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Michel Denuit and Anne-Cecile Goderniaux, Louvain-la-Neuve, Virton

Closing and Projecting Life Tables using Log-Linear Models

1 Introduction and Motivation

/. I Mortality trends

In most industrialized countries, the human mortality globally declined during the
20th century; see, e.g., McDonald et al. (1998). Over the next few decades,
the EU countries will undergo a large demographic transformation induced by
the retirement of the baby-boomers and the dramatic increase in their longevity.
The past 100 years have seen many improvements in life expectancy, but the

pattern of the improvement is changing markedly. In the first half of the 20th

century, infectious diseases were almost eradicated and successfull vaccines were
developed and made available. This led to massive improvements in mortality
among the young. However, cancer and heart disease kept mortality rates stable
for older people. Since then, substantial increases in longevity have been achieved
at later ages.

1.2 Consequences for the insurance market

When mortality at old ages was relatively stable, insurers could predict how long
a group of insured people were likely to live, allowing underwriters to price
annuities relatively accurately. Now that the uncertainty about longevity has

increased, insurers are no longer sure how much to charge for annuities.

The mortality improvements described above thus pose a challenge for the

planning of public retirement systems as well as for the private life annuities
business. When long-term living benefits are concerned, the calculation of
expected present values (for pricing or reserving) requires an appropriate mortality
projection in order to avoid underestimation of future costs. More generally, such
trends affect any insurance cover providing some kind of "living benefits", such
as long term care benefits or lifetime sickness benefits.

In recent years many insurers lost money on annuities and may continue to do so
because they underestimated mortality improvements. The problems experienced
by Equitable Life provide a stark example of the perils that may arise when
annuity rates fall below guaranteed levels. Actuaries reacted by constructing
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projected life tables. Such tables incorporate a forecast of future mortality trends

and are doubly indexed: by age x and calendar time t.

Extensive simulation studies have been conducted by Brouhns et al. (2002b).
On the basis of the ruin probabilities, it has been clearly shown in this paper
that pricing with an obsolete static life table leads in most cases to insolvency
for the insurance company. These results enlighten the importance of mortality
projections. Nevertheless, it is possible to counteract the longevity risk by

sufficiently high financial returns on the reserves (see Brouhns et al. (2002b)
for details).

Of course, the projected life table may itself underestimate future mortality
improvements. Life annuity contracts typically run for several decades so that
a life table which may seem to be on the safe side at the beginning of the

contract might well turn out not to be so. Moreover, contrarily to financial assets

(that can be very volatile), changes in forces of mortality slowly occur and pose
a long term, but permanent, problem. Reinsurance treaties covering longevity
risk are usually expensive and many life insurance companies are reluctant to

buy long-term reinsurance coverage (because of substantial credit risk). In that

respect, securitization offers an interesting alternative to reinsurance. Denuit
et AL. (2004) designed "survival bonds" based on a public mortality index. The
classical Lee-Carter model for mortality forecasting is then used to price a risky
coupon bond based on this index. The linear version of Lee-Carter proposed in

this paper could also be used to price these bonds, avoiding the selection of the

appropriate ARIMA model.

1.3 Mortality projection models

Projected life tables can be constructed according to various approaches.

Elementary approaches simply extrapolate observed trends in the sequence of annual

death probabilities at each age. Other approaches rely on analytical mortality
laws, as Makeham, Weibull or Heligman-Pollard. Mortality trends are
represented assuming that the parameters of the mortality law are functions of the

calendar year. See Felipe et al. (2002) for a recent application to Spanish
data.

Lee & Carter (1992) expressed the secular change in mortality as a function
of a single time index. This index is then modelled and forecast as a stochastic

time series using standard Box-Jenkins methods. From this forecast of the general
level of mortality, the actual age-specific rates are derived using the estimated age
effects. For a review of recent applications of the Lee-Carter methodology, we
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refer the interested readers to Lee (2000). Let us mention that Brouhns F/r ai„
(2002a,b) embedded the Lee-Carter model in a Poisson regression framework.
We refer the interested reader to Taüeau et At,. (2001) for various perspectives
on forecasting mortality, and to PiTAC'CO (2004) for more details about early
attempts to project mortality for annuitants.

