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Jost GARRIDO and Y1 Lu, Montreal

On Double Periodic Non-Homogeneous Poisson Processes”

1 Introduction

Homogeneous Poisson processes are commonly used in risk theory to model
claim frequency. These sometimes give a crude representation since their claim
intensity rate \ is constant [see Figure 3]. A more general time—dependent model
is obtained with non-homogeneous Poisson (NHP) processes, as their intensity
rate A(¢) is a function of time.

Many natural phenomena evolve in a periodic environment or under seasonal
conditions. In turn, these events generate insurance claims. For example, weather
factors are known to affect automobile or fire insurance claims, while seasonal
snow storms in the north and hurricanes or floods in the south affect property
insurance. A periodic time—dependent intensity rate is a reasonable model for the
claim frequency in such situations. We show that it can also be tractable, even
for the corresponding aggregate claim process.

The similarities between intensity and failure rate functions, used in reliability
models, help exploring different applications of NHP process. Some characteriza-
tion properties of the NHP process with (single) periodic failure rate are derived
in Chukova et al. (1993) and Dimitrov et al. (1997). These properties are ex-
ploited in a risk model by Garrido et al. (1996). Berg and Haberman (1994) use
a non-homogeneous Markov birth process, of which the NHP is a special case,
to predict trends in life insurance claim occurences. Some ruin problems in a
periodic environment are also considered by Asmussen and Rolski (1994), Rolski
et al. (1999) and by Morales (2004). While Schmidli (2003) suggests a double
periodic NHP process to price catastrophe PCS options.

A more practical case is when the periodic environment does not repeat itself
exactly from year to year, but the short term peak changes over a relatively long
period, with different levels in each year. This defines a double periodic envi-
ronment, especially appropriate to model natural catastrophes, such as hurricanes,
which have a peak season in the middle of the year, but with an intensity level
also depending on long term climatological effects like La Nina or El Nifo, A
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corresponding Poisson process model with double periodicity is introduced in
here.

Section 2 discusses the periodicity of the NHP and related characteristics.
Section 3 presents some practical forms for the claim intensity periodicity. The
corresponding compound NHP sums are also studied.

2 The NHP Process and Preliminary Resu

Let A be a non—negative (measurable and locally integrable) deterministic func-
tion. Consider the number of claims in the time interval [s, 1), denoted N,
for 0 < s <t (and Ny when s = 0). A NHP process is defined as follows.

Definition 1 A counting process {/N;; t > 0} is said to be non—-homogeneous
Poisson (NHP) with intensity function \, where A(t) > 0, for ¢t > 0, if it satisfies:
(a) Mp=0att=0Q;

(b)y {NVy; t >0} has independent increments;

() P{Nppn— Ny =1} = At)h + o(h), for all ¢, h > 0;

(d)  P{Ngyn — Ny > 2} =o0(h), forall ¢, h >0,

The function A defined by

t
A(t) = /,\(v)d’u, for ¢ >0, ()
0

is called the hazard function or the cumulative intensity function of the process.
Consider the number, Nir, 1), in an interval of the form [r, 7 + ), where
7,t > 0. The time parameter 7, called the initial age of the process, marks the
beginning of the time observation period when claims start to be counted. It is
well known that for a NHP process the probability of n claims occurring in a
time interval of duration ¢ starting at time 7 is given by

6-[A(T+t)~!\(1‘)][A(,,. + t) . A(T)In
n!

P{Ni;, r4t) =n} = , neN. (2)

That is, for a NHP process with intensity function A, N ;. has a Poisson
distribution with mean A(7 +t) — A(7) = ‘]:'H A(v)dv.



197

A NHP process reduces to the classical homogeneous Poisson process when its
intensity function does not depend on time, i.e. A(t) = A, for all £ > 0, and
therefore A(t) = At is linear.

Now, we consider the case where the risk process evolves in a periodic
environment, as when the claim arrival rate may depend on the seasons. Then the
intensity function of a NHP claim counting process {N;; ¢t > 0}, is a periodic
function, say with a period of ¢ > 0 years. Consequently ¢t — [£]c € [0,¢) is
the time of the season, where [¢] is the integer part of ¢ € R. A model with
double periodicity is introduced in the next section where it is illustrated by a
double-beta function.

