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D. Kurzmitteilungen
HANS SCHMITTER, Ziirich

An upper limit of the expected shortfall

1 Introduction

For many years reinsurers loaded risk premiums with loadings proportional to
the expected value, to the variance or to the standard deviation of the aggregate
claims. Recently, some reinsurers have replaced such loadings by a loading
proportional to the difference between the expected shortfall and the expected
value of the aggregate claims. The simple upper limit of the expected shortfall
shown in this paper may be helpful for the actuarial practitioner. If the distribution
function of the aggregate claims is continuous the result is the same as theorem 2
in Bertsimas et al. (2004). For the discontinuous case, on the other hand, the
author did not come across any reference in the actuarial literature.

2 Deduction of the upper limit

Let X > 0 be a random variable, I'(x) = Prob(X < z) the distribution function
of X, I/ = E[X] and V = Var(X). Consider an arbitrary probability p in the
interval 0 < p < | and let v denote an x-value for which F'(u) = p. Such an
u is called a p-quantile of the distribution of X. Note that F'(x) is assumed
to be continuous at u. The conditional expected value F[X | X > u] is called
expected shortfall. Typically, p is chosen as 99%. The expected values of X and

of X? can be split into

EX|=p-E[X|X <u]+(l-p)-E[X|X >y (1)
and
EX)=p E[X*| X <u]+(1-p)-E[X*| X >u]. (2)

Using the abbreviations
a=E[X|X<u] and b=E[X | X >, (3)
the conditional expected values to the right of (2) can be written as

E[X*| X <ul=da*+ Var(X | X <u)
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and

E[X*| X >u]=b"+Var(X | X > u),
hence, since the variances are > 0,

EXY>p-a®>+(1-p) b (4)
Consider the two-point distribution which assumes the two values ¢ and b with
the probabilities p and | — p, respectively. It follows from (1) and (3) that its

expected value is £. Let W stand for the variance of this two-point distribution.
From (4) it is seen that

V>Ww. (5)

For two-point distributions with expectation [ and variance W there are the
relations

p-at+(l—p)-b=FE
and
p-at+(1—p)-*=E*+W.

Solving for @ and b we obtain

(1= W
a=F— u and b= FE+ . (6)
p l—p
The upper limit of the expected shortfall is now found by
EX|X>ul=b (using (3))
w -
=F+ 2 (using (6))
I—p
V.
<E+ 1—_—’; (using (5)). 7

[f F'(x) is not continuous for all @ > 0 there may be no p-quantile but F'(u) > p
and F'(u-) < p (F'(u-) being the limit of F'(x) for < u when x — u). Such a
situation is shown in the following graph.
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In this case we have
/ F(x)
Hi g = i i | e
E[X | X <) /(1 - “_))u
0 (8)

0. @]

E[xY ] X > ’IL] = U+ (f — —-“i"——F‘(*)—

and
E=Fu) EX|X<ul+((F(u) - F(u-)) - u
+ (1= F(u) - E[X | X >ul.

The expected shortfall as defined so far, X | X > u] is now slightly modified,
namely to

E[X | X >u- (1 . Fw) +u- (F(u) —p) ©)
=8

The numerator in (9) is equal to the shaded area in the graph. In the appendix
it is shown that (9) is equivalent to the definition given in Acerbi and Tasche
(2002).

In order to deduce the upper limit of this modified expected shortfall, the two
conditional random variables X | X' < w and X | X > w are replaced by X, and
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X5 defined by their distribution functions:

F T
(=) for0<ax<u
Gi(z) = Prob(X, <z) = P
| for © > u
0 for v < u
Gi(z) = Prob(X; < z) = — F(z
2(2) (X ) l——————l1 () for x > u
=D

It follows from these definitions that F'(x), the distribution function of X, is the
mixture p - G (x) + (1 —p) - Ga2(z).
The expected value of X is

U

E[X|] = f(l — Gy(z)) dx

P B F(x)
P [+ 1 F(fu,—)) dx

Il
g
= =
-
OL\:
N

_Fw) (p—F(uw) u+ E U using
== ( o) L+ E[X | X < /]) (using (8).)

In a similar way the expected value of X3 is
oo

E[X;] = /(l — Ga(x)) de

0
U OOI_F ;
r]d;v—k/———@d:c
L —p
0 U

[e9]

= U - . . . l"
L I —p / 1 — F(u) o

_F('u)——er 1 — F(u) B
L=p I=p

(X | X >wu] (using (8).) (10)
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From (9) and (10) it is seen that the expected shortfall is F[X5|. Replacing
the conditional random variables X | X < w and X | X > w by X, and Xj,
respectively, in (1), (2), (3), (4) and (7) we obtain the same upper bound of the
expected shortfall as in the continuous case.

3 Numerical examples

The truncated Pareto distribution which is often used to model the distribution
of excess losses may serve as an example of a continuous distribution. The
necessary algebraic formulas are summarised for the cover ¢ after the deductible
d (the layer ¢ s d in the usual reinsurance notation):

(l ¥
- 1 — if 0 <z :
f’(.’b’): (([—}—:1:) LTRSS (1)
| if &> e
Let M =d+cand k = KII Then
d
7 | — J—a
E[X]:(l-m———k (12)
a— |
! ( M )l—-a
EX|X >ul=u+(d+u)- ¥ ‘IIL (13)
o —
. k!——a == A:Zﬂt sz ] 5
Var(X)=2-d*- - - E[X] (14)
a—1 a—2

Choose for the numerical example o = 1.2, d = 1, ¢ = 19 and let p = 0.95.
From (11) we obtain the solution u = 11.139 of the equation F'(u) = 0.95 and
from (13) the expected shortfall £[X | X > u] = 16.907. Using (12) and (14)
we have £[X] = 2.254 and Var(X) = 15.378, and with (7) the upper limit of
the expected shortfall becomes 19.347.

In order to illustrate the non-continuous case we take the Poisson distribution
with A = 0.2 and choose p = 0.99. For u = 2 we find F(u-) = 0.9825 and
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F(u) = 0.9989.

/\‘J’L
EX|X >ul- (1 — F(u)) = Z —4 — b
n=u-+t1 it
o0 4 U P’
/\H /\n
e m’\._.v = ,.J_A._.
B ngz:oe T ”Z:;) ¢ n! "
U ;
Anﬂl
=A-=X s s
n; C o
=0.2-0.2-0.9825
= 0.0035

According to (9) the expected shortfall is thus 2.1. On the other hand, the upper
limit is equal to

0.2-0.99
244/ 222 46,
02+ 14/~ 6
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Appendix

The random variable X in Acerbi and Tasche (2002) is replaced by Y in order
to distinguish it from the random variable X in the present paper. Then the
following notation is used:

Y"is a profit-loss random variable, o is a probability, y(*) = sup{y | P[Y < y| <
(y} is a quantile of the distribution of Y. The expected shortfall is defined as

ES@(y) = -1 (E[Y Ly <y@y] = ¥ (P[Y <y@] - “)) . (15)

a
Using X = -Y, 2= —y, u =~y and p = | — a we have
Prob(Y < y) = 1 — Prob(X < x)
and therefore

PlY <y ™ —a=1-Prob(X <u)—1+p
=p— F(u-). (16)

Together with

ElY 1y <yin] = =B[X 1ixou]
= —E[X | X >u)(l - F(u)) — u(F(u) - F(u-)) (17)

the expression in the bracket to the right of (15) is
—E[X | X >u)(l - F(u) — u(F(u) —p) .

this is equal to (9).

After multiplication with l
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