1.4 Scope of the paper

In the Lee-Carter approach (as well as in its Poisson counterpart), time is modelled
as a factor and Box-Jenkins methodology is used to model the resulting time
series. In this paper, we suggest to linearize the time index involved in the

Lee-Carter model. Basically, we model time as a known covariate (as, e.g., in

Sithoee et At,. (2000)): time now enters the model in a linear way on the

log-scale. This avoids the two-step estimation procedure caused by the modelling
of the fitted time index as a time series.

Before projecting the mortality to the future, some processing of the data is needed

for actuarial applications. This is due to the fact that often in practice, very few
observations are available for high ages: it is common to observe death counts

only up to an age around 99. Moreover, there are substantial erratic variations
at these old ages. For actuarial computations, we need to smooth the mortality
pattern and to extrapolate it above age 100. Therefore, yearly life tables have to be

closed before projection. Several methods have been proposed by demographers
and actuaries, including e.g. Lindbercison (2001), RENSHAW & Haberman
(2003), Coale & Guo (1989) as well as Coale & Kisker (1990). However,
no approach provides systematically satisfactory results. A simple and powerful
closure procedure based on a constrained log-quadratic regression is proposed in
this paper.
A drawback of the projection methods that can be found in the literature is that
the projected mortality rates tend to zero as calendar time tends to infinity. This
is obviously unrealistic, since we expect that the mortality will approach some

asymptotic level as time goes on. This paper shows how limit life tables (e.g.,
the life tables proposed by demographers) can be incorporated in the mortality
projection model to control the long-term behavior of the mortality rates.

1.5 Agenda

The paper is organized as follows. Section 2 introduces some notation and

assumptions. The data used to illustrate this paper are presented there. Then
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Section 3 describes the classical Lee-Carter approach for mortality projections.
It is shown there how the time index involved in this model can be linearized.

Mortality at very old ages is discussed in details. Section 4 examines long
term consequences of the projection model. In particular, optimal life tables are
included in order to control the asymptotic level of mortality rates. The final
Section 5 concludes.

2 Notation, assumption and data

2.1 Notation

We analyze the changes in mortality as a function of both age x and time t.
Henceforth,

• Tx(t) is the remaining lifetime of an individual aged x on January the first

of year t\ this individual will die at age x + Tx{t) in year t + Tx(t).

• qx(t) is the probability that an z-aged individual in calendar year /, dies

before reaching age x + 1, i.e. qx{t) Pr[Tx(f) < 1].

• px{t) 1 - qx{t) is the probability that an rc-aged individual in calendar

year f reaches age x + 1, i.e. px(t) Pr(Tx(t) >1],

• /(;[.(£) is the mortality force at age x during calendar year t, i.e. the risk
that an individual aged x alive at time t dies instantaneously.

A projected life table is represented as a two-dimensional array containing the

qx(t)'s. Rows are usually indexed by age x and columns correspond to calendar

years f in the spirit of Lexis diagrams. For pricing and reserving, actuaries will
use diagonals of these tables, following cohorts of policyholders across calendar

time (exactly as in a Lexis diagram). For instance, the net single premium of an

annuity sold to an z-aged individual in year t is given by

where v is the yearly discount factor. To compute ax(t), all the elements of
the diagonal starting at cell (x,t) corresponding to age x and year t are used

to produce the one-year survival probabilities px(t) 1 - qx(t), px+\{t + I)
1 ~q.r.+i(f+ 0' Px+2{t + 2) 1 — qx+2(t + 2), etc. To facilitate the computations
of premiums and reserves, it is therefore interesting to have simple analytical
expressions for the qx{t)'s, like those proposed in this paper.
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2.2 Assumption

In this paper, we assume that the age-specific mortality rates are constant within
bands of age and time, but allowed to vary from one band to the next. Specifically,
given any integer age x and calendar year t. it is supposed that

Px+d1 + t) px{t) for 0 < £,r < I (2.1)

Under (2.1), we have for integer age x and calendar year t that

px(t) exp(-px(t)). (2.2)

The nature of (2.1) is best illustrated with the aid of a Lexis diagram, i.e. of a

coordinate system that has calendar time as abscissa and age as coordinate. Both
time scales are divided into yearly bands, which partition the Lexis plane into

rectangular segments. Model (2.1) assumes that the mortality rate is constant
within each rectangle, but allows it to vary between rectangles.

2. J Data

The data used to illustrate this paper relate to the Belgian population, males and
females separately. From 1948 to 1993, death probabilities have been computed
by the BfP (for "Bureau federal du Plan") on the basis of the number of deaths

by gender, age and year of birth, as well as the corresponding initial exposure-
to-risk (on January the 1st of each year). From 1994 to 2001, death probabilities
were computed by INS (for "Institut National tie Statistique") and published on
a yearly basis.