Referring to Dimitrov et al. (1997) for proofs, we list the following properties
for the NHP process {Ny; t > 0} with periodic intensity function,

Theorem 1 Suppose that the intensity function A is periodic with period ¢, then

(a)  The hazard function A has the almost linear property

(b)  For any integer n > 0 and ¢t > 0
P{N[ru:,ru:+t):k}:.P{-Nt::/ﬁ}, AIO,I, ;

Moreover, the random variables N, and Nj,¢ ne ) are mutually indepen-

dent.
(c) The NHP process has a periodic intensity function A with period ¢ > 0

if and only if the random variables Ny ) and N .y are mutually
independent and distributed as N, and Ny, respectively.
(d)  For any t > 0 the random variable /V; can be decomposed in the form

Nio, t) » ift <e
a f\/[|+]\/[2+"'+ﬂf[ﬂ‘f‘N[()}t_L(L_JC),ift>C

where {M;};> are i.id. Poisson random variables distributed as NV, &)
and independent of Njg 4| ¢, the latter being a Poisson r.v. distributed

as N, 1), fort — | £]c €0, c).
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3 A Double-Beta Periodic Intensity Model

[nsurance risks that are subject to seasonal conditions clearly evolve in periodic
random environments. There are instances where such seasonal effects combine
with social or other phenomena to produce double—periodic, or even more general
environments.

Take for instance automobile insurance. In many countries, seasonal patterns
affect the number of car accidents from month to month. In addition, driving
and other social factors also generate a second weekly periodic pattern, that is a
“day-of-the-week™ effect. Figure | illustrates this phenomenon with the number
of fatal collisions recorded in the Canadian province of Ontario, for each day
of the week, in year 2002 (the total 770 fatal collisions are reported here in
percentage term, see ORSAR, 2002, for a full description of this dataset).
Clearly the number of fatal accidents increases during the week—end, reaching
a peak on Fridays, and then reducing progressively down to its minimum level
at the beginning of the week. A beta—shape intensity function is fitted to the
histogram in Figure | to emphasize the weekly periodic pattern.

Similarly, a “time-of-the-day” effect is also apparent in Figure 2, where these
770 fatal collisions are tallied according to the hour of occurrence. Again a
beta—shape intensity function is fitted to underline the daily periodic pattern.

A double-periodic accident intensity, with daily short-term cycles, coupled to
weekly longer cycles, could perhaps better predict the occurrence of future fatal
collisions in each season and help in their prevention. As we will see below,

//——-\
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Figure 1: Histogram and fitted Beta weekly fatal collision intensities
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Figure 2: Histogram and fitted Beta hourly fatal collision intensities

with other insured phenomena, like hurricanes, a double—periodic claim intensity
model can also better predict future insurance claims counts. With this application
in mind, we define here some simple and practical beta-shaped, double—periodic
claim intensity models.

First, assume that the short-term period is | (year). Let A1 be a beta—shape
function, with parameters p;,q1 > 1, defined on [0, 1], such that A\ (tf) = 1,
where ¢ € [0, 1] is the mode of the function. That is

m ol -my V9!
('—"L)” I('—L_"—L)“ , 0<m <t<my<lI

/\|(f) = af ) (3)
0, otherwise

where d = m;, — m, and

1 — | * P qi—1
.t —my i - £y —my
Q) = (T—) (I d ) (4)

is a scale factor, while

p— 1

T =m +d——— ,
' ' ptq =2

is the mode of A;(t), so that at the mode A;(¢}) = 1 is the peak level.
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To illustrate a NHP process with periodic intensity, consider the 155 hur-
ricanes recorded by the National Hurricane Center along the US coastline
(Texas to Maine), from 1899 through 1992, and reported by Neumann et
al. (1993). If this data set is augmented by the 12 additional hurricanes oc-
curred from 1993 to 2000, more recently reported by Landreneau (2001), we
obtain a total of 167 observations. In each case we have the time (month)
that the hurricane hit the US coastline, allowing us to draw a frequency his-
togram.

Figure 3 gives the beta intensity described above, after it was fitted to these
annual hurricane frequencies. The constant intensity of a classical homogeneous
Poisson process is also given for comparison. Clearly the classical model gives
a crude representation of hurricane frequencies.

