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René Damms, Basel

A Loss Reserving Method for Incomplete Claim Data

1 Motivation

We want to describe a method which is able to deal with some kind of incomplete
triangles of payments and reported amounts. As an example you may keep in mind
the following situation. Assume your company covers motor liability. Some years
ago one decided to distinguish between bodily injury and property damage claims.
All new claims, all still open claims and all reopened claims have been migrated
to the new claims handling philosophy. This implies that for old years only some
claims can be identified as bodily injury or property damage claims and therefore
one cannot apply the Chain Ladder method on the separated triangles of bodily
injury and property damage claims.

For a more precise definition let and denote the incremental payments
and incremental reported amounts of accident year « and development year A:, for

I < /, A' < n. Here, n denotes the number of observed years. By incomplete
data we mean that Sj,k and Tj,k are missing, for i I A- < V for some accounting
year F < u. Clearly, in this situation the Chain Ladder method doesn't work
properly. But, if a good measure of the underlying risk for each accident year can
be obtained, the Complementary Loss Ratio method, see [3], could be applied to
both the incremental triangle of payments and the incremental triangle of reported
amounts.

We will extend the idea of the Complementary Loss Ratio method using the

case reserves (outstanding) at the end of the previous development year as risk
measure. In other words, payments and adjustments to the reported amount during
the year are assumed to be proportional to the opening reserves, which are the

case reserves at the end of the previous year. In order to do this we need all

case reserves AT.r-n « < F. We will present unbiased estimators for the total

necessary reserves. Moreover, we will use the ideas of Mack [2] to present an

estimator for the corresponding conditional mean squared error.

2 Definition of the model

We want to extend the idea of incomplete triangles in the way, that we introduce

non-negative weights i + A: < n, which measures our confidence in the

observed developing during the year A: of accident year i. The situation of the
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incomplete triangles described in the previous section is the special case of
weights 0, for z -f A; < F, and 1, for F < z + A: < We

will use the following basic notations:

the payments during development year A: of all claims of accident year /.

the adjustments to the reported amount during development year A; of all
claims of accident year z.

the outstanding (case reserves) at the end of development year A; of all
claims of accident year z.

We consider S),*,-, X),a and as random variables for which we have

observations for z + A; < n + 1. This variables are linked via

ß»,fe - 5j.A: I I + for 1 < z < n and 0 < A: < n

where we take /f^o 0.

As usual we assume the accident years, i.e.

{Si,A:, T,,a-, ßi.fc: 1 < fc < «}, {*V„,a-< T„,fe, Än.AT 1 < A; < n} (2.1)

are independent.
The minimum and maximum of two real numbers we denote by

a V 6 := max(a, 6) and a A 6 := min(a, 6).

Moreover, we define the information X>a of the run-off triangles up to development

year 1 < A: < n by the cr-algebra

iPfc := cßi,AA(n+i-i)") (2-2)
N=i 2

with

T*,,: 1 < Z < As}) (2.3)

the run-off information of accident year z up to development year A:.

The idea of case reserves being a good risk measure for incremental payments
and reported amounts can be formalised as follows:

Assumption 2.1 Tor 1 < z < n and 1 < A: < n we osriimc t/iat

[Si,fc+1 |#»,A:] (2.4)

£[7},k+i|ß<,fc] =&-Ri,fc. (2.5)

Ac +1 \ /Sj./c+l
Cov

îi,fc+l/ \ït,fc+l
ßi.fc

** J Jfc,* (2-6)
'« A:

/or some constants ctfc and and some positive de/inife, symmetric matrices E^-.
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Assumption (2.6) ensures that our weighted estimator for the necessary reserves
will be of minimal variance under all linear estimators. Moreover, (2.6) also

implies that all reserves have to be non-negative and together with (2.4) and

(2.5) we even get that all reserves have to be positive up to the time where no

development is assumed to be taken place.
Standard calculations using conditional expectations gives us.

Corollary 2.2 Assumption 2.1 imp/res t/ze standard C/zain Ladder assumptions

/or t/ze reserve, i.e.

