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Kravus D. ScumipT, Dresden

Optimal Quota Share Reinsurance for Dependent Lines
of Business

1 Introduction

The problem of optimal quota share reinsurance for a heterogeneous portfolio
has been addressed repeatedly in the literature. One of the earliest contributions
to this problem is the famous work of De Finetti [1940], and recent publications
like those of Mack [2002], Schmitter [1987, 2001] and Schnieper [2000] indicate
that the problem is still of interest in actuarial practice.

The problem of optimal quota share reinsurance for a heterogeneous portfolio
is interesting since it allows for individual quotas for the different subportfolios.
From the point of view of a primary insurer, different sets of quotas for the

subportfolios may lead either
to the same expected return but to different values of the variance of the

retention or

to the same value of the variance of the retention but to different expected
returns.

Therefore, there is a trade—off between the expected return and the variance of
the retention which leads to the following optimization problems:

Maximization Problem: Choose quotas which maximize the expected return
under the condition that the variance of the retention is fixed in advance.
Minimization Problem: Choose quotas which minimize the variance of the
retention under the condition that the expected return is fixed in advance.

Until now, these problems have been studied mainly in the case where the losses
of the subportfolios are independent or at least uncorrelated ; a notable exception

is De Finetti [1940].

Before stating these optimization problems in a more precise way, let us fix some
notation: For x,z € R”, we write x < z if @; < z; holds for all i € {1,... n},
and in this case we define [x,z] := {y € R" | x <y < z}. Also, we denote
by 0 the n—dimensional vector with all coordinates being equal to 0 and by
1 the n—dimensional vector with all coordinates being equal to . We define

R} ;= {x e R" | x > 0}.
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Throughout this paper, we consider a random vector S with values in R™ and a
parameter vector v € R™. We assume that 1’v > 0 and that the matrix

¥ := var[S]

is regular.

The coordinates of the random vector S are interpreted as the losses of the n
subportfolios of a heterogeneous portfolio of a primary insurer and the coordinates
of the vector v are interpreted as the contributions of the subportfolios to the
expected return of the portfolio. Therefore, S is called the vector of losses and v
is called the vector of expected returns.

Let us first consider the case without reinsurance. The random variable
1S

is called as the (total) loss of the primary insurer and the variance of the loss
satisfies

var[1’S] = 1’21
We assume that the expected return of the portfolio can be written as
o+ 1'v

with some p € R.

Let us now consider a quota share reinsurance contract with a vector of quotas
q € [0,1]. The random variable

q'S

is called the retention of the primary insurer and the variance of the retention
satisfies

var[q'S| = q'Xq

We assume that the expected return of the primary insurer is in this case equal
to

o+q'v

with the same p considered before.



In the special case where the vector of quotas satisfies
q=ql

for some general quota q € [0, 1], we have
var[q'S] = ¢* 1%1

and
o+qv=p+ql'v

In this special case, the same quota is applied to each of the subportfolios and
both, the variance of the retention and the expected return, are increasing functions

of q.

Since a low variance of the retention as well as a high expected return are
desirable, the choice of ¢ € [0, 1] in the special case considered before, and
hence the choice of g € [0, 1] in the general case, should result from a trade—off
between the variance of the retention and the expected return,

Letting p = 0, we are thus led to the following two optimization problems:

- Maximization Problem: Choose q* € [0, 1] maximizing the expected return
q'v over all q € [0,1] for which the variance of the retention ' ¥iq is
equal to some given o* € [0, 1'%1].

Minimization Problem: Choose q* € [0, 1] minimizing the variance of the
retention ' Xq over all q € [0,1] for which the expected return 'v is
equal to some given v € [0, 1'v].

[n the present paper we study these optimization problems without assuming that

the coordinates of S are uncorrelated.

