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B. Wissenschaftliche Mitteilungen

BiorN SunpT, A.D.E. dos REIS, Oslo, Lisbon

Cramér-Lundberg results for the infinite time ruin
probability in the compound binomial model

1 Introduction

The compound binomial model for the risk process was introduced by Gerber
(1988) and is sometimes considered as a discrete time approximation to the
classical compound Poisson model in continuous time; Dickson (1994) discusses
this issue.

After having introduced some notation in Section 2, we describe the model and
set up some recursions for the infinite time ruin probability in Section 3.

The core of the paper is Section 4. Here we present the Lundberg inequality and
the Cramér-Lundberg approximation for the infinite time ruin probability in the
compound binomial model and characterise the class of severity distributions for
which the asymptotic expression is exact.

Finally, in Section 5, we compare this characterisation with the analogous
characterisation in the continuous time Poisson model. Although it is well-known
in the latter model, we give a deduction comparable with the one in Section 4.

2 Notation

We denote a cumulative distribution function (briefly referred to as distribution)
by a capital letter, its tail by that letter with superscript ¢, and its mean, moment
generating function, and probability generating function by that letter as subscript
to s, ¢, and 7. Its probability function or density is denoted by the corresponding
lower case letter. Thus, f would be the probability function or density of a
distribution [, and this distribution has tail /¢, mean g, moment generating
function ¢, and probability generating function 7, to the extent that these
quantities exist.

By the notation

a(x)~b(x), (xz]oc0)

we shall mean that lim, o a (2) /b(x) = 1.
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3 The model

3 A. We consider an insurance portfolio over time. The units of time and money
are chosen such that the premium for each time unit is equal to one. Let X;
denote the aggregate claims of time unit é. We assume that the X;s are non-
negative, integer-valued, independent, and identically distributed with distribution
GG with

ue < 1, (1)

that is, the premium has a positive risk loading.
Forn=0,1,2,..., we let S, = Z‘?:l X; be the aggregate claims up to time n
and U,, the reserve at time n. Denoting the initial reserve at time zero by u, we
have U, = u +n — S,, that is,

Uy =mu

U—'”:U”al_*'l_Xﬂl. (VL:1,2,3’-..)
In the literature, the reserve U,, is sometimes called free reserve, risk reserve, or
surplus.
We define the infinite time probability of ruin v/ (u) as the probability that the
reserve becomes strictly negative at some time, that is,

(0. o]

w@g:m(U@m<m). (u=0,1,2,...)

n=1

By conditioning on the aggregate claim amount of the first time unit, we
immediately obtain

w1l

P(u) =G (u+1)+ Zg @)Yu+l—-2), (u=0,1,2,...) (2)

x=0
which solved with respect to 1 (1 + 1) can be used for recursive evaluation of 1.

3 B. The following parameterisation of this model is often used in the literature:
L&t

g=Pr(X;=0); p=Pr(X,>0)=1-g
G (x) — G (0)
p
9()
p

Fle)=Pr(X, <2|X)>0)=

(z=1,2,3,...)

flg) =PrlX; =@]X; >0)= (=1,2:3,..)
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[n the present parameterisation, we can rewrite (2) as

u+1

P(u)=qp(u+1)+ p( Z fla)(u+1 - 1)) (3)

o=]

(u=0,1,2,...)

When the present parameterisation is used, one would normally let the time unit
be so short that it could be assumed that at most one claim can occur per time
unit. Then p becomes the probability that a claim occurs, and /' the distribution
of the severity of that claim.

4 Cramér-Lundberg results

4 A. We assume that there exists an £ > 0 such that
Bef(Xi-1) _ | (4)

Then it follows from e.g. Lemma 10.1 in Sundt (1999) that ¢ (1) < e ™ for
uw=0,1,2,.... This is the Lundberg inequality, and the parameter 12 is usually
called the adjustment coefficient; the same terminology is used in the continuous
case that we shall discuss in Section 5.