E[Äi,k+,|ßi,fc] (1 - a* + Ä)Äi,k := A-fla (2.7)

Var [Äi,fc+, |ßi,fc] - 27fc + (2.8)

Remark 2.3

1) //ence Coro/iary 2.2 immediate/y implies 1 - afc + /?fc > 0, /or «// fc > 1.

2) LooA:in,g at ezzzzzzz/ative data A,it := Ej=i A,it := Ey=i A./ die

assumptions (2.4) ant/ (2.5) imp/y t/zat

£ [Ci,fc+ I |0i,k] 1 - afc)C<,k + afcA.it,

£[A,A'fl|A,A;l (I +/3fc)A,fc - •

3 Estimator of the necessary reserves

The main aim of this section is to define weighted estimators for the parameter

at and A and for the unknown values S/fc, 2/fc and A,it> for i + fc > n + 1.

Moreover, we will derive some useful conclusions.

Proposition 3.1 t/nder t/ze assumptions stater/ in Section 2

n—A;

âfc := 2=1 and (3.1)
n —A;

^i,A;^i,A;
i= I

n —A;

X) tOj.fcTj.fc+i

/,:= (3.2)

E
i=l

are conditiona/iy unbiased estimators /or afc and /A respectively, given A-
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Moreover := (1 — Sfc + /3fc) i'.v t/:e C/za/n-LacWer esrzmafor/or ,// r/z«f mean.v

/fc

n —A;

I] «',fci?a+i
2= 1

n—/c

E w-;,fc-Ri,fc
2= 1

(3.3)

77ze estimators Sfc, /3a aw/ /a are corre/ater/ via

Cov

Ovfc\ Mr

f 1
• If

a*.-/ \/i/
AA A: o, /or A: / /,

«a A/

(3.4)

Cov
<H\ /a*U
Ê j Â

A/*/ \/fc/
% 7A:

77

E
7A: - <^fc

E - 7fc

7fc - E 7* - 7fc E - 27a. + r£,

n —A:

E 'E.aEM
J =1

/j —A: '

E <<';.A:%A-
V.1 '

/

: • (3.5)

Proof: Using (3.1), (3.2) and the definition (2.7) of /, formula (3.3) can be

easily verified.

The conditional unbiasedness of the given estimators is a direct consequence of

£[3fe|2>fc]
E [5,^+1 |Pfc]
2— 1

n —A;

E w'i,fc^i,fc
2= 1

n —A;

E Wj,kQ!fciïj,fc
2=1

"^fc
E »'/.A:Äi,fc
j=l

and similar calculations for /3a,..
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Moreover, for A; > we get
£

£7 X»,

i:

which proves (3.4).

Finally, in order to prove (3.5) we will only compute Var[a/|L>A]. The other
covariances can be obtained in the same way. We get

E «'/.* Var[Sj,k+1 I'PA-I E «7,*Ä.M-
j=l _ 2 J=l

Var[«A:|X»fc]
n —A;

E
n—/c \ ^

E
j=l

n

Now we can look at the random variables S»,*, 7/a and L/a, for i + fc > » I.

Theorem 3.2 Le/ /Le a.MZ//«/J//o«.v o/ Sec/ion 2 Le /n//i//ez/. 77zen

/ 2

S«,/k := äfc_|ßi,fe_i =• JJ • (3.6)
/=n~H 2

k 2

f;,A :=/?k_,Äi,k_, =/?fc_,Ä<,„.n-i n (3.7)
/=n+1 — i

A: -1

< 1[ /I (3-8)

/=n+1 —i

are conrL7/on«//v nnL/a.ser/ es//7na/ors /or E[S^A|X*n+i-i]. £7[Ti,A:n-t i-i] and

£[//,a|27„-, I--,], /or z + A' > n + 1, re.v/?ec7/Ve/y.

Moreover; // /Lere As no /a/7 r/eve/o/tmen/, /La/ means 7i/„ 0, /Len

yy Sj,k i / + yy /),a (3.9)
/c=n+2—i /c=n+2—i
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Proof: The unbiasetlness of the estimators 5'^-, T^fc and are direct conse-

quences of Proposition 3.1 and Corollary 2.2.

