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Klaus D. Schmidt, Dresden

Optimal Quota Share Reinsurance for Dependent Lines
of Business

1 Introduction

The problem of optimal quota share reinsurance for a heterogeneous portfolio
has been addressed repeatedly in the literature. One of the earliest contributions
to this problem is the famous work of De Finetti 11940], and recent publications
like those of Mack [2002], Schmitter 11987, 2001] and Schnieper [2000] indicate
that the problem is still of interest in actuarial practice.

The problem of optimal quota share reinsurance for a heterogeneous portfolio
is interesting since it allows for individual quotas for the different subportfolios.
From the point of view of a primary insurer, different sets of quotas for the

subportfolios may lead either

- to the same expected return but to different values ot the variance of the

retention or
to the same value of the variance of the retention but to different expected
returns.

Therefore, there is a trade-off between the expected return and the variance of
the retention which leads to the following optimization problems:

Maximization Problem: CAoose c/«otas w/dc/t maximize die expected re/zir«
««der die conditio« dzal die variance o/ die retention is /z.ved i/i odwoice.
Minimization Problem: CZzoo.ve c/notev w/zi'c/i minimise die variance o/ die
retention ander die condition t/icit die expected retain is /Led in advance.

Until now, these problems have been studied mainly in the case where the losses
of the subportfolios are independent or at least uncorrelated ; a notable exception
is De Finetti [1940],

Before stating these optimization problems in a more precise way, let us fix some
notation: For x,z R", we write x < z if x, < Zj holds for all i e {1,... ,n},
and in this case we define [x, z] := {y 6 R" | x < y < z}. Also, we denote
by 0 the n-dimensional vector with all coordinates being equal to 0 and by
1 the n-dimensional vector with all coordinates being equal to I. We define
R" := {x 6 R" I x > ()}.

Mitteilungen der Schweiz. Aktuarvereinigung. Heft 2/2004
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Throughout this paper, we consider a random vector S with values in R" and a

parameter vector 1/ R" We assume that l'i/ > 0 and that the matrix

S := var[S]

is regular.

The coordinates of the random vector S are interpreted as the losses of the n
subportfolios of a heterogeneous portfolio of a primary insurer and the coordinates
of the vector 1/ are interpreted as the contributions of the subportfolios to the

expected return of the portfolio. Therefore, S is called the vector o/Zosses and 1/

is called the vector o/ e,rpectoc/ return.v.

Let us first consider the case without reinsurance. The random variable

l'S

is called as the (toto/) te of the primary insurer and the variance of the loss

satisfies

varfl'S] l'El
We assume that the expected return of the portfolio can be written as

ß + 1V

with some g R.

Let us now consider a quota share reinsurance contract with a vector o/ c/woto.v

q G [0,1], The random variable

q'S

is called the reten/ton of the primary insurer and the variance of the retention
satisfies

var[q'S] q'Sq

We assume that the expected return of the primary insurer is in this case equal
to

0 + q'f
with the same p considered before.
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In the special case where the vector of quotas satisfies

q (/I

for some genera/ r/aola 17 [0, 1], we have

var[q'S] i/~ l'Sl
and

7; f q'jy £> + ry l'rz

In this special case, the same quota is applied to each of the subportfolios and

both, the variance of the retention and the expected return, are increasing functions
of r/.

Since a low variance of the retention as well as a high expected return are

desirable, the choice of 1/ G [0,1] in the special case considered before, and

hence the choice of q G [0, 1] in the general case, should result from a trade-off
between the variance of the retention and the expected return.

Letting £ 0, we are thus led to the following two optimization problems:
Maximization Problem: C/iao.vc q* G [0,1] maximizing //ie expecler/ re/ara

qV over a// q [0,1] /or w/iic/i l/ie variance 0/ i/ie re/en lion q'Sq is

er/na/ to .vorne given <7^ G [0, l'Sl].
Minimization Problem: C7iaa.se q* G [0,1] minimizing l/ie variance o///?e
re/en/ion q'Sci over a// q G [0,1] /or vv/iic/i l/ie expec/eei re/nrn qV i,y

er/aa/ to .some given 0 G [0, IV].
In the present paper we study these optimization problems without assuming that
the coordinates of S are uncorrelated.