This paper is organized as follows: In Section 2 we present a quite general
example which generalizes an example considered by Mack [2002] and which
demonstrates that in many cases the expected return is indeed (up to an additive
constant not affecting the optimization problems) equal to q'v for some v € R"
with 1’v > 0. In Section 3 we present explicit solutions of auxiliary optimization
problems in which the constraint q € [0,1] is neglected; the proofs of these
results are given in the Appendix. In Section 4 we give conditions on the
model parameters 3 and v which ensure that, for any reasonable choice of the
parameters o or v, the unique solutions q* of the optimization problems studied
before satisfy the constraint q* € [0,1]. In Section 5 we give some results on
the optimization problems incorporating the constraint ¢ € [0, 1].
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2 An Example

The following example generalizes an example considered by Mack [2002; p.
391] who assumes that the coordinates of the vector of losses S are independent.
Here we do not assume that the coordinates of S are independent or uncorrelated.

Let # € R™ be a vector whose coordinates represent the primary insurer’s
premiums for the different subportfolios and define p := F[S]. We assume that
1p > 0.

Let us first consider the case of no reinsurance. Then the primary insurer’s return
is given by

(1) :=1w-1'S
and the variance of the primary insurer’s loss is
var[1’S] = 1'X1

Since S is a random vector, the return IT(1) is a random variable.

Let us now consider a quota share reinsurance contract with a vector of quotas
q € [0,1]. We assume that the reinsurance premium is

BE[(1—q)'S] +~ var[(1 - q)'S]

with 8 € [1,00) and 7 € [0, 00) satisfying 3 > 1 or v > 0, which corresponds
to a premium principle containing the expected value principle (3 > 1,y = 0)
and the variance principle (3 = 1,7y > 0) as special cases; see e.g. Biihlmann
[1970] or Schmidt [2002]. Then the primary insurer’s return is given by

I(q) = (1’11' = 1’8) |
~ (BEI1~ 'S+ var{(1 ~ a)'S] - (1 - q)'S)
and the expected return is
BI(@)] = (V- V'n)
- (B0 -ap+y(1-a)'S1-a) - (L -a)n)

- (1’« - BVp - y1'S1) + q’(([)‘ ~ p+2951) - 14'Tq
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Furthermore, the variance of the primary insurer’s retention 'S is

var[q'S] = q'2q
We now study the problem of maximizing the expected return under the condition
that the variance of the retention is fixed in advance.

Consider o* € R. For all g € R" satisfying q'Yq = o2, the expected return
becomes

<ﬂHMH=(fw—ﬁfu—val—vﬁ)+q(U%“Uu+?ﬂH)

Letting 0 := 1'm — 1/ p — 41’21 — 0 and v := (3 — 1) + 2yX1 we obtain
1'v > 0 and

Ell(q)] =eo+d'v

Therefore, the maximization problem

Maximize El(q)]

over the set {qe R" | q'Eq = o’}
is equivalent with the maximization problem

Maximize q'v

over the set {qeR" | q'Eq= a’}

which, together with the dual minimization problem, will be studied in the sequel.
In the case of the variance principle (3 = 1,7y > 0), it follows from Theorem 4.5
that the maximization problem has a unique solution q" € [0, 1] whenever the
parameter o2 fulfills the natural condition o* € [0, 1'%1].

Exactly the same maximization problem would result if fixed costs were incor-
porated in the reinsurance premium.

3 Auxiliary Optimization Problems

For the remainder of this paper we assume that o = 0.

In the present section we give two results
on maximization of the expected return under a constraint on the variance

of the retention and
on minimization of the variance of the retention under a constraint on the

expected return.
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The proofs of these results are given in the Appendix.

Let us first consider maximization of the expected return under a constraint on
the variance of the retention:

3.1 Theorem (Maximization). For o> € Ry, the optimization problem

Maximize the expected return q'v

over the set {qge R" | q'¥q = 0?}

has the unigue solution

w o’ e —1
" = (‘;"z""';) Al

and the maximum is (0% - V'3~ 'v)!/2,

Let us now consider minimization of the variance of the retention under a
constraint on the expected return:

3.2 Theorem (Minimization)., For v € R, the optimization problem

Minimize the variance of the retention q'Xq

over the set {aeR" | d'v=r}

has the unique solution

and the minimum is v*/v' S~ .

