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B. Wissenschaftliche Mitteilungen

Ki,aus I). Schmidt and Mathias Zochuk, Dresden

Loss Reserving and Hofmann Distributions

1 Introduction

The present paper honours and applies the work of Martin Hofmann 119551 who
introduced a wide and most useful class of mixed Poisson distributions.

The mixed Poisson distributions introduced by Hofmann |1955| are called
Hofmann distributions and they are grouped as three-parametric Hofmann families.
The most prominent examples of Hofmann families are the family of all Poisson

distributions and the family of all negativcbinomial distributions, but the class of
all Hofmann distributions is much larger and permits a very flexible modelling
of claim numbers. An important property of all Hofmann distributions is the

property that the variance is always at least as large as the expectation, and that
the inequality is strict except for Poisson distributions; this property is shared

by many empirical claim number distributions. Moreover, Hürlimann (19901 has

shown that the maximum-likelihood estimator for the expectation of a Hofmann
distribution agrees with the sample mean.

A review of the basic properties of Hofmann families and Hofmann distributions
will be given in Sections 2 and 3 of this paper, and a short proof of Hiirlimann's
result on maximum-likelihood estimation of the expectation of a Hofmann
distribution will be given in Section 4. These results will be needed in the

subsequent sections on loss reserving.

Hofmann distributions have shown to be useful in the construction of models for

rulemaking, in particular in motor car insurance; see Kestemont and Paris 11985 J

as well as Walhin and Paris [1999, 20011. In the present paper we shall show
that Hofmann distributions are equally useful in the construction of models for
loss reserving; for general information on loss reserving we refer to Radtke and

Schmidt [20041.

The models for loss reserving considered here are models for the prediction of the

number of outstanding claims. These are claims which have already incurred but
have not yet been reported to the insurance company (IBNR claims). The earliest

Mitteilungen der Schwei/. Aklunrvereinigiing. Hell 2/2(X)5
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models for the prediction of the number of outstanding claims are the Poisson
model of Hachemeister and Stanard [ 19751, who used maximum-likelihood
estimation, and the multinomial model of Witting [1987], who used credibility
prediction. In a sense, the ideas of both of these papers have been combined

by Schmidt and Wünsche [ 19981, who used maximum-likelihood estimation in a

special case of the multinomial model.

As a first step in the construction of a model for the prediction of the number of
outstanding claims, we consider a family of random variables {.Zu.fch.fcefojn}
where Z^k is interpreted as the number of claims which have incurred in

the relative accident year i s {(), l,...,n} and are reported with a delay of
k £ {(), I,... ,n} years in the relative development year k. We assume that the
incremental claim numbers Zi^ are observable for i + k < n and non-observable
for i + k > ii. The observable incremental claim numbers are presented in a runoff

triangle:

Accident Development Year

Year 0 1 k n — i 11 — 1 n

0 2n,o 2o,i 20,fc 2o,„_i 2o,,i-i 2[),„
1 2],0 2i,i 2,,t Zi,,,-; 2|,„-1

i Z.,o Zi.i 2,,fc 2;,,i_j

n — k Zn-kfl 2,i — k, 1 • • /Jn-k.k

n — 1 r^n- 1,0 2,1-ia
n 2,i,0

The quantities of interest are the ultimate aggregate claim numbers

n

Sitn := £ Zi,k
fc=o

For i e {1,... n}, the ultimate aggregate claim number 5,,,, is non-observable
and has to be predicted on the basis of the observable incremental claim numbers.
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As a second step in the constitution ol a model tor the prediction of the number
of outstanding claims, we assume that the family of incremental claim numbers
satisfies the assumption of the multiplicative model:

- There exist paiameters rv<), rvi,..., G (0, oo) and i)o, i)t,..., i)n (0, 1)

with ' suc-h ^at l'ie identity

K{Z^k] at0k

holds foi all i, k S {0,1,...,«}.
In the multiplicative model, the expected ultimate aggregate claim numbers satisfy

#[$>,„] nt.

Therefore, the expected ultimate aggregate claim numbers can be estimated

by estimating the parameters <+(), «i,..., nn- T he different accident years are

connected among each other by the common development pattern i)<>, i)i)n
The assumption of the multiplicative model is, in particular, fulfilled when the

family of incremental claim numbers satisfies the assumptions of the Poisson

model:
Ihe family [Zt<a.},,*,{(>,i, is independent.
There exist parameters r*o, rvi,..., an °°) and ^<>> '^i > • >

G ('K ')
with J2'Ui)'h I such that, for all i,k {0, I,...,«}, the distribution

of Zlti is the Poisson distribution with expectation oph-
Undet the assumptions of the Poisson model, Hachemeister and Stanard [1975]
have shown that the maximum-likelihood estimators of the parameters rvo,nu,

,rv„ agree with the chain-ladder estimators

n — l

n Y2 bj.l
CCL s, TT
J','i - 11 n_;

t=ii-i+i £ Sjj-\
o

of the expected ultimate aggregate claim numbers; details on chain-ladder

estimation may be found e.g. m Schmidt [2002; Abschnitt 11.3] oi in Schmidt

12004a |.

In Section 5 of the present paper we review the Poisson model, and in Sections

6 and 7 we introduce two geneial multiplicative models which generalize the

Poisson model and which contain only the Poisson model as a common special
case. In both models, the assumption of independent incremental claim numbers
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is dropped and the distributions of the incremental claim numbers are Hofmann
distributions. In each of these models, we show that the maximum-likelihood
estimators of certain parameters agree with the chain-ladder estimators of the

expected ultimate aggregate claim numbers. We thus obtain two extensions of
the result of Hachemeister and Stanard [ 19751 an<-l we also capture a related

result of Schmidt and Wünsche [ 1998] for a model in which each of the ultimate

aggregate claim numbers has a negativebinomial distribution.