This paper is organized as follows: In Section 2 we present a quite general
example which generalizes an example considered by Mack [2002] and which
demonstrates that in many cases the expected return is indeed (up to an additive
constant not affecting the optimization problems) equal to qV for some o g [{ '
with l'a > 0. In Section 3 we present explicit solutions of auxiliary optimization
problems in which the constraint q G [0,1] is neglected; the proofs of these

results are given in the Appendix. In Section 4 we give conditions on the
model parameters S and a which ensure that, lor any reasonable choice of the

parameters or a, the unique solutions q* of the optimization problems studied
before satisfy the constraint q* G [0,1], In Section 5 we give some results 011

the optimization problems incorporating the constraint q G [0.1],
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2 An Example

The following example generalizes an example considered by Mack [2002; p.

391] who assumes that the coordinates of the vector of losses S are independent.
Here we do not assume that the coordinates of S are independent or uncorrelated.

Let 7T 6 R" be a vector whose coordinates represent the primary insurer's

premiums for the different subportfolios and define := -E[S], We assume that

IV > 0.

Let us first consider the case of no reinsurance. Then the primary insurer's return
is given by

11(1) := l'w-l'S
and the variance of the primary insurer's loss is

var[l'S] l'El
Since S is a random vector, the return 11(1) is a random variable.

Let us now consider a quota share reinsurance contract with a vector of quotas

q [0, lj. We assume that the reinsurance premium is

/3 £[(1 - q)'S] + 7 var[(l - q)'S]

with /? G [l,oo) and 7 G [0,00) satisfying /3 > 1 or 7 > 0, which corresponds
to a premium principle containing the expecter/ vn/«e pr/«c/p/e (/? > 1,7 0)
and the variance princip/e (/? 1,7 > 0) as special cases; see e.g. Bühlmann

[1970] or Schmidt [2002], Then the primary insurer's rem/-« is given by

n(q) := (l'vr - l's)

- (/3£[(1 - q)'S] +7 var[(l - q)'S] - (1 - q)'s)

and the expected return is

f?[n(q)] (i'tt - iv)
- (ß(i - q)V + 7(1 - q)'s(i - q) - (1 - q)>)

^l'-7T - /31'p. - 71'Slj + q'((/3 - l)/x + 27Slj - 7q'Eq
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Furthermore, the variance of the primary insurer's retention q'S is

var[q'S] q'Xq

We now study the problem of maximizing the expected return under the condition
that the varianee of the retention is fixed in advance.

Consider er^ g R j For all q R" satisfying q'Sq the expected return
becomes

£[II(q)] (l'rr -/3lV - 7l'Sl - 7^) + q'((/?~ l)/i + 27El)

Letting p := 1/-7T — /il'/t — 7I/EI — 717" and iz :=(/? — 1 )/u + 27XI we obtain

l'i/ > 0 and

£[n(q)] p + qV

Therefore, the maximization problem

Afaxtm/ze E[H(q)|

over Z/ze? .vet {q R" | q'Eq <7^}

is equivalent with the maximization problem

A/auVw'ze qV
over t/ie .vet {q S R" | q'Sq

which, together with the dual minimization problem, will be studied in the sequel.
In the case of the variance principle (/3 1,7 > 0), it follows from Theorem 4.5
that the maximization problem has a unique solution q* [0,1] whenever the

parameter o^ fulfills the natural condition [0, l'El],

Exactly the same maximization problem would result if fixed costs were incor-
pointed in the reinsurance premium.

3 Auxiliary Optimization Problems

For the remainder of this paper we assume that ß 0.

fn the present section we give two results

on maximization of the expected return under a constraint on the variance
of the retention and

on minimization of the variance of the retention under a constraint on the

expected return.
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The proofs of these results are given in the Appendix.