Now, let us assume that Aq„ - 0. Then we get /„ i 0, which yields A,,„. 0,

for 2 < / < n. Therefore, it follows

n n

^ Aj,„+l -i - Aj,„ 1-2 -» + ^ (Ai, A: I ~ At,A;)

A:=n-f-2—i A;=n-h3—i

— -^1,71+1— 1 ^1,71

— -ßi,7i+l—i

which completes the proof.

Equation (3.9) shows that there is no gap between the estimations of the total

necessary reserves using payments and using reported amounts X),fc. This
is an advantage over the standard Chain Ladder method, where one may have

a systematically gap between the estimator using payments and the one using
reported amounts, see Braun [I]. Therefore, the presented extension of the

Complementary Loss Ratio method is in this respect comparable with the Munich
Chain Ladder method, which extends the Chain Ladder method in order to
eliminate this gap, see Mack and Quarg [4|. Unfortunately, for the Munich Chain
Ladder method an estimator for the mean squared error of the estimated necessary
reserves is still missing.

4 Estimator of the mean squared error

In this section we want to derive an estimator for the conditional mean squared

error

mse(Aj) := A

of the estimated necessary reserves

/c—TI-)-2—i

-

(4.1)

Â := £
/c=71 +2 —1

under the knowledge of the whole run-off triangle, see also (3.9).
We want to skip problems of dealing with tail factors. That's why we assume

A|,„ 0. (4.2)
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In order to get further on we need estimators for of and r|, for 1 < fc < n, and
for 7^, for 1 < A: < n — 1.

We take the following weighted conditionally unbiased estimators:

4 2*' Ïl ' (4-3)

i= 1

n —/c

-s r-F— I

3 A'

i= 1

A /rr \ 2

fc+l

i,Ai

^i.fc-f-1 -~.il

(4.4)

where

n —A;

n- A: E
Zk==E <"<•*-S '

'=' E Wi,fc-R»,fc

i= 1

for 1 < A; < n — 1. Note that i?[of |X>a,-] of and analogously for rf and ff.
We still lack estimators for <r^_, and rf_If there is even no development after

year n — I we set

=^_. =0.

Otherwise, one can extrapolate of, and ff_, in the same way as described by
Mack [2], In our examples we take

-2 • /^n—2 -2 ~2
0"n— 1 * mill ^ ^2 5 ^n—3 ' ^n—2y >

rf_, := min f rf_ ff
V 3

Now, fix n + 1 — i < A: < n and let

ß;==ßi,n+l <
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Then we obtain

£1 E (Si,fc-5i,k)
/c=n+2—2

(4.6)

Var

Var

7T -1 77. \ ^

]T 5i,fc|o„+f (^[Si,fc|2?„]-5i,fc)J
:=n+2—i ^ /c=n+2—2 '

£ 5i,fc|ß;| + £ Wi,*|ß;]-£,*))
A;=n-)-2—i —r>-t_9_?" /^A:=n+2—2

X] Covf5'u:,,5^,|ß;]
Ali ,/c2=n+2—2

n

+ £ (E[%, | ß*] - 5).,, )(£[.S'a, I ß?] -
fc| ,/c2=n+2—i

Note, the first term corresponds to the process variance and the second term to
the parameter estimation error, see, e.g., Wüthrich-Merz [5],
We split the analysis of the addends of the first sum of the last line into the two

parts: A;, — fc2 and fc| < A:?. For A: := A| A,'2 we get

Var[Si,A:|ß*] £ Varfà,* | ß* -h Var £[$,fc|ßi,fc-i] ßf

rri ,£[Ä^_,|ß;]+at,Var[ßa-i!ß;]'
And for fc| < we compute

Cov[Si,fc,,Sa-i|ßi]

E Cov(.S';.fc,,Si,fr, |ß,:.A:, i] ßr

+ Cov ß'[ßj,A;i |ßi,fc> -l],ß[5'i,/t. Ißt.fe -I ß*

oa, - ,Cov[Si,fc,,ft,fc, -, | ß*]