We sce that (4) can be written as ¢ (R) = eft. However, as we now work
in a discrete framework, it will be more convenient to work with probability
generating functions than with moment generating functions, so we assume that
there exists a w > 1 such that

T (w) = w. (5)
Then the Lundberg inequality can be written as
P (u) <w ™. b= 1051, 2, 5 w0 ) (6)

[n terms of the other parameterisation, we can write the Lundberg condition (5)
as

q+prr(w) =w. (7

Shiu (1989) shows that

P (0) = (m =] s (8)
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Liu et al. (2005) present a generalisation of the compound binomial model, and
within their model, they deduce an asymptotic result for ¢ (u). As a special case,
their Theorem 6.2 gives that if (7) is satisfied in our model, then

] = PUF —(u-t1) L e HaG —(ut+1) ’ C
] 1) o e ) = (! l 3 T 9
() o (w) — 1 w ) | w (T o0) (9)
see also Cosette et al. (2004). This is a Cramér-Lundberg approximation for the
ruin probability.

4 B. Let us now assume that the Cramér-Lundberg approximation (9) holds exact,
that is, that there exists a k£ such that

P (u) = kw™. (=012 0] (10)

We want to characterise the class of severity distributions /' for which this result
holds.

As 1 (0) = k, we must have k& < 1. Furthermore, if £ = 1, then (3) gives that
1 (u) = 1 for all positive integers u. This contradicts the assumption that w > 1,
so we must have k& < 1.

Theorem 1. [f (10) should hold, then

=P (w=1)
.f(”L)_{ (l*p)(l—ﬂ)ﬂl._z (11’)22,3,4,..-) (ll)
with
Cpw—k(w—-q) Lﬂ
= pw(l —k) ' ”_"”(l*k). (I2)

Proof. By replacing « with w — | in (3), we obtain that for u = 1,2,3,...
P(u—1)=qp(u)+ 'p(["“ (u) + Z fx)y (u— :L‘)).
@=1
[nsertion of (10) and multiplication by w" gives
u
kw = kq + 'p(F’“ (u)w" + k Z f(z) w‘"). (13)
=\

[n particular, for v = 1, we obtain

kw=kq+p((l—f(1)w+kf(l)w),



183

which gives

pw —k (w — q)
L} = =4,
F) pw (1 — k) #

(14)
By replacing w with « — 1 in (13), we obtain

w— |
kw = kq + p(F" (u—Dw* ' +k Z I (z) m"‘), (u=2,3,4,...)

2|
and subtraction of this from (13) and division by pw" ' gives
Felu)w—-F(u—D)+kf(w)w=0. (u=2,3,4,...) (15)
By replacing v with « — 1, we obtain
Flu—NDw—-F(u—-2)+kflu—Dw=0, (u=3,45...)
and subtraction of (15) gives
wf(u)— flu—D)+kw(flu—1)—f(u)=0, (v=23,45,...)

from which we obtain
| — &
f) = —if(u -D=af(u-1), (u=3,4,5...)
w(l —k)

so that

fu)=fR)a* 2. (u=23,4,...) (16)
We have

w(l—-k)—-(1—-kw)=w-1>0

so that
| — kw o
w(l — k) '

As I is a distribution, application of (14) and (16) gives

- = L S g - u—2 __ f(2)
IWZZIJ("‘)%")"_J‘@);” —/)—I-m,
so that f(2) = (1 — p) (1 — «), which together with (14) and (16) gives (11).
Q.E.D.
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The following corollary follows easily from Theorem 1 by solving (12) for £ and
w and insertion in (10).