Only Belgian males are considered in this work. The r/x(f)'s are available for
t 1948,...,2001 and

r 100 for t 1948,..., 1993

x i 0,..., 101 for t 1994,..., 1998

[(),..., 105 for t= 1999,...,2001

No preliminary smoothing procedure is applied. The data are displayed in
Figure 2.1. The conventional way to examine mortality is to plot the logarithm of
the mortality rates against age. As calendar time also enters the problem, we plot
here the mortality surface (x,t) >-> qx{t). The mortality surface on the log-scale
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(right).

shows the classical pattern of mortality: severe mortality at young ages, then
accident hump and finally the considerable variations at advanced ages discussed

in the introduction.

Formula (2.2) allows us to compute the forces of mortality as

ßx{t) - In (I - qx(t)) provided qx(t) < 1

The nx(t)'s will be the target for modelling.

3 Log-linear model for mortality projection

3.1 Lee-Carter classical methodology

Let us recall the basic features of the classical Lee-Carter approach. The latter
is in essence a relational model

lnju^(t) ax + ßxKt + ex(t) with ex(t) iid Afor(0,o2), (3.1)
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where the parameters are subject to the constraints

J] «t 0 and X^'=l (3'2)
t X

ensuring model identification.
The parameters involved in the model (3.1) are estimated using a matrix of age-
specific observed forces of mortality with the help of singular value decomposition

(SVD) techniques. Specifically, the fix's, ßx'& and Kt's are such that they
minimize

£(l»/S(0 ~ (3-3)
X,t

The minimization of (3.3) consists in taking for the row average of the

ln/^(f)'s, that is,

2001

54
<*.r — Y hxllAf)> a; 0, •••-99,

t= 1948

and to get the ß/s and Kt's from the first term of a SVD of the matrix

/ In/(o( 1948) — «o In/((>(2001) —no \
M

\ 111 /U)i) 1948) — «99 • • • 111 /199 (200 I — «99 /
This yields a single time-varying index of mortality Kt. The estimations are

displayed in Figures 3.1 and 3.2.

When the model (3.1) is fit by minimizing (3.3), interpretation of the parameters
is quite simple:

- the fitted value of ax exactly equals the average of \nfi^(t) over time t so
that exp«x is the general shape of the mortality schedule;

the actual forces of mortality change according to an overall mortality
index Kt modulated by an age response ßx. The shape of the ßx profile
tells which rates decline rapidly and which slowly over time in response
of change in Kt.
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Age x Age x

Figure 3.1: Graph of the rv^'.s (left) and ßx h (right).

Figure 3.2: Graph of the k/s (left) and their linear fit (right).
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3.2 Linearization of the Lee-Carter model

In the Lee-Carter approach, the time factor nt is intrinsically viewed as a stochastic

process and Box-Jenkins techniques are then used to estimate and forecast nt
within an ARIMA time series model. Figure 3.2 shows an approximately linear
pattern of the iff s after 1970. Based on this empirical evidence, we are now
going to linearize the time index nt.
More specifically, we first determine the calendar year t* < 1991 such that the
series {«), t. f\... ,2001} is best approximated by a straight line. To this
end, we aim to maximize the adjustment coefficient R2 (which is the classical

goodness-of-fit criterion in linear regression). Figure 3.3 depicts the value of R2

according to the number of observations included in the fit. The optimal starting
year t* 1970 is confirmed. The right panel of Figure 3.3 depicts the linear fit
to the ift s for t, > 1970.

30 <0

Number of years

1990 1995 2000

Figure 3.3: Values of R2 (left) and optimal linear fit of the k/s (right).

We now consider the model

Inßx(t) ax + ßxtc + exl with ext iid Afor(0,a2)

for t > 1970 where calendar time has been centered

t,c t — 1, with t 1985.5

(3.4)
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The OLS estimations a^'s and ßx s of the parameters involved in (3.4) are

displayed in Figure 3.4. The inspection of Figure 3.4 reveal suspect results for
ages x > 95. We will address this problem in the next section.

Agex Agex

Figure 3.4: Graph of the a^'s (left) and ßx s (right) involved in the model (3.4).