«fcj- 1 /fe-2 • • • /fei Cov[,S',,fc, I ßi.fc, | ßi ]

^ AV/,;, —1/fc-2 —2 • • /fe,Cov[Sj,fc|, ßj,fei -I - ß»,fe, +Ti,fci | ß*]

«fc> -1 /fcj-2 • ' ' /fe, («fe, i /fe, i Var[ßj^., i
| ß* ]

+ (7fe,-,-^,-.)ß[ßi,fc, i
I ß/l)
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Because of Corollary 2.2, we can use the same arguments as in Mack [2] and get

fc-i

,_i [J /«,
/=n+1 — i

A—i

Var[/?,.,|ß;] fi,„,i „ £ 2,,+ r,-I./',',, •...•/=
/=n+1 —i

for all & > n + 1 — i.
Using the notation

ûfci,fc2./ := <

«i
7i ~

5///

for A:
I A.'2 / + 1,,

for > A>2 =1+1 or At2 > fc| / + 1

(T? - 27; + rf ^ ^ > A)2 > / + 1 or > fc| > / + 1

./f
(4.7)

and replacing all unknown variables by their estimators we get for the addends

of the first sum of the last line of (4.6)

A: I AA.'2 — 1 ^
5^, I 5;] 5a, 5a.. £

/=n+l t

where we used the notation f?a for « + A: < n + I.

In order to estimate the addends of the second sum of the last line of (4.6) we
start with

(£[5a|ß*M,A.)

Using the abbreviation

A,-2 A 2

— «a+1-î [ afc_i /; -- «A I JJ /;)•
/=n+l — i /=n+l—i

5;,A,/ :=
(afc_i - a*;. I )/A—2 •

• •
• AH I ;

cva l/fc-2 •
• • ' //+i(/t - //)A-i •

• •

for Z A: - 1

•/„+!—», otherwise,

(4.8)
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we can proceed with

(ß[S,.,, I ß*] - (£7[5i,fe I ß*] - Si,*,)

fci I fe. I

fl.

/i=n+l—i /2=+l— i

Now as in Mack [21 we approximate F^^F/,*^ by F[Fi,/q,h | £>/,vhl-
This means we take the average over as little data as possible keeping as much

as possible values and from the observed data fixed. Using the same

arguments as in the proof of Proposition 3.1 we get

I A,v/,1 o, for ft /- /2

and

F[-F';,fci,tFt,fc2,i I £>/]

Var[3fc,_i |2?fc,-i]/fc,_2"-^+i <>
for A;, A:j Z + I,

"fc, I/fc, : ' ' ' /?+i M/t | £>;]/?_ • /*+,_/ »^r fc, fo > / I 1,

<
Q!fc,-l/fc, -2-"/teCov[/fc,_i,Sfc,_i |Pfc,-l]/fc, 2

• •

hi -i>

for fct > A,'2 / + 1,

'Vfc, -î/fc, -2-"/*a-i«*2-i/fe_2--7i+|Var[^|Pi]y5L|---^i-i,
for A.'

I > A.'2 > Z I 1.

Now we use (3.5) and definition (4.7) and replace all unknown variables by their

estimators. This and similar arguments for Tj,„ with the definition

&fci,k2,t •= "
T ~ 7/

Â /;

- 27/ + T?

/?

for A;i A.'2 / + 1,

for fct > A,*2 / + 1 or > fci ~ / Hi,

for Ä, > A,'2 > Z + I or A;? > At[ > / + 1,

yield
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Estimator 4.1 Le/ /Le assump/zons o/Sec/z'on 2 Le /u//z//ed. 77zen /Le conc/z/zona/

mean squared errors o/ /Le es/z'ma/ed necessary reserves fl, and o/ /Le es/z'ma/ed

//iL/W

ß := ^ T/,fc

/c=n+2—i

ca« Le es/z'ma/ed Ly

^ A; i A ÄJ2 — I

A'i ,/c2=Ti-f-2—i /=n+1 —i

~ h

«M

n—Z

E
j =i

m se

n A: i A &2 1

(ß) ^ ] î/,fc| T/,A.-2 ^ ] Öfc|,/C2,/

fc|,fc2 »+2—! /=ll+l-i fii.
h

E '"y.ißj.i
j=l
n —Z \
E E.,%/

^

j=i
/«-/ > j

E
J I '

Corollary 4.2 Le/ /Le assump/z'ons o/Sec/z'on 2 Le /iz//z//ed and assume /Lu/ /Lere

does «o/ ex/s/ any /a/7 deve/opmen/. 77zen

irise (ßj) and mse(/)

are es/zma/ors/or /Le condz/zona/ mean squared error p/ /Le u/Lma/e reserves

mse(Äi).

