —734°588
5 16963154 6306204  —629'316 —1'127°533 38'569
6 | 1'216°693  19°307°493  4°610°965 119°541 -907°170
7| 2°099°009 24°019°545 5°522°897 275587489
8 | 27014710 27618640 474697660
9 | 27339252 28°149°520
10 | 2°413°472

Table 10: Incremental triangle of reported amounts of Example 2
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i Ri6—i

52107174
6093211
L1 1427105
117467760

887953

B LN -

Table 11: Opening reserves for Example 2

We choose weights

|, otherwise.

{ 0, fori+k<S5,
Wi g =

Moreover, since we only see 10 years of claim development, we have to decide
how to deal with the reserves remaining after 10 years. In this example we assume
that only fifty percent of those remaining reserves will be paid. Note, this decision
does not affect the estimated standard errors.

Applying our method we get the following estimators for the parameters:

& | 2 3 4 5 6 7 8 9
g 7.4862  0.3889  0.1647 0.1186  0.1299  0.1174  0.0686  0.0975  0.2862
Bk 18.6909  0.3512 -0.0762 -0.0825 -0.0914 -0.1155 -0.1536 -0.1696 -0.1474
(?i 7359451 71°545 4'301 3'522 2°561 9217 137058 2°646 536
”FI‘E 25'224'905 2747131 57°645 17390 597029 44779  62'834 1°058 18
Vi | 13351758 123'550  14°805 1°853 4'527 97429 3633 -1'673

Table 12: Estimated parameters of Example 2
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This leads to the following estimated reserves and their corresponding standard
errors (5.e.):

Paid Reported Amount
Reserves IBNR s.e. in % Res. s.e. in % Res.
| 3897107 -389°107

2 1310917 -991°339 57460 4.4% 10474 0.8%
3 1'559°034 17469423 82210 5.3% 45°552 2.9%
4 1'380°074  —1°562°693 211°574  15.3% 351627 25.5%
5 2'845'519  -3°117°679 424°820  14.9% 635533 22.3%
6 3'639°882 3618609 5137117 14.1% 769909  21.2%
7 61067104  —5°653"541 664°565 10.9% 969190 15.9%
8 9'152°283 77223097 9437067 10.3% 1°264'629 13.8%
9 177901115 —1'415244 271737399 12.1% 2'486'225 13.9%
[0 | 29°514°639 27944434 6960209  23.6% 74137137 25.1%
Total | 73798673 2°503°701 7°803°265 10.6% 86817194 [1.8%

Table 13: Estimated reserves and standard errors of Example 2

[f you try to apply the Chain Ladder method to the last 6 years, you would have to
estimate a tail factor for the payments of about [.17 and for the reported amount
of about 0.87 in order to get similar results for the total necessary reserves.
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Abstract

A stochastic model of an additive loss reserving method based on the assumption that the claim
reserves are good measures for the remaining exposure is presented. This model combines a
projection of payments and a projection of corresponding reported amounts such that both leads
to the same ultimate. In addition, the presented method even works for some kind of incomplete
triangles.

We will state estimators for the total necessary reserves and estimators for the corresponding
standard error. Moreover, we will discuss an example based on motor liability data, where we
distinguish between property damage and bodily injury claims and only have proper data to do so
for the last six accounting years.

Zusammenfassung

Es wird ein stochastisches Modell einer additiven Schadenreservierungsmethode vorgestellt, welches
auf der Annahme basiert, dass die Schadenreserve ein gutes Mass fiir das Exposure der
noch ausstehenden Schadenabwicklung darstellt. Dieses Modell kombiniert die Projektionen der
Schadenzahlungen und der entsprechenden gemeldeten Schadenhthen so, dass sie zur gleichen
Schiitzung der Endschadenhohe fiihren. Des Weiteren liisst sich diese Methode auch auf gewisse
unvollstindige Abwicklungsdreiecke anwenden.

Es werden Schiitzer fiir die notwendigen Schadenreserven, sowie Schiitzer fiir die dazugehorenden
Standardfehler hergeleitet. Das Modell wird anhand eines Beispiels aus der Motorfahrzeug-
Haftpflicht illustriert, bei dem zwischen Sach- und Korperschiden unterschieden werden sollte,
aber detaillierte Daten nur fiir die letzten sechs Kalenderjahre verfligbar waren.

Résumé

On présente un modele aléatoire d’une méthode additive de détermination des provisions pour
sinistres, basée sur 'hypothése que les "case reserves” sont une mesure adéquate des paiements
futurs. Ce modele utilise conjointement les projections des paiements et des “case estimates” des
sinistres annoncés correspondants de telle sorte qu'elles conduisent a une méme charge ultime des
sinistres. La méthode présentée peut également étre utilisée lorsque les triangles de liquidation sont
partiellement incomplets.

On dérive des estimateurs des provisions nécessaires et des estimateurs de ’erreur standard moyenne
correspondante. On présente un exemple venant de la responsabilité civile en automobile dans lequel
les données nécessaires 2 la distinction entre sinistres corporels et sinistres non-corporels ne sont
a disposition que pour les 6 derniéres années civiles.
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