We also present a variety of additional results which indicate that one should be

most careful with the choice of a model and a method of prediction or estimation.
For example, if in the models of Sections 5, 6 and 7 all parameters are assumed

to be known, then maximum-likelihood estimation is meaningless and credibility
predictors may be used instead to predict the ultimate aggregate claim numbers,
but the credibility predictors usually differ from the chain-ladder predictors. Also,
even in the case where all parameters are unknown, the maximum-likelihood
estimators of the expected ultimate aggregate claim numbers may differ from the

chain-ladder estimators, as can be seen from the model considered in Section 8.

2 Hofmann Families Revisited

In the present section we consider a family {Qt}igRf of claim number distributions

ß(R) —> [0, I] and a sequence {rU.}fc6N„ of functions R,. —> [0, 1] such

that the identity

Qt[{k}] nk{t)

holds for all t £ R |_ and k £ N().

The family {Qt}teRH's sa'c't0 Hofmann family H(a,p,c) with parameters

a £ R+ and p, c (0, oo) if there exists a differentiable function fa,P,c' R t- -> R
such that ua,p,c{0) 0 and

doaipiC ^ P

dt '
(I Tcf)a

ll,)(f) cxp(-othP:C(t))

(-t)"dkno
fc( J ~ k\ dtk (}

holds for all t e R+. The Hofmann family was introduced by Hofmann 119551.
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Throughout this section, we assume that {Qt.}ten, is the Hofmann family
H(r/„p,c). Integration yields

(pt

"a.pAO '
V

Iog( I +<i)

if a 0

if a I

p {I + ct)

c

I —a

I — a
if a, G (0, 1) U (1, oo)

for all f G K.,. The cases a 0 and a .1 are of special interest:

2.1 Examples
(1) Poisson case. In the case a 0, one has

(l>t)*"'
cxv(-pt) -pp

for all t G R |. and k G No.
(2) Ncgativebinomial case. In the case a I, one has

p/c + A; - IW 1_
k ill f ct

p/c

TTcf

for all ^ G R. r and k G No.
The Poisson case and the negativebinomial case are in a sense singular cases

within the collection of all Hofmann families: In the Poisson case the parameter

c does not matter, and in the negativebinomial case the function va,p,c depends

on the logarithm instead of a power of 1 + ct.

The key to the analysis of the Hofmann family H(n,7>,c) is the following result:

2.2 Proposition There exists a probability measure Qa,p,c ' ["i '] w

Q«,fi,c[Rh] ' and such that

I oxp(-Af) pp- dQa,p,c.W

holds for all t, G R r and k G No.

Since the function Ho is completely monotone, Proposition 2.2 follows front the

Bernstein-Widder Theorem; see e.g. Berg, Christensen and Ressel |1984|.
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The mixed Poisson representation of the claim number distributions of the Hof-
mann family H(a, p, c) given by Proposition 2.2 yields the following fundamental
result on their probability generating functions:

2.3 Proposition The probability generating function of Qt satisfies

mQt{z) cxp(-i/a,p,c{t-tz)).

Proposition 2.3 yields all further properties of the distributions of a Hofmann
family which will be presented in the subsequent section.

3 Hofmann Distributions

In the present section we consider claim number distributions

1ta,p,c,t (^')}a;GNo

with parameters a,t G R+ and p, c (0, oo) such that {7r„iP<c>t }fert h
is the

Hofmann family H(a,p, c). We put

Since 7raiPiC,o(0) I, we assume throughout this section that t e (0,oo).

As a first and immediate consequence of Proposition 2.3 we obtain a formula for
the expectation of na,p,c,t'

3.1 Corollary The expectation of 7r,liPiC:t satisfies

E{lta,P,C,t} pt

and the variance of iraiPiC,t satisfies

var[7ra,p,c,t] pt + acpt2



133

To proceed further, we define an auxiliary sequence hn,p,c,t Vla,p,c.t(k)}keNa
by letting ha,p,c,t(0) := 0 and

{k) '—<

(S \,k

k log(l f-rf) V I hrt.
ct

if a 0

if a :

a — I f A: — 1

h y VI T ct.

\ a — I / \ k
I V / ct.

I f-ct

I l-ct.

I— I
if a e (0, I) U (1, oo)

for all k e N (where <h,k is the Kronecker symbol). Then r,( is a claim
number distribution.

Kestemont and Paris 119851 have pointed out that every distribution of the

Hofmann family H(a,p,c) is a compound Poisson distribution. The following
result makes this statement more precise.

3.2 Corollary The identity

(Ki, p,C.,t)^
ita.p.cAk) -I

3=0

holds for all k G No.

Corollary 3.2 can be obtained by comparing the probability generating functions

of both sides of the identity; see Hess, Liewald and Schmidt [2002|.

The following formula for the recursive computation of the Hofmann distribution

T«,p,c,t is immediate from Corollary 3.2 and Panjer's recursion; see e.g. Schmidt

(1996; Theorem 5.4.21 or Schmidt [2002; Folgerung 7.3.2[:

3.3 Corollary The identity

ttn,p,c,t(k) — ^ ] Vg,p,c,t
J

ttglptctt(k j) h(i,p,c,t{j)

j= I

holds for alt k G N.
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The identities of Corollaries 3.2 and 3.3 suggest to define another auxiliary
sequence ga,PlC,t {<)a,P,c,t{k)}keNa by letting

~ kfa p c j: Ta.p.c.t (k)

for all k £ N0. Combining Corollaries 3.2 and 3.3 we thus obtain the following
result which is due to Hiirlimann [1990] and which will be the starting point of
the discussion in Section 4:

3.4 Corollary The identities

OC *j /i\
rtn,P,cAk) cxp(-^«.p,c,t) ^2 g'l,V'C.\t

j=o J'

and

1
^

Tta,p,c,t{k) — — ^ \j fja,p,c,t{j) ^a,P,c,t{k — j)k
3 I

hold for all k £ N.

In Section 4 we will also need the explicit form of the sequence ga,p,r,t which
is easily obtained from the definition of ha,p,c,t-

3.5 Corollary The sequence ga,P.c.t satisfies ga,P,c,t(0) 0 and

for all k £ N.