Corollary 1. If [ satisfies (11), then

p(L—p) (P Yy
;;-(—l—_—a)(—(l—[))-l-(l) ‘ (u-—D,l,2,...) (17)

q
We easily obtain that in the present case we have

b (u) =

2 -« |
= .- .
| — }_lmu

pr=p+(1-p) (18)

[nsertion in (17) gives
W] = i—;(,up - 1) (Z—: (1—p)+ a) ,  Am=0,1,2::.)

of which (8) is a special case.
Let us look at the condition (1). From (18), we obtain that in the present case
we have

| —
,u(,':[)(l-f- p).
| -«

Hence, (1) gives that

| —
p(l—f— p)<l,
| -«

which we rewrite in the following two ways:

p(l—p)

P
<l =({=-p)t+a<l.
q(l—a) q( )

The first inequality shows that the constant factor in (17) is less than one, and
the second that the power part is less than one. In the limiting case i = 1, both
these expressions approach one, so that the ruin probability goes to one, which
is reasonable.

Let us now look at some special cases of Corollary 1:

1 p = 1. In this case, F' is concentrated in one so that all claims are equal to
one. Hence, the claims will never exceed the premiums, so that the reserve
will never decrease. Thus, ¥ (u) = 0 for u =0, 1,2,....



2. « = 0. In this case, the claims cannot exceed two. We obtain

‘ w1
W (1) = (B(n -,;)) L (w=0,1,2,...)
q

which is given by Willmot (1993).

In the special case p = 0, the claims are concentrated in two. This
corresponds to the gambler’s ruin problem discussed by Shiu (1989),
Willmot (1993), and Sundt (1999) (roulette example in Chapter 10). We
obtain that v (u) = (p/¢)""" for u=0,1,2,....

3. p = | — «. This is the shifted geometric distribution given by f(x) =
(1 —a)a® "' forz =1,2,3,.... We obtain

) u+ 1
() = (Q) o (u=0,1,2,...)

| —a\ g

This case is considered by Willmot (1993) and Dickson (1994).

4, p = 0. This is the shifted geometric distribution given by f(z) =
(1 —a)a® 2 for z =2,3,4,.... We obtain

!) ’[) 1w
i) = —— s i . |, = ], y iy v
Y (u) =) ((1 l-(Y) (u=10,1,2,...)

The cases 2 and 3 are treated in a more general compound Markov binomial
model by Cossette et al. (2004),

S Comparison with the continuous time compound Poisson model

5 A. The compound binomial model is sometimes used as an approximation to
the continuous time compound Poisson model. In this section, we shall present
the equivalent results for the latter model to results shown for the former model
in the previous section. We do not present the compound Poisson model in its
most general form, but, as the purpose of the presentation is just to indicate
the relation to the binomial model, we make the simplifying assumption that the
claim amounts are continuously distributed.

We assume that claims occur in continuous time with intensity A independent
of the occurrence times and amounts of other claims. The claim amounts are
independent and identically distributed on the positive numbers with continuous



186

distribution #. The premium is paid continuously, and the units of time and
money are chosen such that the rate is equal to one. It is assumed that the
premium has a positive risk loading, that is,

AMip < 1. (19)

Let S; denote the aggregate claims up to time ¢ and U, the reserve at time ¢.
Denoting the initial reserve at time zero by u, we obtain that Uy = u -+t — S, for
t > 0. Like in the compound binomial model, we define the infinite time ruin
probability ¢ (1) as the probability that the reserve becomes strictly negative at
some time, that is,

P (u) = Pr( (e < 0)) . (w>0)

t>0

We shall now deduce an integro-differential equation corresponding to the
recursion (3). By infinitesimal reasoning, conditioning on what happens in the
time interval (0, h) for some small & > 0, we immediately obtain

P (u) = (1 — Ah) o (u+h)

wth
+ Ah (FC (w -+ h) + / W(u+h—x)f(x) cl:r:),
0
which we rewrite as
P (u+h) — 1 (u)
h
u—}:h

- )\('1/) (u+h)—F°(u+h)-— j P(u+h—x) f(x) cl:z:).