These two optimization problems are dual to each other in a sense which is made
precise in the following corollary:
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3.3 Corollary (Duality). For o € Ry and v € R satisfying

3
v
vyl

the solutions of the optimization problems

. /
Maximize the expected return qv

over the set {q € R" | q'Xq = 2}

and

. . . ‘. . . /!
Minimize the variance of the retention q 2q

over the set {aeR" | q'v = v}

are identical,

It is remarkable that, for each of the optimization problems and for any choice
of the constraints, the solution * is a multiple of the vector 3~ 'v.

4 The Constraints on the Vector of Quotas

[n both optimization problems considered in the previous section, the constraint
q € [0,1] has been neglected and it is not even guaranteed that at least the
solution q* fulfills the constraint q* € [0, 1]. The results are nevertheless useful
since the constraint g* € [0, 1] will turn out to be fulfilled under certain additional

assumptions on the model parameters.

[n the present section, we give necessary and sufficient conditions on the model
parameters ¥ and v under which the solution g

- of the maximization problem with respect to some o? € (0, 00) or

- of the minimization problem with respect to some v € (0, 00)

satisfies q* € [0, 1]. The case where o = 0 or v = 0 will henceforth be neglected

since it yields the optimal solution q* = 0.
Let us first consider the constraint ¢* > 0.

The following result is evident from Theorems 3.1 and 3.2 :

4.1 Theorem (Positivity). The following conditions are equivalent:

(a)  The vector of expected returns satisfies X~'v > 0,
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(b)  For every o € (0,00), the solution q* of the maximization problem with
respect to o satisfies q* > 0.

*

(c)  For every v € (0,00), the solution q* of the minimization problem with

respect to v satisfies * > 0.

In the case v > 0, the inequality Y~y > 0 is fulfilled whenever any two
coordinates of S are uncorrelated, and this condition in turn is fulfilled whenever
the coordinates of S are independent.

Let us now consider the constraint q* < 1.

Define

M(v) = max{e’iE"u ‘ ie{l,. ..,n}}

where e; denotes the i—th unit vector of R™. In the case X~ 'vv > 0 we have
M(v) > 0.

For the maximization problem, we have the following result:
4.2 Theorem (Maximization). Assume that o* > 0 and let * denote the solution

of the maximization problem

Maximize the expected return q'v
over the set {aeR" | ¢'3q = 0"}

Then q* € [0,1] if and only if £~ 'v > 0 and o> < V'E"'v/(M(v))>
A completely analogous result holds for the minimization problem:

4.3 Theorem (Minimization). Assume that v > 0 and let * denote the solution
of the minimization problem

Minimize the variance of the retention q'2q
over the set {aeR"|d'v =y}

Then q* € [0,1] if and only if X"'v > 0 and v < v'E"'wv/M(v).
Both results are immediate from Theorems 3.1 and 3.2.

We have thus found upper bounds

- for the constraint on the variance of the retention and
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- for the constraint on the expected return

which in the case ¥ ~'v > 0 guarantee q* € [0,1].

Using the relation between the solutions of the maximum problems and the
solutions of the minimum problems provided by Corollary 3.3, we obtain the
table

q’ v =
0 0 0

| vy v | vVElv

) SR

M(v) M (v) (M(v))?

1'v _ , (1’1/)2
vy 2 Lv v'E-ly

/ [/2 1/2
(%—) >y (1’21 . U’E“lu) 1’31
vy ly

In the case v > 0, the previous table has the following graphical representation:

v
A
(1'21 . :/'E_'u)l/2 q*
1'v
vyl
M(v)
0 .- UZ
Vel (1’”)2 s
0 M@)?  wEw !

The table and its graphical representation should be interpreted in the sense that

*

q" simultaneously
- maximizes q'v over all q such that ¢'3q = o? and satisfies q*'v = v and

- minimizes q’'3q over all g such that q'v = v and satisfies q*'3q* = 2.
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The curve in the (0%, v)-plane is called the efficient frontier; see e.g. Schnieper
[2000].