The final result of this section shows that the collection {7rre,,V:,t}aeRH;V:,te(o,oo)

of all Hofmann distribution with parameter t £ (O.oo) is identical with the

collection {7r0iP,Cii }„eR,.,p,ce(o,co) of all Hofmann distribution with parameter
f 1:

3.6 Lemma For each t £ (0, oo), the Hofmann distributions tra,P,c,i und Tta,pt,ct,l
are identical.

Proof We have f„,p,c,t ua,Pi,cta "nd Corollary 3.5 yields ga,p,c,t f)a,Pt,H,i-
Now the assertion follows from Corollary 3.4.
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4 Maximiim-Ilikelihood Estimation of the Expectation of a Hofmann
Distribution

The Hofmann distribution 7r„iP,t.,o is concentrated in 0 and is thus without interest.

Throughout this section we assume that t (0, oo). In this ease, Lemma 3.6

yields

^a.p,c,t I •

To estimate the expectation of a Hofmann distribution, it is therefore sufficient

to consider the collection of all Hofmann distributions 7r(li,,iC,i with parameters

a R|. and p, r (0, oo). To simplify the notation, we put

«= 7T«,/>,f\I

V<itp,r />,(-•,I

fj<i,p,c '= fja,p,c, I

In the present section, we consider maximum-likelihood estimation of the

expectation p of the Hofmann distribution na,i>,c on ''le ^as's °' a sample

X\,..., Xm from the Hofmann distribution na,IKC with parameters a. /;, r. We

therefore assume that the parameter p is unknown but we do not make such an

assumption on the parameters <i and c.

By Corollary 3.4, the likelihood function is given by

"V
La.pA'-rI - • • • • a;rn) := 11 2^ Ö

(=1 V

and it follows that the log-likelihood function satisfies

l«g( Lll<pA'X\,< -Cm) )=-!'> Va.p,c + loS I l_. ,1
V 7 i=l \j=0 J'

The partial derivatives of the log-likelihood function with respect to the

parameters vanish if and only if the partial derivatives of the log-likelihood function
with respect to a bijective transformation of the parameters vanish.
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Following Hiirlimann 119901, we consider the map g : R+ x (0,oo) x (0, oo)

R+ x (0,oo) x (0, 1) given by

/ a \
' a >

Q | V

J

c

I "h C J \ 1 + C

C

-1

\ 1 ~F c

Then g is a diffeomorphism with

/ a \

Q~[ \b bq - q

\ M - q /
Therefore, the partial derivatives of log(LaiPi(;(a'i,..., xn)) with respect to a, p, c

vanish if and only if the partial derivatives of

log{jJe~'(Hi't'i)(^'''''

- rn Ve-\(a,b,q) + l°K zL
i= I \j=0

00

ß

with respect to u,b,q vanish.

We shall now determine the partial derivative of log(Lff-i(ai/,if/)(.T|,... ,xm))
with respect to the parameter q. To this end, we establish two lemmas:

4.1 Lemma

b
Oq \ I - q,

Proof Using the transformation g, we obtain

'bq if rt 0

< 6(-log(l-r/)) if o=l
I _ (l-o)!-«

b i^ if ae (0, l)U(l,oo)
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and hence

Q'yg 1 («,/>,<;) _
Ihi -'

a

as was to be shown.

In accordance with the definition of scalar multiples or sums of sequences, we
define the partial derivative of the sequence rye-i(a,6,(/) w'dl rcsPect t0 'I t0 be the

sequence

Ofjg f Ofjg '1 (tijh'i) ]
°<l

'
I °<l Ike No"

Then we have the following lemma:

4.2 Lemma The identity

holds for all k No.

Proof The definition of the partial derivative of the sequence yields

for all je N and for all k 6 N0. Furthermore, Corollary 3.5 yields

.'V(«,tv,)(°) 0 and

k

<1On

•V'u \{k)'e ' s >

__
Oq

for all k: G N() and

for all k G N, hence

Of)g~\(a,b,<i) /. \ /1\(M) — — 9e~1 ("Ti'd
Oq <1
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for all k G No, and now the second identity of Corollary 3.4 yields

f ÖfJe~>(a,b,q) \ n \ k
I "''(0,6,17) )(*') ~ ~ """e-1 (a,b,<i)W

for all k G No. Using the identities established so far and the first identity of
Corollary 3.4, we obtain

\
' *i (f\\ -'{a,b,q) M

dq ~ 1

5Z T\ Je'-'(a,b,<i)^
j=0

y* L_ i)He-'^,b,q)
# *U-1) fA;1

111 \ f)n Jp-'fa,b,(i) ''(j - 1 \ ()q
-

,1
j=o

VfJS-<(n,b,q) 'V'K'v/M// i
dq *^—jr-){k)

Ofle-<(a,b,<i) \,,s
q(j

* ^e"1 («,<>,'/) J (^')

^g~'(a,b,q) (^')

-V-'(«,(>,q)(A0

y?-1 (a,b,q) (^')

_
^

q

for all k G Nq. D

We are now ready to determine the partial derivative of the log-Likelihood
function log(Le-'(«.b.r,)(a'i, • • •, tcm)) with respect to the parameter q\
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4.3 Lemma The partial derivative of' xm)) with respect
to the parameter q satisfies the identity

0[\ogLa,p,c(xh...,xm)) / | \" 1^,
-mb[ —— +-}2Xi-

Oq \1-<U </j=|

Proof The assertion follows from Lemmas 4.1 and 4.2.

We thus obtain the following result:

4.4 Theorem If p is a maximum likelihood estimator of p. then

I

v
in i-1

Proof Since

p b<i
~ <b

the assertion follows from Lemma 4.3.

Theorem 4.4 is due to Hiirlimann 11990), but its proof presented here avoids his

general results on maximum-likelihood estimation.

5 The Poisson Model

We now turn to the problem of loss reserving for claim numbers and considei

a family {Zl,k}i,k{<>,, n] of random variables taking their values in N0. The

random variables are called incremental claim numbers and the sum

S\n := Zak
k=0

is called the ultimate aggregate claim number of accident year i {(), 1,..., «,}.