0.8

0.8
]

lambda(t)
0.4
1

0.2
]

N

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

Figure 3: Histogram and fitted hurricane intensities over a l-year cycle A(t)

Although the beta periodic claim intensity seems to provide a better fit to
hurricane frequencies, climatological studies suggest that the claim intensity does
not repeat the exact same short term pattern every year. Rather, it slightly varies
from year to year, as in alternating El Nifio~La Nifia cycles. This motivates
our study of the doubly periodic NHP process presented in this section. Here
the seasonality repeats a similar short term pattern every year, letting the peak
intensity vary over a longer periodic cycle.
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More precisely, assume that the peak value in each year follows another beta
function .. of period ¢ (integer number of years), so called the long term intensity

function, given by

1
b—a [t —m, b s 1\ P
Melt) = a+ 2= ( e | = D

x,

=1
t—me t—me e
()
i c
where
= o]
* _m. Pe—1 t: —m, e
(‘!: — ( ¢ 7”(.) (l . - ) ’ (6)
c :

is again a scale factor, so that @ and b are the minimum and maximum amplitude
of the peak values, respectively. Here m, is the starting point of the complete
cycle of the second beta function and

* Pe — ]
L. =m | ————=
C e + C (p” + (I(: - 2)

denotes the mode of A.(f).
Then the double beta intensity function is given by

A) = A ([t = [L]e) + )M (t = [t]), fort=0, (7)

where \; and )\, are given in (3) and (5), respectively.
Figure 4 illustrates a possible shape of A(t) in (7) when py =3, q =2, my = 3,
d = 62 =35 p. =2 ¢ = 1.5 m. =375 a=3and b = 7. The dotted
line represents the base (long term) beta function A. that serves to explain the
fluctuations in the peak values of )\, the short term beta periodicity.

By Theorem 2, we can obtain an explicit expression for the hazard function
A, defined by (1) in the double-beta periodic case. The corresponding claim

counting process { Ny, ¢ > 0} is also decomposed in i.i.d. components.

Theorem 2 Assume that the intensity function A is given by (7), then

(a)  The hazard function A has the almost linear property, given by

[t—L£]e)—1 .
+ /\(! 74+t
A(’):[ JdBthll)E U I)J““"B(p"q') 2 *(%?J—)
=0

7=0

t—|t] - m|> Ac(lt = | E]e] + 1)

+dB (pl, q1; d ol ) (8)
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(b)
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Figure 4: Double-beta intensity function A(¢)

for ¢t > my, where \.(f) has the form in (5) and

|
- - ['(p)I'(q)
By, gl = /v” W1 — )y = =222
(p, ) J (1-v) T T o)

is the beta function at p, ¢ > 0, while

ift <0

(0,
t.
B(p, q; t) = < /'U'p*l (1 =) 'dv, ifte (0, 1) ,
0
\ B(p, q), ift > 1

is the usual incomplete beta function.

For any ¢ > 0, the random variable [V, is decomposed as the independent
sum of |£] iid. Poisson variables M, for the complete periods, and a
different Poisson variable for the incomplete period:

Nt:ﬂ/fl-l--l—]\/ft(gj—i*Nk (9)

t— [_f] —my
d
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where
c—1 ¢
M= N iy =121 (10)
=0 i
and
el (Le-LE)el)
N:‘—UJi"-mI = Z N(J)+N" L'J! m) (11)
‘ 7=0

The M, are i.i.d. Poisson with mean d B(p;, ¢) Zj (1) i—(%ﬁ— indepen-

dent of N\, for j = 0, 1,...,[f —[£]e]) = 1, and thfml J ) which
are all Poisson random variables with mean d B(p, QI)L(:TL_J—’ where

—|t]—m Ae(|lt—= L ]c *
=012, [t = L]~ 1 and d B (p, qr; Elthmm ) 2o lElebe)

|
respectively.

By (1) and the periodicity of the intensity function A,

N / Ae(|v] + ) (v —2e— v - [2le] —m])”‘“

oy d

A(t)

0

d

| et (o led

( v—|%]c— Lvm[:’J(:J—ml)q'_'
1 - < . dv
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B _ . Jmy+d _ i
N FJZ/\,;(j-I—tI) / (U—j—m|)
cl 4 o d
4=0 : jt+my

v—7—m ¥
(1—————“' l) dv
d

t—| L |e|—1 ) J+my+d ' .
+ ey L —_—
- (% d
j=0 J+my
v—G—m "
(l — _—J———I) dv
d
t—|L]e =1
Ae(lt = [E]e] +¢}) / ('u — |t - L%Jr] - ml)
i ! ;
o) d

Lt—Lf;]cJ iy
(1 =le e

qr—1
T
) dv. (12)
d

v—|t—|L]c]-m; .