0

By letting /i | 0, we obtain

U
dt

E{;T/‘} () = & (’1/) (u) — F° (u) - /w (u—a) f(x) da:). (20)

0
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5 B. We assume that there exists an adjustment coefficient /2 > 0 such that
R
or(R)=S+1. 21)

Then it is well known that the Lundberg Inequality ¢ (u) < e ™ holds for
w > 0; cf. e.g. Section 13.4 in Bowers et al. (1997) or Section 10.3 in Sundt
(1999).

Analogous to (8) and (9), we have

W (0) = Aup (22)

l - /\'[!f{v' —R
W ~N —e—e— P Y » s OC (23)
() o () ¢ i (u ] o0)
cf. e.g. Example (a) in Section XI.7 in Feller (1971).

5 C. Let us now assume that the Cramér-Lundberg approximation (23) holds exact,
that is, there exists a & < | such that

PY(u)=ke ™. (u>0) (24)

We want to characterise the class of severity distributions [ for which this result
holds.

Theorem 2. [f (24) should hold, then we must have

f@y=¢€7% (x>0 (25)
with

R .
—_— 2(
: | -k -

A
R = : 27
AR .

Proof. Insertion of (24) in (20) and multiplication with efiu gives

w

—~kR= A (/s: — F(u)ef™ —k / e f (2) ([;L‘),
from which we obtain

Fe(u)e® = }'s:(*[\‘z + 1 ~ /(’-"“.f () ([-’”')' (26)
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[n particular, for u = 0, this gives

R
=k~ +1
(/\*)

from which we obtain (27).
Differentiation of (28) with respect to u gives

—f (u) e + F¢ (u) Re™ = —ke®™ f (u) ,

from which we obtain

fuw) R
Fe(u) 1—k

Thus, F' has constant failure rate & and must then be the exponential distribution
given by (25). Q.E.D.

The following corollary follows easily from Theorem 2 by solving (27) and (26)
for £ and R and insertion in (24).

Corollary 2. If f satisfies (25), then
A —(E—=MNu
P (u) = Efi M (u > 0) (29)

As now pp = 1/€, we can rewrite (29) as
P (u) = Mppe”E"NE (4 > 0)

of which (22) is a special case.
The condition (19) can be written in the following two ways:

ME<T; E=A>0.

Like in the discrete case, these two inequalities ensure that each of the two factors
in (29) is less than one, and in the limiting case App = 1, both of them and the
ruin probability go to one.

In Example (b) in Section XIV.2 of Feller (1971), Theorem 2 is proved by using
Laplace transforms. We have used the present proof for easier comparison with
our proof of Theorem 1. We also refer to Section 13.6 in Bowers et al. (1997)
and Example 4.2.9 in Mikosch (2004).

[t is interesting to compare Theorems | and 2. As pointed out earlier, the
discrete compound binomial model is sometimes used as an approximation to the
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continuous compound Poisson model. In the latter model, the Cramér-Lundberg
approximation holds exact only when the severity distribution is exponential. The
geometric distribution is the discrete analogue to the exponential distribution, and
it is then natural that in the discrete case, the Cramér-Lundberg approximation
will hold exact for this severity distribution. However, in the discrete case, it is
exact for a wider class, allowing for severity distributions with a limited range.
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Abstract

In the present paper, we characterise the class of severity distributions for which the Cramér-
Lundberg approximation for the infinite time ruin probability in the compound binomial model is
exact, and we compare this characterisation with the continuous time classical compound Poisson
model.

Zusammenfassung

In dieser Abhandlung charakterisieren wir die Klasse der SchadenhShenverteilungen, fiir welche die
Cramér-Lundberg-Anniherung im zusammengesetzten Binomialmodell exakt ist, und wir vergleichen
diese Charakterisierung mit dem klassischen zusammengesetzten Poisson-Modell in stetiger Zeit.

Résumé

Dans cet article nous caractérisons la classe des distributions de sévérité dans le modele binomial
composé pour lesquelles 'approximation de Cramér-Lundberg pour la probabilité de ruine en
temps infini est exacte et nous comparons ces résultats avec ceux obtenus dans le cadre du modele
classique Poisson composé en temps continu,
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