We assume that the incremental claim numbers are observable for i + k < n and

that they are non-observable tor i + k > n.
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In the Poisson model introduced by Hachemeister and Stanard [ 19751, it is

assumed that the joint distribution of the family {(?;,*,};,fce{o,i satisfies

P f]
,i=0 fc=0

=n n cxp(-ma.-)
i=0 k=0

Zi>kl

where r*o, on,... ,cy„ G (0,co) and i)o, if,..., i)n G (0,1) are parameters
satisfying J2'k=o '• 'n l^'s model,

- the family {Zi^} i.fcefo,incremental claim numbers is independent,

- for all i,k G {0,1,..., »,}, the incremental claim number Z-hk has the
Poisson distribution with expectation acdk, and

- the expected ultimate aggregate claim number satisfies

E[Si,n] <*i

In particular, the expectation of any incremental claim number satisfies

E[Zi,k] «A •

Therefore, the Poisson model is a multiplicative model.

In the case where the parameters of the Poisson model are unknown, the

parameters may be estimated by the maximum-likelihood method. The following
result is due to Hachemeister and Stanard [ 19751:

5.1 Proposition lfcto,a\,... ,cin are maximum-likelihood estimators of
<y„, then fto, r?i,..., rJ„ are the chain-ladder estimators of cvo, rvi,..., an.

The link between chain-ladder estimation and maximum-likelihood estimation in

an arbitrary multiplicative model (and not only in the Poisson model) is provided
by marginal-sum estimation:

The assumptions of the multiplicative model imply

n — i n—i

Y,E[Zi,K} Y,a>0k
k=0 k=0

for all i G {(), 1,..., »} and

r i — k n — k

Eiz>*\ nii)k
i=0 i=()
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t'or all k e {(), 1,..., n{. Because of these identities, it is quite natural to
estimate the parameters ao.rvi otn and if,..., i)n by the marginal-sum
estimators fvi,..., (in and i?(), i?i dn which are defined to be solutions of
the marginal-sum equations

with k e {0,1,..., n} under the condition ElU ^ L k is well-known
and has been pointed out by Schmidt and Wünsche [19981 that marginal-
sum estimators exist and are unique, and that the marginal-sum estimators ot

(•to,rvi,...,an agree with the chain-ladder estimators of the expected ultimate

aggregate claim numbers.

In order to prove that the maximum-likelihood estimators of the expected ultimate

aggregate claim numbers agree with the chain-ladder estimators, it is therefore

sufficient to show that the maximum-likelihood estimators ol the parameters ot
the multiplicative model agree with the marginal-sum estimators.

In the case where the parameters of the Poisson model are known (which may be

the case when they are provided by external information which is not contained

in the run-off triangle), the ultimate aggregate claim numbers may be predicted

by the credibility method:

5.2 Theorem For every accident year i {0, I,...,ri}, the credibility predictor

S*n of the ultimate aggregate claim number Si,n satisfies

n— i n—i

with i e {(),I} and

By Theorem 5.2, which is a special case of Theorems 6.6 and 7.6 given below,
the credibility predictors of the ultimate aggregate claim numbers are predictors
of the Bornhuetter-Ferguson type; see Schnaus [2004|.
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With regard to the first extension of the Poisson model which will be studied in
Section 6, we note that the assumption of the Poisson model is equivalent to the

assumption that the joint distribution of the family satisfies

P n n {*..*=*,*}
,i=0 k—0

=n n exp(-AA'^-)—Wk)'*-"
i-0 k=0

where A (0, oo) as well as ßo,ßi,...,ßn (0, 1) and i90, f),,..., i9n e (0, I)
are parameters satisfying Yli=oßi o^fc 1- Then we have E[Ziik] -
Xßi&k for ah i, A; {0, I,..., n}, and hence

E EE*,*
|_;=o k=o

A.

This means that A is the expected total number of claims. The parameters ßi and
t?k may then be interpreted as the parts of the expected total number of claims
which belong to accident year i or to development year k, respectively.

The First Extension of the Poisson Model

In the present section, we consider a first extension of the Poisson model and we
assume that the joint distribution of the family {/?»,*:};,fcg{o,i,satisfies

11 71

p n 0{zl,k=zi,k}
.1=0 k=0

n n «p(-AA<w dQUJ,A a)
Ri=0fc=0 Zi'k-

where ßo,ß\, ,ßn (0, 1) and $<>, i9|,..., ßn G (0, 1) are parameters satisfying

J2'i=oßi Hk=o^k 1 antl Qa,p,c is the mixing distribution of the

Hofmann family H(u,p,c). In the case a 0 this model coincides with the

Poisson model.

Let us first study the present model in more detail.

6.1 Lemma The expectation of any incremental claim number satisfies

E[Ziik] (fttffc)P
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and the covariance of any two incremental claim numbers satisfies

cov[Zitk, Zjj] {ßißk){ßjth)(icp + Wh)v&ij h.i

Proof The formulas for the expectation and the variance of Zitk are evident
from PZi k ir(a,p,c,ßß)k) tint' Corollary 3.1. Furthermore, since

(ßi'ih)2acp+ (ßnh)'P

vtii-[Zijk]

E[Ziik(Zi,k- 1)] + E[Ziik) -(E[Zl<k\)2

{ßßlkf j \2tlQ«,P,cW + (ßi#k)p- (ifWp)2

we obtain jR A2 d,Qa<!>^{\) - aep + p2 and hence

cov[Zi<k,Zj,i] =E[ZitkZJil] - E[Zi,k]E[Zj,i}

=((Wk)(ßj0i) [ X2Qa,P,cW~(ß^k)p(ßA)P
Ja

=(ßiih)(ßj>'h) <icp

for all i,j, k, l e {0, I,..., n\ such that i j or k l.