In the case v > 0, the following lemma justifies the ordering of the values of q*
and of v and o2 in the table and its graphical representation:

4.4 Lemma (Inequalities). Assume that v > 0. Then

1 Vv 13 3~
< s
M(v) ~—vEWw  \vElv

r5—1 1/2
v v <1v < (1’21-1}’2"1/)
M(v)

vV ly & (1'v)?
(M(v))? — v'E- v

<1¥1

Proof, Since v > 0, we have /X 'v < M(v)-v'1 = M(v)-1'v, and we also
have 1'v < (1’21 - v/ 'w)V/2; see Harville [1997; Corollary 14.10.3]. This
proves the assertion. ]

The following result characterizes the case where all inequalities of Lemma 4.4
are equalities. This characterization is valid without the assumption » > 0 made
in Lemma 4.4.

4.5 Theorem (Equalities). The following conditions are equivalent:
(a)  There exists some ¢ € (0,00) such that X~ 'v = ¢ 1.
(b)  There exists some ¢ € (0,00) such that v = ¢ %1.

(¢c)  The vector of expected returns satisfies

1'v
- 1
Y5 51

(d)  The vector of expected returns satisfies

1 1y ( 131 )‘/2

M) — vE v \vu-ly
V,E‘AIV ’ ! r5v—1 12
M) = 1'v _u(lzll-vE u)

vyl _ (1'v)? e
(M(v))?> vE-lw
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(e)  The vector of expected returns satisfies (1'v)* = 1’1 - 'Y 1w,
) exf

(f)y  For each of the optimization problems and for any choice of the parameters
o’ or v, there exists some q € (0,00) such that the solution q* satisfies

q" =ql.
(2)  For any choice of o’ € Ry, the solution q* of the maximization problem
with respect to o* satisfies

0_2 1/2
* 1
4 (1/21)

(h)  For any choice of v € Ry, the solution q* of the minimization problem

with respect to v satisfies

v
d 1'v

Proof. Obviously, (a) and (b) are equivalent. Assume now that (b) holds. Then
we have 1'v = ¢1’%1, which yields the value of ¢. Therefore, (b) implies (c),
which means that (b) and (c¢) are equivalent. Assume again that (b) holds. Then

we have

M) =c
1'v =¢c1'%1

vVSlv=21'%1
Therefore, (b) implies (d). Obviously, (d) implies (e). Assume now that (e) holds.
Then we have v = ¢ 21 for some ¢ € R ; see Harville [1997; Corollary 14.10.3].
This yields 1’ = ¢1’%1 and hence ¢ € (0,00). Therefore, (e) implies (b).
Finally, the equivalence of (b) and each of (f), (g) and (h) is immediate from of
Theorems 3.1 and 3.2. O
Theorem 4.5 is important since it provides necessary and sufficient conditions on
the vector of expected returns under which
for any choice of o® € [0,1’%1], the solution g of the maximization
problem with respect to o satisfies " € [0, 1], and
for any choice of v € [0, 1v], the solution g* of the minimization problem
with respect to v satisfies q* € [0, 1].
This means that, under the equivalent conditions of Theorem 4.5, the constraint
q* € [0,1] is fulfilled for any reasonable choice of the parameters o’ or v,

The previous result deserves some comments:



Condition (b) of Theorem 4.5 is easy to check since it does not require the
inversion of the matrix 2.

Condition (b) of Theorem 4.5 is fulfilled if and only if, for each of the
optimization problems and any choice of the parameters ¢ or v, the same
quota is applied to every subportfolio. Therefore, condition (b) of Theorem
4.5 may be regarded as an equilibrium condition for the subportfolios of
the heterogeneous portfolio.