Letting s = P—ZJ(;—’”‘ in the first two integrals and s = 2 in

the last integral in (12) gives

1

1 )
Am:H J+ FM' 8)~ds
c 0 J
Lt*L:}cJ~l :
- +
p|—| (][ |
S L :
J= 0
t=Ltje—Lt=LLje]—m,
o
Ac(|t = | E]e] +tt A
'—l'. Cl )(I‘ L(‘*J CJ l ) / Spl— l(l - 49)(“_1(LS .
o ;
0

Then (8) follows by definition of the beta and incomplete beta functions.
(b) By Theorem 1—-(d), INV; can be decomposed as follows

LL) e Lt—L£ el -1 .
ZlZoN[(‘ e, ic) T Z Nu e, (L4140 T VLG (L T+1)e)
K3 J— '

(13)
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where the first term sums over the complete period sub-sums, M; =
Z;’;(', N[((J;LI)(:’ ic) in (10), while the second summation in (13) accounts
for the complete years included in the last (incomplete) period. Finally the
last term represents the claim count for the last (incomplete) year of the
last (incomplete) period.

By periodicity of the function A and Theorem 1-(b), it is clear that

N[(({')—l)u p 8= 12,00, | £] + 1, are mutually independent and Poisson
distributed random variables with mean d B(p, QI)——"J—/\“(,J;?H)s just as N,

forj=0,1,...,c— 1.

As the additive property of the NHP processes, we consequently get

that M;, given in (10), i = 1,2,..., %] are i.i.d. Poisson random vari-
c—1 Ac(j+t]) Sim-

ables distributed as N, with mean d B(pi, @1) 25—, o
t— tl—-ml)

- (Lt=L€)e)) o Poic : . ; :
ilarly, N[L;‘.Jrr,(L;',_l+l)r:) is Poisson with mean d DB ([)1, qi; i

3 . * )ik C - 'L C
ALl ) e Nt e NLED
Pl I C - d
Now, setting Lt—[L]e]—1
; B (4) (Lt ]e])
= [¥omy = N[[§J<:, (LL]+1)e) T N[l.—iJfr- (LE]+1)e)
‘ =0
Lt—=L%)e)—1
B ) (Lt=L&le])
== - ‘N(‘.J + N!-— [_f!Jiﬁni ! (14)
1=

gives (11). Combining with (10), (13) leads to (9) and hence (b) holds. []

Now consider N, ,), the number of claims in the time interval [7, 7+ ¢). It
is assumed to follow a NHP process with parameter A(t) given by (7). From
Theorem 2, the probability of n € N claims in the time interval [, 7 4 t) is:

(A +8) =AD" —(aG+o-a)
n! ’ |

P{N[T, T+t) = ’IL} =

where A(7 +t) — A(7) = A[TT'H A(v)dv can be derived from (8).
The moment generating function (m.g.f.) of N - is given by
E((}"Nlr. r}-t)) - e[i\(r'{"t)_/\(?’)](er"l) ,
and the expected number of claims over this time interval equals its variance and
is given by
E(N[T, 'r+£)) = V(N[T, T-H)) - A(T +1) — A7) .
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In particular, the m.g.f. of the number of claims over one period of length ¢, with
an initial age of 7 (that we will denote ) equals

c—I1 ;
= Ae(d+t)
—d B(p1, 1) Z #—
1

5 = E(BIV[T, T'}-r'.)) — 8—/\(C) — e =0 ’ (15)

where A.(j + t}) can be derived from (5) for j = 1,2,--- ;¢ — L.
Moreover, the probability to survive the time interval [r, 7+ ¢) without a claim
s

P{N[T r+t) =0} = e~ AT+ —A(T)] ’

while the waiting time 7} for the first claim in [0, ¢) has an almost-lack—of-
memory distribution [see Dimitrov et al. (1997)] and is given by