Lemma 6.1 implies that, except for the case a 0, any two distinct incremental

claim numbers are strictly positively correlated and are hence dependent. I he

lemma also yields a characterization of the Poisson model as a special case of
the present model:

6.2 Theorem The following are equivalent:

(a) There exist two distinct incremental claim numbers which are uncorrected.

(b) The family of all incremental claim numbers is uncorrelated.

(c) The family of all incremental claim numbers is independent.

(d) The family of all incremental claim numbers satisfies the assumption of the

Poisson model.

Proof Assume first that (a) holds. Then there exist two incremental claim
numbers Zitk and Zpi such that i j or k I with cov[Zitk, Zjfi 0.Because
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of Lemma 6.1, this yields a 0. Therefore, (a) implies (d). The remaining
implications are obvious.

Because of Lemma 6.1, the expectation of any incremental claim number satisfies

E[Zitk] (p/300*.

Therefore, the present model is a multiplicative model, and summation yields

E Y Y Zi'k
,j=0 k=0

p.

Therefore, the parameter p of the present model takes the role of the parameter A

in the Poisson model and the interpretation of the parameters ßo,ß\, ,ßn and

• • An is the same as in the Poisson model.

In the case where the parameters of the present model are unknown, the

parameters may be estimated by the maximum-likelihood method:

6.3 Lemma The identity

P
n n — i

n p\{Zi,k=zi,k}
Li=0 k=0

i=0 fc=0
%i,k J ri 7i—i

nn
n n <_o fc_<)

i=0 fc=0

ßdh
n n—j

i E E ftA
\j=0 1=0

f 71 n — I >

"71* n n~i n n-i / J / ^
a.pY Y ßii>k,cY Y ßiti*

t=() A; —U issOfessO vi=0 Aj=0

holds for every family {zj,fc}i,A:g{o,i,...,n},i-i-fc<n ^ N0, ««r/ identity

' 7i n—i

Y Y z=
• i=0 fc=0

TT ri n — i n rt -1 \
«,?£ £ £ (M*

1=0 fc=(> 1=0^=0

holds for all z G No.
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Proof Summation yields

P n f]{zitk=ziM}
t=0 A:—0

ii n — i

/ ii n
•' **• .•—ft i. i\• i=0 k=0

„ (A(Wky
Zi,k'-

/fV /
I Z-f 2-f %i,k J • n ii —i
\i=0k^() /_ J"| j"J

n n — i

II II*,*! '=" fc=H

i=0 k—0

\ ^
(k'h

n n-j
E E PA

\j=Q 1=0 /

/ n n — i

/exp -aEE^,/u t ;=o *=o

/ it n — i \{P„AZ,'k
[AEE ßtfk) ' '
\ j=o A.—0 /

/ ri Ii—i

E E
dQa,p,c(A)

\i=0*=<>

This proves the first identity, and the second identity follows by summation.

Because of the first identity of Lemma 6.3, the likelihood (unction, which depends

on the parameters a, p, c and on the parameters ßo, ß\,..., fln and A), >h,

satisfies
/ \ / \ % i, k

n n—i \
E E *,* •'

n

L \i=0 k=0 II ITn n — i
II II*.*-' <=0*=0
i=0 k-0

\
Pi'ih

n n—j

E E PA
\j=0 t=0 /

(n
n-i

zJ'1

i-0 /-o

and it follows that the log-likelihood function satisfies

/ n n—j

lOg(Pi'Vk) - log
V

t=0 A,*—0 \

n n — i /
MO fi 4 EE "4 log(ßi'Ok) ~ log ^^PjPt

\j=0 1=0

/v^'T log I TT n Ii —j n n-j I / / Zj,l
\ a.pE E ßjf'hc E E ßj»i \ M M\ j=(> 1=0 j=o i=0 \J-U l-o

where g is a constant not depending on the parameters.
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6.4 Lemma If p, ßo, /?i,...,/3n, i?o, $i, • • ,i?n are maximum-likelihood
estimators of p, ß0,ß\,..., ßn, t)0, th, •, "&n, then pßo,pß\,. pß„ and
do, $1, • • •, &n are the marginal-sum estimators of pßo,pß\,..., pßn and

Proof Define

n n—j

3=0 1=0

n n-j

j=0 1=0

Then we have

/ f n n-3
N

o log Tta,p,c E E zJ,I
<9(logL) \ \j=o i=o

Dp dp

f n n-3
^

0 log'TTa^c E E ZJ,l
<9(logL) \ \j=o i=o

n n-3

j=0 1=0

n n-3

j=0 1=0
de öc

Since E"=o E'i=o ßj^t ^ maximum-likel'h°0<i conditions yield

9 ^logTra,p,c ^E E

dp

ö^logTTa.p.c^Eg^^
dc

Using the second identity of Lemma 6.3 and applying Theorem 4.4 to the

Hofmann distribution tra,p,c> we now obtain p E"=o E/"=(/ zj,t ant' hence

n n-j n n-j
p1LJ2w1 J2J2 zj><

J=0 1=0 j=0 1=0
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We also have

0(\ogL) I
yi Ok n n-j

0Pt ~ß HZ*<k
n n-j EE^'

*=0 EEWJ=DM
j=0 /=()

logoff: "if*,,/)) __V \J=o '=» / /
Op Oßi

!>(he*a,p,c(i E *,.<))
<r.v \j=0 1=0 j Oc

Oc 0ß%

for all i e {(), I,...,«} and

n — k

ö(logL) I ^ ,SÄ
0()k 2^ Zl'k n n-j 2ZJ>1

1=0 EEMJ=0H
j=0 1=0

o log7rn,?,5 EbJ
_V \j~n ;=() / / dP

Op 00k

<>

d7
+

Oc 0&k

for all k e {(), 1,... n}. Inserting the identities obtained before into the previous

ones, we obtain

n—i n—i

EZ Zi-k EE(^)t)k
k=0 k=0

for all i e {(), 1,..., «} and

n — k n — k

J2z*'k J2^'^k
i=0 i=0

for all k 6 {0, I,..., n}. These are the marginal-sum equations.
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The previous lemma yields the following result:

6.5 Theorem If p and ßo,ß\,...,ßn are maximum-likelihood estimators of p
and ßo,ßi,.. ,ßn, 'hen pßo,pß\,... ,pßn are the chain-ladder estimators of
pßo,pßi, • • ?pßn•

In the case where the parameters of the present model are known, the ultimate

aggregate claim numbers may be predicted by the credibility method:

6.6 Theorem For every accident year i G {0, 1,... ,n}, the credibility predictor
S*n of the ultimate aggregate claim number Shn satisfies

n n-j
n-i / n \ P + ac E E ZJ,i

s;,n £*..*+ E ^ A- J=0i=0

fc_0 \fc-n-!+l / | p ac ^ ßjÜl
n ll-j

V
J=0 (=0

Proof For all i,k G (0, 1,..., n}, we define the normalized incremental claim
numbers Xtik by letting

rr Z I, k
zt t,k ßiOk

By Lemma 6.1, we obtain

E[Xhk] P

cov[Xl:k, Edl acp + —— (%ti.
ßd'k

Because of these identities, the family }j,A.e{o,i,«} satisfies the assumptions

of the standard credibility model considered by Schmidt [2004b] and it

follows that the credibility predictor X*k of X,^ with i,k G {0, such

that i + k > n satisfies

1 v"* acp{ßhi)m)/p
~ n—n- P

n ,»»

1 + acp E E (ßß'h)/l> h=0 r,i=() 1 + ucp E E ißJ ®i)/p
j=0 1=0 3=0 1=0

n n — hl-—p+ee —n ti—j
1 Z—/ Z_—/ n ri—j

1 + uc E E ßjüi I -p ac E E ßjüi
j=0 1=0 j=o 1=0



149

Therefore, the credibility predictor Z* k of Z^ with i,k G {0,1,..., 74} such
that i + k > 74 satisfies

n n-j
v + <i<- E E ZJJ

?* n ,i j=ot=ozi.k (nth — n ri -j
I +«'' E E ßjih

j=0 1=0

and it follows that the credibility predictor S*n of 5;.,, with i e {0, I,...,74}
satisfies

n n-j
/ n \ p + ac E E Zj,l

£ *)a—•fc=o \fc=»-t+i / I 4- ac E fij'th
j 0 1=0

This is the assertion. d
By Theorem 6.6, the credibility predictors of the ultimate aggregate claim
numbers are predictors of the Bornlnietter-T'erguson type. Due to the eovariance

structure of the incremental claim numbers, the credibility predictor ot the

ultimate aggregate claim number of a given accident year also depends 011 the

data from all other accident years.

We conclude this section with another look at the model under consideration.

A family of random variables is said to be a Hofmann process if the

family {PNl }(eR| is a Hofmann family H(n,/), e) and it the identity

P f){Nth~Nth ,=kh}
'1=1

I] exp(——f/i-i)) dQ^AA)
/ n "'h'•/u /i=i

holds for all m N, for all <0, H,... ,tm satisfying 0 t0 < t, <
< tm, and for all k\,..., km e N0.

Let {Arf}f6Rt be a Hofmann process.

- First, define r_i := 0 as well as n := Ej=o^i anc'

Ui,n := NTi - NTi
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for all i {0,1,...,n}. Then the joint distribution of the family
{^,n}i6{o,i satisfies

P { Uitn — Ui,n }
Li=0

exp(-Aft)
t

<lQa,pAX)

If C/j,„ is interpreted as the ultimate aggregate claim number of accident

year i, then the ultimate aggregate claim numbers of all accident years are

increments of the Hofmann process restricted to the unit interval
[0, I].
Second, define 7_i := 0 as well as 7^ := 1=0^1 ant'

K,fc := N:n-l+7k(n-T.-l) ^Ti-i+7fc-1(T,-rl_l)

for all k S {0, 1,... ,Ti}. Then the joint distribution of the family
{K,A;}fce{o,i,...,ri} satisfies

H {Vi.k=Vi,k}
U=0

I cxp(~Xßt d

R k—0

x (A/W"-*
Vi,k'-

^Qa,p,c(A)

for all i G {0, l,...,n}. If Vtik is interpreted as the incremental claim
number of accident year i and development year k, then the incremental
claim numbers of accident year i are increments of the Hofmann process

{fVtheR(. restricted to the interval [rj_i,rt].
The definitions yield

Ui,n £ Vi'k
k=0

and the joint distribution of the family {Vj, feline {0,1,. ,,n} satisfies

,i=0 k=[)

L n f["p(-Aaw
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This shows that the model considered in the present section can be obtained from
a Hofmann process on the unit interval.

7 The Second Extension of the Poisson Model

In the present section, we consider a second extension of the Poisson model and

we assume that the joint distribution of the family „} satisfies

where i90, i9h... i')n (0,1) are parameters satisfying £)£=0i?a.- — 1 antl

Qai,p„ci is the mixing distribution of the Hofmann family cf). In the

case where aL 0 holds for all i e (0, 1,. •,'«} this model coincides with the

Poisson model.

Throughout this section we omit all proofs which are essentially identical to those

given in Section 6.

Let us first study the present model in more detail.

7.1 Lemma The expectations of any incremental claim number satisfies

and the covuriance of any two incremental claim numbers of the same accident

year satisfies

cov[Zijfc, Zi,t] (ßi&k)(ßfh) atctpi + {ßdh)Pi 4,t

Moreover, the accident years are independent.

Lemma 7.1 implies that, except for the case a; 0, any two distinct incremental

claim numbers of accident year i e {0, 1,... n} are strictly positively correlated

and are hence dependent. The lemma also yields a characterization of the Poisson

model as a special case of the present model:

n 7i

p nn {Zi,k=Zi,k}
,i=0 k=0

E[Zi,k\ {ßfik)lh
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7.2 Theorem The following are equivalent:
(a) For every accident year there exist two distinct incremental claim numbers

which are uncorrelated.

(b) For every accident year the family of incremental claim numbers is

uncorrelated.