Proof: Since we assume that there does not exists any tail development, it follows
from Theorem 3.2 that

n n ^
ßi ^ Si,fc ßi,n f 1-i + E ^.n+l-i +" Â '

A;=n+I— i Zc=n+1 — Z

This and the measurability of ßj,„+i- » with respect to X>„ proves

mse(Rj) mse(/,),

which implies our statement.
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Often an estimator for the mean squared error of the estimated total necessary
reserve

n

(=2

is of interest, too. Since 1?,; and Rj, i / j, depend on the common parameter

estimates fqt and /4, we cannot simply take the sum of all mse(R). But using
the same techniques as for the derivation of the result of Estimator 4.1 we obtain:

Estimator 4.3 Assume tde assumptions o/ Section 2 are /w//z//ed. TTten fde

conditiona/ overa/i mean SY/aaree/ error o/ tde reserves can de estimated dy

(n
\ n

E^* J XImse(R)
^

n (fc,Afc,)-l £ Wj.i-Rj,/

+ 2 E E E Ê.fci'Ê.fca EE Ij •

2<i|<i2<^ Ai|=n+2—ii Ai2=n+2—i2 i=n+l--ii | ^ / J

j=i
'' '' '

Moreover tde conditiona/ overa/i mean .sc/wared error o/ the //AVA' can de

estimated dy

mse(7,)
^ ^

n n Ac IA Ac2 — 1

E EE EE ''l.t:, ^ îfci.fcj.t—;17 —p
2<ii<i2< Ai|=n+2—î| Ai2=n+2—22 Z=n-f-l — i| |

ĵ=i '
Derivation: We start with

n \ n

mse EE^O =5Emse(Äi)
A: 2

2
2

n n

+ 2 E EE E I®«] - Ea )(e[£ ^|2?„] .V;,r;).
2<Z|<î2^^ /ei=n+2—i| A/*2=Ti-h2—Î2

Similar to the derivation of Estimator 4.1 we substitute

A- I

E[6'i,A=|2?„l-5i,k= EE Rqu,
/=n+1 — i

-Ei)-E
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where i*i,M is defined by (4.8). This leads to

nise ^ // J ^ mse(//)
Vi —2 / i=2

n Au| — I A?2 — I

+2 x! z z z z ^'i.2<7|<72<7l ^1=714-2 — 71 A.'2=n+2 —72 /|=n+l—7| ^2 —714" t 72

We proceed with the product ^ same way as with
in the derivation of Estimator 4.1 and obtain our claimed estima-

tor for the overall mean squared error of the reserves by replacing all unknown

parameters with their estimators.

Moreover, the same procedure leads to the claimed estimator for the overall mean

squared error of the IBNR.

Finally, the same arguments as in the proof of Corollary 4.2 yield

Corollary 4.4 Let r/fe «ssM/npr/o/M o/Sec/('o« 2 //e /if/////«/ ««<:/ assume f//«f r/zere

r/oe.s no/ ejo's/ «ny to/7 e/eve/opmen/. 7Vien

«re estimators /or f/fe co«f/f7/o«a/ over«// mean .ve/f/«rer/ error o/ i/ie w///ma/e

mV^/W.Y

Note, there are also other methods that lead to an estimate for the estimation

error (second term in (4.6)). An alternative would be to apply the conditional

resampling approach, see Wüthrich-Merz [5].
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5 Two examples

As first example we choose some complete triangles and no weights in order to

compare the standard Chain Ladder method, see Mack [2], with our method. The

triangles are shown in Table 4 and Table 5. As estimators for the parameters we

get the values shown in Table 1, Table 2 and Table 3.