P{T) <t} = 1-P{N; =0} =1—¢2®

|_t~[-£:J(:_j‘--l N (i)
Aceld-
—d B(pi, q1) Z —”‘;—L"
= 1 —4lele i=0 '
- —m Aellt—LE el +tr
*(lB(Pl,([l; d “(Jt l) (L Lr;_“l it

X e . ,

where § is given by (15). The corresponding p.d.f. is

Le—L&e] -1 N
clJ
) —d B(pi, q1) Z 71_
C = ; |
j{'['l (f,') = 5""‘]6 i=0
- -7 Ae(lt— -L c|pt¥
“dB(IJl. @5 - “,Ji "') ! L”:-*J )

xe !

R N (Lt—- LEJCJ +t’f) At = [t])

while the expectation of 7' is given by

J==1 "
Ac(l+th) ok
e—1 —dB(p, @) )~ _dB(py, q) 29D
o+ Z je 1=0 — )
J=1
E(TY) = my +
1 —6
=l Xc(l+t™)
l e—1 *dB(‘PI:G'I)Z‘—?—‘L' ek
C[z f Z e =0 ! /\C(#L)./Upl(l — fv)ql‘"ldv
-Oj:() o

N 1 -6
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Finally, at time ¢, the excess—life until the next claim, Ty, | — ¢ is distributed as
P{Tn, 41 —t <s}=1—e [AEH)=AO] = 5>,

The flexibility of the beta family of intensity functions, which depends on the
value of the shape parameters p and ¢, provides many possible forms of short
and long term seasonal claim intensities. Other shapes, like periodic trigonometric
functions can also be considered to model the long term periodicity. For example

t —me t—me
Ace(t) = a + bsin 2w ( e | : J) ,

C C

where a > b and a + b, a — b represent, respectively, the maximum and minimum
amplitude of the peak values for the long term periodicity, while m.. is the starting

point of the periodic sine function.

wn
N

2.0

1.6
~
-
~
-

lambda(t)
~

0.5
|

~
-

~

0.0

Figure 5: Sine-beta intensity function A(?)

Figure 5 illustrates the shape of A(t) for py = q =2, m =0, d = 1, ¢ = 4,

Me=3 a= > and b = 1. Here the short-term beta peak values vary according

to the sine function (dotted line). The properties for the corresponding hazard
function A and claim counting process {N¢, ¢ > 0} can be derived analogously.

3.1 The Aggregate Claims Process

The decompositions of Theorem 2 for the NHP process can be extended to
compound NHP sums.
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Again consider a NHP claim counting process {N;; ¢t > 0}. Then the
corresponding aggregate claims process

Ny

Z’j if Ny >0
Stz J=l1
0 it N, =0

is called a compound NHP process and is denoted as S; ~ C.P[A; Fy]|, for
x > 0. The X; are i.i.d. claim severities, with common c.d.f. F'x and finite mean
i, independent of V;.

Consider the claim counting process { N, r4¢), t > 0}, for a fixed initial age
7 and periodic intensity function A. Its corresponding hazard function has the
following structure:

T—|7| - ml’ 1) Ae(l7 = [Z]e] +17)

A(r+t) = A(r) =dB (ph @y of
Y

“z‘:' Ac(jjtr)

=lr=1E e+t

+ ([fTTJ = EJ = 1) dB(pi, q1)

c—1 5 |_'r+t—|_?—'|_'tjcj—l i
/\c o f* - /\“ 7 + t*
AU gy )y, 2D

+dB(p1, q1)

J=0 1 §=0 ay
t— t] — (T +t == ] + ¢
—f—dB(pl, . Tt |7+ ¢] ml) (L L*C Je] 1)1 (16)
d v
where for any p,q > 0,
B(p, a) if t <0
B(p,q,t,1) =< B(p, ¢) — B(p, ¢; t), if0<t <1 . (17)
0, ift > 1
The aggregate claims over [7, 7+ ) is then given by Si- r14) = Z,f:’i_fl ™ X,

where N, ;) is a NHP process with periodic intensity function A as in (7) and
Str, r4t) = 0 if N, 744 = 0. Theorem 1 implies the following decomposition
result.
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Corollary 1 For ¢t > 0, independent of the initial age 7 > 0, then by Theorem
I=(d) S;, ;44 can be decomposed as independent sum of random variables:

c—1
Siryr4ty = Sfeprpen t D S HS o+ Sy oy
j=lr=[EJel+
|r4t—| T ] -1

+ Z S5+ S(lr sl r4+t) (18)
j:()

where SF‘T’LTJ+1), S, for j= |7 —|%]e]+1,...,c— 1, are compound Poisson

sums representing claims for incomplete and complete years, in the first (in-
. . el o Aellr—[Z c| 42"
complete) period, with means of dB(p],q,; LA LTJ i1 1) o (L7 Ey?JLJ_H')