(c) For every accident year the family of incremental claim numbers is

independent.

(d) The family of all incremental claim numbers satisfies the assumption of the
Poisson model.

Because of Lemma 7.1, the expectation of any incremental claim number satisfies

E[Zi,k] Pi >h

Therefore, the present model is a multiplicative model, and summation yields

E
Lfc=o

for all i G {(). l,...,n}, which means that pi is the expected ultimate aggregate

claim number of accident year i. The interpretation of the parameters
t)\,. i)n is the same as in the Poisson model.

The assumption of the model considered here is equivalent with the assumption
that the joint distribution of the family »} satisfies

F n n {Zi.k=Zi,k}
L;=o fc=o

II
i=0

n
\k=0 J Trn tili

Zi, kl fc=o

\ k=0

rt
exp(-A) <IQa,.ih.r.i{A)

E zi,k]-
fc=0

\

/
This means that

- the accident years are independent,

- for every accident year, the incremental claim numbers have a conditional
multinomial distribution with respect to the ultimate aggregate claim
number and with a development pattern which is identical for all accident

years, and
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for every accident year, the ultimate aggregate claim number has a Hofmann
distribution.

As mentioned before, in the ease where <it 0 holds foi all i G {0, 1, ...»}
we are back to the Poisson model. Moreovet, in the case where «, I

holds for all i G {0,1 ,«}, all ultimate aggregate claim numbeis have a

negativebmomial distnbution and this is the case consideied by Schmidt and

Wünsche |I998| as a first modification of the Poisson model; this case is of
interest since negativebinonnal distiibutions and many empirical claim number
distributions share the property that the variance exceeds the expectation The
model considered here is much more general than the model of Schmidt and

Wunsche [1998] since it allows for arbitrary values of the parameters a, and

even tor different values of at for different accident years.

In the case where the parameters of the present model are unknown, the

parameters may be estimated by the maximum-likelihood method:

7.3 I.cmmu I he identity

[^| { ^i,k — Zl.k }

.*=•<>

fc=0
Zi.k i! TL—i

ii
A.=0

/ V'
i'h

n — i

£ *«

\ i=o /
TL i % Pi £ 'A.c. £ 'A

k-t) K—0 \k=D

holds for alt i G {(), I} and for every family {^i.njfcgfo i, ,n-i} Q No,
and the identity

n — i

Ez^ z

ik=0

TT (z)
"iii'i £ 'A,'. £ 'A

k-t) A.s=0

holds for all i G {(), and for all z G No.

Since the accident years are independent, it follows from the first identity of
Lemma 7.3 that the joint distribution of all observable incremental claim numbers
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satisfies

P n f]{zl<k=zi<k}
Li=0 k=0

I (V.:
n
•;=o

i E J n — i

\k=0
\

n
n zi,ki- fc=°

v fc=0

tik
n — i

x
E#i\ (=0 /

,n-. ^

TT n-» n-i I y %i,h
<h,ih £ &k,ct £ '

AjssO Ai=() \Jfc=0

/
Therefore, the likelihood function, which depends on the parameters
ao, ai, • • an, po.pi, • • • ,Pri, Co, ei, • •. ,c„ and tin,tii, • ,tin, satisfies

/ /n-i \ / \ *'"
E n-i „

\fc=o / tt Vk
n — i 11

!=0

\

n ,1 k=0Zi,k \E th
I\t=0 /\ fc=0

and it follows that the log-likelihood function satisfies

«.,p. E öi'f;i E öi
i=0 1=0

(n-i \

\i=o /

n / n — i

log (l) <? + ££ *i,k log(l?A,) - £*u log £tf,
i=0 U-0

+ log 7r

,1=0 \l=Q

«.IPi E I'I.ci E
J=U IsO

where p is constant not depending on the parameters.

7.4 Lemma lfpo,Pi,---,pn and i?o, ti\, ,tin are maximum-likelihood estimators

ofp0,p\,. ,Pn and ti0,ti,,.. .,tin, then po,Pi, •.. ,pn and ti0,ti\, ,tin
are the marginal-sum estimators of po, pi, ,Pn arid tio, i?i • >tin-

Proof For i e {0, 1,..., «} define

n — i
Pi :=Pi£i?i

1=0

n — i

Ci := Ci til
1—0
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Then we have

ö(l.»gL)
a ('-a*-«.(!"sr- m

/11 — 1- Z>,<
^(ioRl)

0 J'
i)r>

~ ^ /=«»

tor all i G {(), Since Ez'Lo' ^ ^ l'ie maximum-likelihood conditions
yield

/11 —I
(} E Zi,i

V i=o / / _
OTh

'11 — I

0 'OS^U.T.T. E Z*,1

\h 1) / / _
Or,

for all % G {(), I,..., »}. Using the second identity of Lemma 7.3 and applying
Theorem 4.4 to the Hofntann distribution 7rn,we now obtain pt EzLo' 2«-<

and hence

n — i n — i
t>> £ ^

1=0 1=0

for all i G {0, I,..., n}. This yields

Tl— I 11—I

£*.,* X>A
k=0 k=0

lor all i G which is one of the marginal-sum equations.
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We also have

ö(logL)
ddk

n — k

E
i=0

/ n —i

E *i,i
Z-i,k 1=0

'() i- n~i
E
1=0

0 ^OgTToi.PiÄ ^E zi,t

Opi

9 ^OgTai.pi.Ci ^E Zi,^J

+
dc.i

dpi

d;dk

\

cldj

dtik

for all A; G {0, 1,... ,n}. Inserting the identities obtained so far into the previous
one, we obtain

E
(=0

and hence

n — k

Zi,k

lh Pi =0

n — k

E Zi'k Epi%)k
i=0 i=0

for all k G {0, 1,... n}, which is the other marginal-sum equation.