3.3 Completion of the data

3.3.1 Motivation

Data at old ages produce suspect results (because of small risk exposures): the

pattern at old and very old ages is heavily affected by random fluctuations.

Recently, some in-depth demographic studies provided a sound knowledge about
the slope of the mortality curve at very old ages. It has been documented that
the force of mortality is slowly increasing at these ages, approaching a rather Hat

shape. The deceleration of the rate of mortality increase can be explained by the

selective survival of healthier individuals to older ages (see e.g. FIoriuciii &
Wilmoth (1998) for more details).
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Demographers and actuaries suggested various techniques to complete forces of
mortality at old ages. Let us mention the influential works by Lindbergson
(2001) and Coale et ai,. (1989,1990). We refer the interested reader to
Buettner (2002) for an interesting discussion.
In this section, we describe a simple and powerful method to reconstitute the

mortality pattern for the oldest-old, taking into account the statistical evidence
from empirical studies. The basic idea is to find a mathematical formula that
makes the rate of mortality increase with age to slow down at very old ages.

3.3.2 Completion procedure

The original data set qx(t), t — 1970,..., 2001 and

is completed into qx(t), t. 1970,..., 2001 and x 0 125. The starting
point is standard: a constrained log-quadratic regression model of the form

is fitted separately to each calendar year t 1970,... ,2001 and to ages 75 and

over. Then, we impose:

(i) a closure constraint (/130(f) for all f: even if the human life span shows

no sign of approaching a fixed limit imposed by biology or other factors

(see, e.g., Wiemoth (2000)), it seems reasonable to retain as a working
assumption that the limit age 130 will not be exceeded.

(ii) an inflexion constraint (/(30(f) 0 for all f that makes the rate of mortality
increase with age to slow down at very old ages, as expected.

These two constraints yield the following relation between the at's, bt's and ct's
for each calendar time f:

at + fhx + ct'x2 ct{ 130 — a:)2.

The parameter ct is then estimated on the basis of the observations {(/,, (f),
x 75,76,...} relating to year t. It is worth mentioning that the two

In qx(t) at + btx + ctx2 + ext with ext iid J\for{0, a2)
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requirements underlying the modelling of the qx(t) for high x are in line with
the empirical demographic evidence.

The completed data set is then obtained as follows. We keep the original qx(t)
for x 0,..., 85 and we replace the death probabilities for older ages with
the fitted values coming from the constrained quadratic regression. The results

for calendar years 1975 and 2000 can be seen in Figure 3.5. This furnishes a

rectangular array of data: qx{t) for t 1970,..., 2001 and x 0,..., 130. The

completed data set is displayed in Figure 3.6.

Age x Agex

Figure 3.5: Completed f/a;(1975)'s and qx(2000)'s obtained from the constrained

log-quadratic regression model.

Remark Some smoothing may be needed around age 85: in such a case, a

simple geometric averaging

Qx{t) (cjx-2{t)qx-\(t)qx{t)qx+i{t)qx+2(tj^

for x 81,... ,90 should be enough. Here, no smoothing is applied around age
85.
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Figure 3.6: Completed qx(tys (log-scale).

Age* Age*

—/
Figure 3.7: Graph of the ax .s (left) and f)x ,s (right) involved in the model (3.4)

obtained from completed data.



Figure 3.8: Fitted and projected qo{t)'s, </2t>Ws> </40q65{t)'s, qgs(t)'s and

quo(t)'s obtained from the the model (3.4) with completed data.
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3.3.3 Log-linear model on completed data

Let us now re-fit the model (3.4) for t 1970,... ,2001 and x 125 on
the completed data set we just created. The frjl's and ßx's computed with the

completed data set are displayed in Figure 3.7. The effect of the completion on
the ßx's is clearly visible from the right panel.

Figure 3.8 displays the resulting fitted and projected r/o(f)'s, </2o(f)'s, r/40(f)\s,
</65(f)'s, (7s5(O's aid r/iio(i)'s obtained from the the model (3.4) with completed
data.

4 Controlling the asymptotic level of mortality

Since ßx < 0 for all ages x, we have that —> 0 for all ages as t —» Too
yielding infinite expected remaining lifetimes at every age. This is clearly not
reasonable. In order to avoid this deficiency, we could resort to the concept of
"optimal life table" used by demographers. The age pattern of mortality reflected
by the optimal life table is meant as the limit to which mortality improvements
can lead. Let r/£° denote the limit death probability at age x, and ßf the

corresponding force of mortality.