k 1 2 3 4 5 6 7 8 9

/A: 1.2343 1.2904 1.1918 1.1635 1.1457 1.1013 1.0702 1.0760 1.0444

6658 9''884 8707 1497 2 321 5'522 1 '850 8 024 1 '850

Table 1: Chain Ladder parameters for payments of Example 1

A: 1 2 3 4 5 6 7 8 9

/it 1.6502 0.8561 0.8718 0.9614 0.9812 0.9833 0.9900 0.9917 0.9949

31 586 7 885 5 771 538 235 10 13 4 1

Table 2: Chain Ladder parameters for reported amounts of Example 1

fc 1 2 3 4 5 6 7 8 9

S* 0.1174 0.0922 0.1114 0.1764 0.2424 0.3002 0.3271 0.4279 0.8923

0.9761 -0.1896 -0.2026 0.0802 -0.0501 -0.0663 0.0564 -0.0548 -0.1077

4 241 5 560 5 103 2 796 16 724 9 625 18 536 26 0

48 855 10 044 11 535 856 300 1 025 567 345 210

7fc
1 931 2 771 1 403 -175 -47 -895 -3 130 -95

Table 3: Extended Complementary Loss Ratio parameters of Example I



1 2 3 4 5 6 7 8 9 10

1 1'216'632 1347 072 1'786'877 2'281'606 2'656'224 2 909'307 3'283'388 3 587'549 3'754'403 3 '921 258
2 798 924 T05T912 1'215'785 T349'939 1 "655 312 i 926210 2 132 833 2 287'311 2 567 056
3 1115636 1 '387 387 1'930'867 2'177'002 2 513"171 2 931 930 3 047'368 3 182 511
4 1052'161 1321206 1 '700' 132 1'971'303 2'298'349 2 645113 3 003'425
5 808'864 1029 523 1'229'626 1'590'338 1'842'662 2 150 351
6 1 016862 1'251'420 1'698'052 2105143 2 385'339

:
g

948 312

917530

1
" 108 791

1'082'426

1'315'524

1'484'405

1 '487 '577

9 r001'238 1'376'124
10 841'930

Table 4: Cumulated triangle of payments of Example 1

1 2 3 4 5 6 8 9 10

1 3 362" 115 5217243 4'754'900 4'381 '677 4136883 4094' 140 4 018 736 3 971 591 3'941'391 3'921258
2 2'640'443 4'643'860 3'869'954 3'248'558 3'102'002 3'019'980 2'976'064 2'946'941 2'919'955
3 2'879'697 4'785'531 4 045 448 3'467'822 3'377'540 3'341'934 3283 928 3257 827
4 2'933'345 5 299'146 4'451'963 3'700'809 3 553 391 3'469'505 3'413'921
5 2768 181 4'658'933 3'936'455 3'512'735 3'385'129 3 298'998
6 3228 439 5271'304 4'484'946 3 7"98'384 3'702'42"
7

8

2'927'033
3 083'429

5 067 768

4'790'944

4 066 526

4'408 097

3'704'113

9 2 " 761"163 4' 132 757

10 3 045 376

Table 5: Cumulated triangle of reported amounts of Example 1
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The resulting estimated reserves are shown in Table 6. Table 7 and Table 8 list the

corresponding standard errors and the standard errors in percent of the reserves. In
this example the extended Complementary Loss Ratio method leads to reserves
which lie for almost all accident years between the two corresponding Chain
Ladder reserves.

Chain Ladder Ext. Compl.