The previous lemma yields the following result:

7.5 Theorem If po,Pi, ,Pn we maximum-likelihood estimators of
Po,Pi, • •,Pn, then po,Pi, ,Pn we the chain-ladder estimators of

Po,P\, ,Pn
In the case where the parameters of the present model are known, the ultimate

aggregate claim numbers may be predicted by the credibility method:
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7.6 Theorem For every accident year i G {(), I,..., nj, the credibility predictor
S*n of the ultimate aggregate claim number Si,n satisfies

n — i

n — i / n \ Pi "l~ X] ^i,k

E S—
k-0 \k-n-i+l / 1 -|- diCi Y ()k

fc=0

By Theorem 7.6, the credibility predictors of the ultimate aggregate claim numbers

are predictors of the Bornhuctter-Fcrguson type. Due to the independence
of the accident years, the credibility predictor of a given ultimate aggregate claim
number does not depend on data from other accident years.

Let us finally note that the discussion at the end of Section 6 can be adopted to
the model considered here. It turns out that the model considered in the present
section can be obtained from n + 1 Hofmann processes on the unit interval such

that each Hofmann process corresponds to an accident year and the Hofmann

processes are independent.

8 The Poisson Model With Identical Parameters

With regard to the model considered in Section 7, it is natural to investigate
also the special case in which the parameters of the Hofmann distributions are
assumed to be identical for all accident years. In this case, the joint distribution
of the incremental claim numbers of a given accident year is the same for all
accident years and one would say that the accident years are not only independent
but also identically distributed.

To illustrate the effect of this additional assumption, we consider here the Poisson

model and assume that the joint distribution of the family {Zi,fc}i,A.-e{o,i,...,n}
satisfies

Pi f){Zi,k=zitk\
,i=() fc=0

fI exp(—
i=0

(nih)Zi'k
Zi,k]-

where a G (0, oo) and do, i)i,..., i)n G (0,1) are parameters satisfying
Y,k-o ' •

t'1's we have E[Z^k] m)k for all i, A: G {0,1,..., n}



158

and hence

E
_fc=0

for all i 6 {0, 1,... n}.

In the case where the parameters of the present model are unknown, the

parameters may be estimated by the maximum-likelihood method:

8.2 Lemma The identity

P
,i=0 k=0
n n n n :

i=() k=0

holds for every family {zitA:}i,fce{o,i,...,n},i+fc<n Q N0.

Because of Lemma 8.1, the likelihood function, which depends on the parameters

a and dQ, -d\,..., i)ri, satisfies

ii n—t

£ II f|exp(-a^)
(nflk)z'-k

%i, A: •

i=0 k=0

and it follows that the log-likelihood function satisfies

n n — i

iog(L) (j + J2Yl{~at>k+Zi'k 1oSMO)
i=0 k=0

where y is a constant not depending on the parameters.

8.2 Lemma If a and Do, i? i,.. •, i9n tire maximum-likelihood estimators of n and
P'>n, then

n — l

1=0 i=0

and

n — k

n - k + l
dk 4-0

Y^Zi'k

n — l

/=0 2=0

holds for all k G {0, 1,..., n}.
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Proof The maximum-likelihood condition with respect to yields

n — k

for all A; G {(), I,... n}. Since 1, we obtain

and hence

n — k

71 — h 4" 1

£
t=o

it — l

irrn^Zi'1
i=0

for all A: e {(), I,...,«}. Furthermore, the maximum-likelihood condition with

It can be seen from L.emma 8.2 that the maximum-likelihood estimator of a is

not identical with any of the chain-ladder estimators of the expected ultimate
aggregate claim numbers. This is not really surprising since the chain-ladder
estimators of the expected ultimate aggregate claim numbers of different accident

years are distinct.

Nevertheless, the discussion of the present section shows that one has to be

careful with the choice of the model: If one is convinced that the Poisson model
with identical expected ultimate aggregate claim numbers is an appropriate model,
then chain-ladder estimation and maximum-likelihood estimation yield different
results and one has to make a choice between these methods of estimation.

With regard to the discussion at the end of Sections 6 and 7, we remark that the
model considered in the present section can be obtained from n + I independent
copies of a single Hofmann process on the unit interval.

respect to a is fulfilled as well.
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9 Remark

The results on credibility prediction presented in Sections 5, 6 and 7 can easily
be extended to the case where the mixing distributions of Hofmann families are

replaced by arbitrary mixing distributions concentrated on (0,oo).
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Zusammenfassung

Die voiliegende Arbeit untersucht die Ubeieinstimmung del Chain-Ladder und Maximum-
Likelihood Schat/er tur die eiwarteten Endschaden/ahlen in dei Schadenieseivieiung Wn stellen

zwei allgemeine Modelle voi, die beide das Poisson-Modell von Hachemeister und Stanaid

11975] veiallgemeinem und aut dei von Holmann [ 19551 eingetuhiten Klasse gennschtei Poisson-

Verteilungen beiuhen Wir zeigen dass in jedem dieser Modelle die Maximum-Likelihood Schatzer

der eiwarteten Endschaden/ahlen mit den Chain-Ladder Schat/ein übereinstimmen

Summary

The present papei is concerned with the coincidence of chain-laddei and maximum-likelihood
estimators tor the expected ultimate aggregate claim numbers in loss reserving We piopose two

general models which extend the Poisson model consideied by Hachemeister and Stanaid 11975]

and which are based on the mixed Poisson distributions introduced by Hotmann [1955| lot
each ot these models, we show that the maximum-likelihood estimators ot the expected ultimate

aggregate claim numbers agree with the chain-laddei estimators

Resume

Dans cet aiticle on etudie, dans la theorie des piovisions la coincidence des estimateuis de chain-
ladder et des estimateuis de maximum de vnusemblance poui les esperance des nombres ultimcs

de sinistres Nous proposons deux modules generaux qui contienncnt le modele de Poisson etudie

pai Hachemeister et Stanard [ 1975) et qui leposent sin la classe de distributions de Poisson mixtes

introduite pai Hotmann [ 19551 II est demontre que dans chacun de ces modeles les estimateuis

de maximum de vraisemblance des esperances des nombres ultimes de sinistres coincident avec

les estimateurs de chain-ladder
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