For long-term predictions, it appears reasonable to control the asymptotic level of
mortality using the proposed by Duchene & WUNSCH (1988). Figure 4.1

displays the limit qf, together with the (2050)*s and </j,.(2IOO)'s obtained
before. The limit life table seems to be attained around 2100.

The model is now

hi (ßx{t) - fif) ax + ßxtc + ext with ext iid 7Vor(0,(j2) (4.1)

and it is fitted to completed data with t 1970,... ,2001 and x 0,..., 125.

Note that in Duchene & Wunsch (1988) optimal life tables, fif 0 for
x < 34 and /r£° « 0 for x < 70. The resulting ax and ßx are displayed in
Figure 4.2. From age 85, we observe the impact of the limit life table.

Fitted and projected qa{t)'s, tf2o(0's> <74o(t)'s, q^(t)'s, qss(t-)% 7no(f)'s obtained
from the the model (3.4) with completed data and limit life table are diplayed in
Figure 4.3.
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i 1 1 1 1 1 r
0 20 40 60 80 100 120

Agex

Figure 4.1: Duchene & Wunsch (1988)'s limit q compared with projected
r/;c(2050) and ffa(2IOO).

Agex Agex

Figure 4.2: Graph of the ax s (left) and ßx s (right) involved in the model (4.1).
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Figure 4.3: Fitted and projected </<)(/)'s, r/2o(0's- f/4o(0's, <785 (0's-
</mo(0's obtained from the the model (3.4) with completed data and

limit life table.



46

5 Conclusion

Longevity has improved consistently and significantly over the last century. This
trend appears to be continuing from now, and its seems reasonable to build life
tables incorporating further improvements into the future.
As a consequence, annuities will become more and more expensive, especially
with continually improving mortality in conjunction with low inflation environment

and low interest rates. Despite this, mortality is too often considered as

being of secondary importance to financial factors. This is a dangerous view
to take, and it is nowadays important that mortality rates are given appropriate
considerations in assessing long-term life benefits to the elderly.
In light of baby boom cohorts near retirement, of possible reforms of public
pension regimes and the shift from defined benefit to defined contribution private
pension plans, an increased interest in individual annuity products can be expected
in the future. Several European governments also envisage to shift (at least

partially) from a pure pay-as-you-go to funding methods for public pensions. This
evolutions poses numerous challenges to private insurance companies. Managing
longevity risk is one of them.

The approach suggested in this paper describes how the Lee-Carter model can
be "linearized". It is then easily implemented for pricing and reserving in life
insurance. Reference life tables controlling the asymptotic level of mortality can
also be taken into account, and a simple and powerful method to close the life
table has been proposed.
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Abstract

This paper proposes a simple and powerful method tor geneiating projected lite tables in a dynamic
mortality environment Yeaily death probabilities are hrst extended to old ages, using a constrained
log lineal regiession model involving age and its equated value Assuming a tuither continuation
ot the stable pace ot mortality decline, a linear vetsion ot the classical lee Carter model is then

applied to the forecasting ot the gender and age-specific mortality rates applying to the Belgian
population

Resume

Cet article propose une methode a la tois simple et etlicace de constitution de tables de inoitahte
prospectives lorsque la mortahte evolue Les probabilities annuelles de deeds sont tout d'abord
extiapolees aux äges eleves, ä l'aide d'un modele de regression log hneaire contraint, taisant
intervemr I äge et son carre En supposant que devolution passee de la mortahte se poursuivra
dans le tutur, une Variante lineane du modele de Lee-Carter est ensuite apphquee a la prevision
des taux de moitalite par äge et pai sexe pour la population beige

Zusammenfassung

Im Artikel wnd eine einfache und leistungsfähige Methode zui Bestimmung künftiger Sterbetafeln
unter sich verändernden Sterblichkeiten vorgestellt Diejahihchen Sterbewahrscheinhchkeiten weiden
zuerst auf hohe Alter extrapoliert Dies geschieht mit Hilte eines Constiained Log-I inear Regression
Modells untei Verwendung vom Alter und dessen Quadiat Untei der Annahme, dass sich die

Steibhchkeit im selben Mass wie bishei veinundeit, wud eine lineaie Version des klassischen Lee
Carter Modells verwendet, 11111 geschlechts- und altersabhangige Sterblichkeitsraten tui die belgische
Bevölkerung zu prognostizieien
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