’iB(I)IaQI)M%#‘Q, for j=|7—|Z]e| +1,...,¢— 1, respectively, and S;, i = 1,

C

oy [HE] = [Z] = 1, are i.i.d. random variables, representing claims for com-

plete cycles, distributed as S = ny‘;l X, and IV, is a Poisson r.v. with parameter
A(c). While the terms S, for j=0,..., |7+ - |t fe| -1, zfnd S{irtt),r 4t
are the compound Poisson sums representing complete years and incomplete year
: _ . . : Ae(it+t]) oo

in the last (incomplete) period with means of rlB('pl,q[)%l—), for §=0,

T4t—| It c »
o |THt= |2 e) ~ 1, and d B (p.,q,; TH_L:”J_’”') Asklrit (l“u Jel+)

|
respectively. All these compound sums are mutually independent.

’

Moreover, the moment generating function of S| - is obtained as

E‘(ﬂ‘le[r‘ r+t)) - f3[1'\(1"—|~£)—/\('r)][l'\r[x(-,-)_.l] : (]9)

where My is the m.g.f. of the claims severity distribution. Moments of Si;
are easily obtained from (19). For instance, the total initial premium is given by

E(Sir, 1)) = [A(T +8) — A(D]E(X))
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Conclusion

Non-homogeneous Poisson processes with periodic claim intensity rate are useful
in modeling risk processes under periodic environments. A double—beta periodic
claim intensity model is proposed as a generalization of the classical risk model.
[t also serves as a more realistic alternative to periodic models with only short
term (single) periodic intensity functions.

The flexible shapes of the beta function and the explicit results obtained for
the risk process should make these double—periodic models as practical as the
classical one. In addition, statistical methods to estimate the beta parameters of
the model from real data sets are readily available and shall be illustrated in
subsequent work.
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Abstract

Non-homogenous Poisson processes with periodic claim intensity rate are proposed as the claim
counting process of risk theory. We introduce a doubly periodic Poisson model with short and
long term trends, illustrated by a double-beta intensity function. Here periodicity does not repeat
the exact same short term pattern every year, but lets its peak intensity vary over a longer period.
This model reflects periodic environments like those forming hurricanes, in alternating El Nifio/La
Nifia years. The properties of the model are discussed in detail.

Zusammenfassung

Der Schadenzahlprozess sei ein nicht-homogener Poisson-Prozess. Dabei sei die Intensitit der
Schadeneintritte periodisch. Wir definieren ein doppelt-periodisches Modell mit einer Kurzzeit- und
einer Langzeitperiode, dargestellt durch eine zweifach-Beta-Intensititsfunktion.

Die Periodizitit wiederholt nicht jedes Jahr das gleiche Kurzzeit-Muster, sondern sie ldsst die
Spitzen-Intensititen iiber eine lingere Periode variieren. Dadurch konnen periodische Bedingungen
dargestellt werden, wie beispielsweise Hurrikane in sich abwechselnden El Nifio/La Nifa-Jahren,
Die Eigenschaften des Modells werden detailliert untersucht.

Résumé

Nous supposons que le processus de comptage des sinistres forme un processus de Poisson
non-homogéne, dont 'intensité d’arrivée des sinistres est périodique. Nous proposons un modgle
doublement périodique, avec périodicité a court et a long terme. Ce dernier est illustré par une
fonction d’intensité paramétrique, doublement-beta.

Ici la périodicité ne répéte pas exactement la méme tendance a court terme d’une année A I'autre,
mais permet plutot que le pic de son intensité varie sur une période a plus long terme. Ce modéle
refléte un environnement périodique comme celui qui forme les ouragans, alternant les années des
phénomeénes El Nifio et La Nifa. Les propriétés du modéle sont presentées en détail.
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