Condition (b) of Theorem 4.5 can also be interpreted in terms of the losses S;
of the subportfolios ¢ € {1,...,n} and the total loss S := 3" | S; =1'S:

Condition (b) of Theorem 4.5 is fulfilled if and only if for all subportfolios
the expected return is proportional with the same proportionality factor to
the contribution cov[S;, S| of the subportfolio to the variance of the total
loss. This is a version of the covariance principle, applied to the vector of
expected returns.

In the special case where the losses of the subportfolios are uncorrelated
or even independent, condition (b) of Theorem 4.5 is fulfilled if and only
if the ratio v;/ var[S;| of the expected return and the variance of the loss
is the same for all subportfolios.

If condition (b) of Theorem 4.5 is fulfilled and if »» > 0, then the loss of
every subportfolio is positively correlated with the total loss.

We conclude this section with an example.

4.6 Example. Let n :=2 and

- (30

Then we have 1’31 = 10 and

g 12
> ‘(—2 5

It follows that X ~'» > 0 if and only if the coordinates of the vector of expected
returns v satisfy 41, < 2v) < S1r,. We consider different choices of the vector of

expected returns:

(D

Let

()
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(2)

3)

Then we have 1'v = 3 and

()

and hence
VYl =1
M(v) =1

Therefore, the optimal vector of quotas q* satisfies q* € [0, 1] for every
choice of ¢ € [0, 1] and for every choice of v € [0, 1].

-0

Then we have 1'v = 10 and

s- (1) - 1

Therefore, the optimal vector of quotas q* satisfies q* € [0,1] for
every choice of o> € [0,1'%1] = [0,10] and for every choice of
v € [0,1'v] = [0, 10], which means that every reasonable constraint in any
of the optimization problems yields an optimal vector of quotas q* € [0, 1].

(9

Then we have 1’v = 7 and

|
_] .
X v = (0)

and hence

Let

Let

V'Y ly=5
M(v) =1

Therefore, the optimal vector of quotas q* satisfies q* € [0, 1] for every
choice of ¢ € [0,5] and for every choice of v € [0, 5].
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5 Interval-Constrained Minimization

We have seen that the problem of maximizing the expected return of the primary
insurer under a constraint on the variance of the retention and the problem of
minimizing the variance of the retention of the primary insurer under a constraint
on the expected return may both result in an optimal vector of quotas g*
violating the constraint q* € [0, 1]. Therefore, the question arises whether or
not the corresponding optimization problems incorporating the interval-constraint
q € [0,1] can be solved as well.

For the minimization problem, we have the following result:

5.1 Theorem (Interval-Constrained Minimization). Consider v € [0,1'v].
Then the optimization problem

Minimize q'2q
over the set Dip,1)(v,v) :={q e R" | qv =v,qe€ [0,1]}

has a unigue solution.

Proof. The map (., .)s : R" x R® — R given by (x,y)s = x'Xy is an
inner product on the Euclidean space R"™ which turns R"™ into a Hilbert space.
Since R" has finite dimension, the induced norm | .||s : R® — R given by
Ix]l5 = ((x,x)5)"? = (x¥'2x)"/? is equivalent with the Euclidean norm.

The set Do q)(v,v) is nonempty and convex, and it is also closed under the
Euclidean norm. Since the norm || . |5 is equivalent with the Euclidean norm, it
follows that the nonempty and convex set Dy q)(~/,v) is also closed under the
norm || .||x. Now the assertion follows from the projection theorem in Hilbert
spaces; see e.g. Swartz [1997; Theorem 6.13]. (]

For those readers which are not familiar with arguments from functional analysis,
we present an alternative proof of the theorem which is more lengthy but
elementary:

Alternative Proof. The map f : R™ — Ry given by f(q) = '2q is
continuous and the set D[o,u(V,l/) is compact. Therefore, there exist some

q € Dypq)(v, ) satisfying
a'%q < q¥q

for all g € Do 1)(v,v).
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Consider now an arbitrary solution q € Djg 1)(v, ). Then we have
Q%4 - ' %4