Paid Incurred l.oss Ratio

0 0 0

2 114 086 337'984 314902

3 394'121 31'884 66'994

4 608'749 331'436 359 384

5 697 742 T018'350 981'883

6 1 234 157 1 103 028 II15768
7 t' 138623 1'868'664 1 786 947

8 1 '638 793 1 997 651 I '942'518

9 2 359 939 1 '418779 1 '569'657

10 1 979 401 2'556'6I2 2'590'7I8

Total 10'165"612 10 665 '287 10 728 771

Table 6: Estimated reserves of Example 1

Chain Ladder Ext. Compl. Loss Ratio

Paid Incurred Paid Incurred

1

2 89'423 2553 194 14639

3 234 652 5186 4'557 5'538

4 255'590 '9''264 10 541 12 566

5 261'272 I0'874 36792 38 250

6 323'859 33'243 43'940 44 835

7 274914 55'884 65 055 65'909

8 373 587 165 086 176706 176 977

9 492 815 209'162 197781 197 917

10 468 074 321'560 322'900 323 049

Total 1 '517480 455794 467 814 471'873

Table 7: Estimated standard errors of the reserves of Example I
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Chain Ladder Ext. Compl. Lpss Ratio

Paid Incurred Paid Incurred

1

2 78.4% 0.8% 0.1% 4.6%

3 59.5% 16.3% 6.8% 8.3%

4 42.0% 2.8% 2.9% 3.5%

5 37.4% 1.1% 3.7% 3.9%

6 26.2% 3.0% 3.9% 4.0%

7 24.1% 3.0% 3.6% 3.7%:

8 22.8% 8.3% 9.1% 9.1%

9 20.9% 14.7% 12.6% 12.6%

10 23.6% 12.6% 12.5% 12.5%

Total 14.9% 4.3% 4.4% 4.4%

Table 8: Estimated standard errors in percent of the reserves of Example 1

It is remarkable that although we have to estimate 44 parameters for the extended
Complementary Loss Ration method compared to 18 for the Chain Ladder
method, we don't get much higher and for some years even smaller standard
errors. This may be caused by the estimated negative correlations %, for A: > 3.
And because you combine two sources of information, that is, you have more
parameters to estimate but you also have more observations to do this parameter
estimation.
For the second example we take some part of a motor liability portfolio. We took
all small bodily injury claims. Because of the lack of good information, we can
trust the split into bodily injury and property damage claims only for the last 6
business years. The corresponding incremental triangles are shown in Table 9 and
Table 10. The opening reserves 1 < f < 5, are given by Table 11



1 2 3 4 5 6 7 8 9 10

1 609'570 586 185 428'927 251449 393 286

2 923-457 593791 227 078 92-196 237'614

3 2-088-845 1078-031 1218159 608 392 188'167

4 4-308-763 1-554-327 936 982 685 698 611'920

5 7-768-561 5' 135 659 1-822 280 972-849 776 484

6 552'074 8-531'821 5170-716 2-002'HO 832 309

7 541'244 8-743'124 5-597-618 2-441-332

8 642 910 10-880-562 6-204 158

9 612030 10'560'382

10 843 267

Table 9: Incremental triangle of payments of Example 2

1 2 3 4 5 6 7 8 9 10

l -1-300429 165 398 -449'931 -375-029 -202-553

2 -605-101 -320'520 -318715 3 429 -475-913

-305795 -84808 -287 127 -1111-628 -1-142-698

4 2 951 080 -1 206-168 -573 665 -863 962 -734 588

5 16'963'154 6-306204 -629 316 -II27-533 38 569

6 1-216-693 19 307-493 4-610 965 119 541 -907-170

7 2099009 24019 545 5"522-897 -2'558'489
8 2-014-710 27 618 640 4-469 660

9 2'339'252 28-149-520

10 2-413-472

Table 10: Incremental triangle of reported amounts of Example 2
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i 5 210 174

2 6 093 211

3 If 142'105

4 lt'467'760
5 887 953

Table 11: Opening reserves for Example 2

We choose weights

f 0, for « + fc < 5
Wi,A; — I J

^
otherwise.

Moreover, since we only see 10 years of claim development, we have to decide
how to deal with the reserves remaining after 10 years. In this example we assume
that only fifty percent of those remaining reserves will be paid. Note, this decision
does not affect the estimated standard errors.