Since 0 < (q — q)’'2(q — q), we obtain
q'¥aq < q'%q

For ¢ € (0, 1), define
q:=cq+(1—-¢)q

Since Dyg q)(v, v) is convex, we have q € Dyg,1)(v, ) and hence
q'Yq < q'Xq

Moreover, straightforward computation yields

q¥q= ((:El-f- (1 —¢) Ei)’E(cfjJr (1—c) a)

< q'¥q
Therefore, we have
- a7 - ~ ~I
((:q+ (1 — (:)q) 2((:q+ (1= C)Q) =q'2q

Since q'¥q = q'Xq, this implies g'2q = q'3q, hence (q — q)'%(q — q) = 0,
and thus q = q. Therefore, the solution is unique. 0

While the previous result is very satisfactory from a theoretical point of view,
it does not yield an explicit solution of the optimization problem. We can
nevertheless indicate a way to determine the solution of the optimization problem

considered in Theorem 5.1:
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For the remainder of this section, let q* denote the solution of the optimization
problem

Minimize q'Xq
over the set D(v,v):={qeR" |qv=v}

and let q denote the solution of the optimization problem

Minimize q'3q

over the set Dio,1j(v,v) :={q € R" | qv=v,qe[0,1]}
Since q¥'2q* < q'Xq, we have gq* € [0, 1] if and only if q* = q. The following
result may help to determine q in the case q* ¢ [0, 1]:

5.2 Theorem. Assume that q* ¢ [0, 1]. Then at least one of the coordinates of
q is equal to 0 or 1.

Proof. We assume that all coordinates of ¢ are distinct from 0 and 1 and we
show that this implies q* € [0, 1].

Consider q € D(v,v). Since all coordinates of q are distinct from 0 and I, there
exists some ¢ € (0, 1) such that all coordinates of the vector q + ¢ (q — q) are
contained in the interval [0, 1]. Then we have q + c¢(q — q) € Do 1)(v,v) and
hence

@54 < (a+ela-a) 2(a+ea-a)
=q2q+2cqE(a-q) +¢* (- ) 2(q - q)
which yields
0<2q%(q—a)+cla—q)'E(q-q
Since ¢ € (0, 1), we obtain
0<2¢'%(q—a)+(qa—a) Z(q-q)
and hence
A%q<q¥q+2d%(q-d)+ (a-4)'E(a-q)
=q'3q

Since q € D(v,r) was arbitrary, this implies q* = q. O

To illustrate the previous result, we present an example:
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5.3 Example. Let n :=2 and

10 (2
3= (01) and v = (8)

as well as
vi=9
Theorem 3.2 yields
.  9/34
1 =\ 36/34
and hence q* ¢ [0,1]. By Theorem 5.2, q is on the boundary of the interval
0, 1). It is easily verified that the only vectors in Djg 1)(v, ¥) which are on the

boundary of [0, 1] are the vectors

o () o ()

and that these vectors satisfy
q\Sq, = 113/64 and qyXqe = 80/64
Therefore, we have q = qa.

For the case q* ¢ [0, 1], it has been suggested in the literature that the coordinates
of q* which are not contained in the interval [0, 1] should be truncated; see
Biihlmann [1970; p. 115] and Mack [2002; p. 391]. This approach is not correct
since it usually leads to a violation of the constraint q'v = v.

5.4 Example. In Example 5.3, truncation of the coordinates of the vector

a = (32;33)

which are not contained in the interval [0, 1] produces the vector

(%)

which is not contained in D(v,v) since q'v = 143/17 <9,
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It can be seen from the argument used in the alternative proof of Theorem 5.1
that the optimization problem

Maximize q'v
over the set E[0,1](E>02) ={q€R" |d'Sq=0"qe€[0,1]}

with > < 1’31 has a solution as well. However, is seems to be rather delicate
to settle the question of the uniqueness of the solution.

6 Appendix

Throughout this section, let ¢ € R™\ {0} and let ® € R"*" be a symmetric
and regular matrix.

Our first result concerns maximization of y’c under a constraint on y’®y:

6.1 Theorem (Maximization). Consider ¢ € R .. Then the optimization problem

Maximize y'c
over the set E(®,p):={y € R" |y ®y = ¢©*}
has the unique solution
2 1/2
- ® ~1
¥= (—:5—) ol

: . i il
and the maximum is (p*-¢/®'c) ",

Proof. The assertion is obvious in the case ¢ = 0. Assume now that ¢ € (0, ).
It is clear that y* € F/(®, ). For each y € F(®, ), we have

2 —-138 ..
o g
o'y = (C"I’_IC) y'®y

Since 0 < (y —y*)®(y —y*) =2p* —2y'®y*, we have
y®y* <y“®y"

and hence
c'y <c'y*

which proves that y* is a solution.
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Consider now an arbitrary solution y. Then we have
¥y =cy"

and hence
Yoy =y ey

Since y'®y* = y*'®y* = p* = y'®y, we obtain (y — y*)'®(y —y*) =0 and
hence y = y*. Therefore, the solution is unique. 0]

Our second result concerns minimization of y’@®y under a constraint on y’c:

6.2 Theorem (Minimization). Consider ¢ € R. Then the optimization problem

Minimize y' @y
over the set D(c,c):={yeR"|y'c=c}

has the unique solution

) . 9 =]
and the minimum is ¢*/c'® 'c.

Proof. It is clear that y* € D(c,¢). For each y € D(c,c), we have

C

I‘D *: fc
s cd-lc”

2
! i
cPb-le
and hence
yl(py* - y*l(by*
This yields 0 < (y —y*)'®(y —y*) = y'®y — y"®y" and hence
y*’(by* S yI(I)y
which proves that y* is a solution.
Consider now an arbitrary solution y. Since y'ey' = y'®y* = ¥y by, we

obtain (y — y*)’®(y —y*) = 0 and hence y = y*. Therefore, the solution is

unique. ]

The two preceding results are related as follows:
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6.3 Corollary (Duality). Consider ©* € R and ¢ € R satisfying
2 ¢
7T veic

Then the solutions of the optimization problems

Maximize y'c

over the set {y e R" |y ®y = ©*}
and

Minimize y' @y

over the set {yeR"|yc=1¢}

are identical.

This is immediate from Theorems 6.1 and 6.2.
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Abstract

In the present paper we study optimal quota share reinsurance for a heterogencous portfolio with
possibly dependent lines of business. More precisely, we determine quotas which maximize the
expected return when the variance of the retention is fixed or minimize the variance of the retention
when the expected return is fixed. The results require only that the variance of the vector of losses
of the different lines of business is regular. We thus extend results which are known for the case
of uncorrelated lines of business.

Zusammenfassung

In der vorliegenden Arbeit untersuchen wir die optimale Form der Quoten—Riickversicherung fiir
einen heterogenen Bestand, bei dem Abhingigkeiten zwischen den einzelnen Geschiftszweigen
bestehen konnen. Wir bestimmen Quoten, die bei gegebener Varianz des Selbstbehaltes den
erwarteten Ertrag maximieren oder bei gegebenem Ertrag die Varianz des Selbstbehaltes minimieren.
Die Ergebnisse erfordern nur die Regularitit der Varianz des Vektors der Verluste der einzelnen
Geschilftszweige und verallgemeinern daher bekannte Ergebnisse fiir den Fall unkorrelierter
Geschiiftszweige.

Résumé

Dans cette article on étudie la forme optimale de la réassurance quote-part pour un portefeuille
hétérogéne dont les différents secteurs peuvent étre dépendants. Plus précisément, on détermine les
quotes-parts qui maximisent le revenu quand la variance du risque retenu est donnée ou minimisent
la variance du risque retenu quand le revenu est donné. Les résultats sont valables sous la seule
condition que la variance du vecteur des pertes des différents secteurs soit réguliere. Ils généralisent
donc des résultats qui sont connus dans le cas des secteurs non-corrélés.
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