Applying our method we get the following estimators for the parameters:

A; 1 2 3 4 5 6 7 8 9

«A.- 7.4862 0.3889 0.1647 0.1186 0.1299 0.1174 0.0686 0.0975 0.2862

18.6909 0.3512 -0.0762 -0.0825 -0.0914 -0.1155 -0.1536 -0.1696 -0.1474

73S9451 71 545 4301 3'522 2561 9 217 13 058 2646 536

25'224 905 274'131 57 645 17390 59 029 44 779 62'834 1058 18

7/fc 13351758 123550 14805 1853 4527 9 429 -3 633 -1673

Table 12: Estimated parameters of Example 2
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This leads to the following estimated reserves and their corresponding standard

errors (s.e.):

Paid Reported Amount

Reserves 1BNR s.e. in % Res. s.e. in % Res.

1 389'107 -389'107
2 1310 917 -991'339 57'460 4.4% 10 474 0.8%

2 t 559 034 -1 '469'423 82 210 5.3% 45'552 2.9%.

4 ['380 074 — 1 '562 693 211 '574 15.3% 351 '627 25.5%.

S 2 845 519 -3117'679 424'820 14.9% 635 533 22.3%

fi 3'639'882 -3 618 609 513117 14.1% 769-909 21.2%

7 6 106'104 —5"653'541 664'565 10.9% 969'190 15.9%

X 9' 152 283 -7 "223 '097 943'067 10.3% 1'264'629 13.8%

9 17901 115 -1'415 244 2' 173 399 12.1% 2'486'225 13.9%

10 29 514 639 27'944'434 6' 960 209 23.6%. 7 ' 413'137 25.1%.

Total 73'798'673 2'503'70l 7'803'265 10.6% 8'681 '194 1 1.8%.

Table 13: Estimated reserves and standard errors of Example 2

If you try to apply the Chain Ladder method to the last 6 years, you would have to
estimate a tail factor for the payments of about 1.17 and for the reported amount
of about 0.87 in order to get similar results for the total necessary reserves.
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Abstract

A stochastic model of an additive loss reserving method based on the assumption that the claim

reserves are good measures for the remaining exposure is presented. This model combines a

projection of payments and a projection of corresponding reported amounts such that both leads

to the same idtimate. In addition, the presented method even works for some kind of incomplete
triangles.
We will state estimators for the total necessary reserves and estimators for the corresponding
standard error. Moreover, we will discuss an example based on motor liability data, where we

distinguish between property damage and bodily injury claims and only have proper data to do so

for the last six accounting years.

Zusammenfassung

Es wird ein stochastisches Modell einer additiven Schadenreservierungsmethode vorgestellt, welches

auf der Annahme basiert, dass die Schadenreserve ein gutes Mass für das Exposure der

noch ausstehenden Schadenabwicklung darstellt. Dieses Modell kombiniert die Projektionen der

Schadenzahlungen und der entsprechenden gemeldeten Schadenhöhen so, dass sie zur gleichen
Schätzung der Endschadenhöhe führen. Des Weiteren lässt sich diese Methode auch auf gewisse

unvollständige Abwicklungsdreiecke anwenden.

Es werden Schätzer fiir die notwendigen Schadenreserven, sowie Schätzer für die dazugehörenden
Standardfehler hergeleitet. Das Modell wird anhand eines Beispiels aus der Motorfahrzeug-
Haftpflicht illustriert, bei dem zwischen Sach- und Körperschäden unterschieden werden sollte,
aber detaillierte Daten nur für die letzten sechs Kalenderjahre verfügbar waren.

Résumé

On présente un modèle aléatoire d'une méthode additive de détermination des provisions pour
sinistres, basée sur l'hypothèse que les "case reserves" sont une mesure adéquate des paiements
futurs. Ce modèle utilise conjointement les projections des paiements et des "case estimates" des

sinistres annoncés correspondants dé telle sorte qu'elles conduisent à une même charge ultime ties

sinistres. La méthode présentée peut également être utilisée lorsque les triangles de liquidation sont

partiellement incomplets.
On dérive des estimateurs des provisions nécessaires et des estimateurs de l'erreur standard moyenne
correspondante. On présente un exemple venant de la responsabilité civile en automobile dans lequel
les données nécessaires à la distinction entre sinistres corporels et sinistres non-corporels ne sont
à disposition que pour les 6 dernières années civiles.
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