Let us first consider maximization of the expected return under a constraint on
the variance of the retention:

3.1 Theorem (Maximization). For <r~ 6 R+, t/ze optimization pro/z/em

Maximize t/ze expecfer/ return q'tz

over t/ze set {q G R" | q'Xq o^}

/zas t/ze zzrzic/zze so/zztion

"• » (t?5Fv) "

one/ t/ze max/mum is (a' •

Let us now consider minimization of the variance of the retention under a

constraint on the expected return:

3.2 Theorem (Minimization). For u G R+, t/ze optimization pro/z/em

Minimize t/ze variance o/ t/ze retention q'^q
over t/ze set {q G R" | q'zz /'}

/zas t/ze zznir/zze so/zztion

z/
q* := -.'V •!,: >'

ant/ t/ze tninitnzztn is z^/t/S 'iz,

These two optimization problems are dual to each other in a sense which is made

precise in the following corollary:
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3.3 Corollary (Duality), For G R+ ^ G

,2

(7
2

//E"'iz
/Ae so/u/Zons q/' //jé? o/to'w/za/iOH qrobZe/w.v

Afan'm/ze //if e;t£>ec/e// re/«/« qV
over //if ,ve/ {q R I q'Eq <r^}

CiAif/

A/iViiWiZf //if variance o/ //if re/en/ion q'Sq
over //if ,vf/ {q S R" I qV i/}

ttA'f iV/fil/ifCi/.

It is remarkable that, for each of the optimization problems and for any choice
of the constraints, the solution q* is a multiple of the vector E~'i>.

4 The Constraints on the Vector of Quotas

In both optimization problems considered in the previous section, the constraint

q £ [0,1] has been neglected and it is not even guaranteed that at least the

solution q* fulfills the constraint q* e [0, lj. The results are nevertheless useful
since the constraint q* e [0,1] will turn out to be fulfilled under certain additional
assumptions on the model parameters.

In the present section, we give necessary and sufficient conditions on the model

parameters E and c under which the solution q*
of the maximization problem with respect to some e (0, oo) or
of the minimization problem with respect to some o (0, oo)

satisfies q* G [0,1]. The case where 0 or 0 will henceforth be neglected
since it yields the optimal solution q* 0.

Let us first consider the constraint q* > 0.

The following result is evident from Theorems 3.1 and 3.2 :

4.1 Theorem (Positivity). 7/if /bZZovving cw/c/iV/wi.v are equivaZe«/:

(a) 77if vector q/'exqec/ecZ re/iir/i.v .vc//i".v//e.v E~'iz > 0.
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(b) For every o^ G (0, 00), t/ze .w/zztzon q* o/t/ze //ztuzmzzatzon proWem vvz't/z

re.vpect to (to ,vafz'.î/ze.s q* > 0.

(c) For eve/7 ^ (0,oo), t/ze .so/zzfzon q* 0/ t/ze mznz/n/zfltz'on pro/z/em wz't/z

re.spect to z/ safw/zeA' q* > 0.

In the case zz > 0, the inequality X~'zz > 0 is fulfilled whenever any two
coordinates of S are uncorrelated, and this condition in turn is fulfilled whenever
the coordinates of S are independent.

Let us now consider the constraint q* < 1.

Define

M(o) := max je'jXP' zz z G {1,..., n} j
where e, denotes the z-th unit vector of R. In the case X~'zz > 0 we have

M(i/) > 0.

For the maximization problem, we have the following result:

4.2 Theorem (Maximization). Arwzz/ne t/zrzt > 0 zznd /er q* c/enote t/ze .îo/zzt/orz

0/ t/ze /wojc/m/zar/on prob/er«

Afczxz'/nzze t/ze expected refzzr/z q'o
over t/ze set {q G R" | q'Eq o^}

F/zen q* G [0,1] ;/one/ o/(/y z/X~'zz > 0 and o^ <

A completely analogous result holds for the minimization problem:

4.3 Theorem (Minimization). Amz/ne t/zaf o > 0 «ne/ /ef q* denote t/ze so/zzt/on

0/ r/te nzz/zz/nz'zcztzon proWem

Mnz/nz'ze f/ze vtzr/cnce o/t/ze retention q'Sq
over f/ze set (q G R" | qV 0}

F/zen q* G [0,1] z/and on/y // > 0 one/ o < iz'S~'tz/M(tz).

Both results are immediate from Theorems 3.1 and 3.2.

We have thus found upper bounds

- for the constraint on the variance of the retention and
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for the constraint on the expected return

which in the case > 0 guarantee q* S [0,1].

Using the relation between the solutions of the maximum problems and the

solutions of the minimum problems provided by Corollary 3.3, we obtain the

table

q* <7*

» 0 0

iz'S-'ÏZ iz'E-'f
M(i/) ~ M(i/) (M(«Z))2

1'iz
1

— £ ftz'E-'iz
1'iz

(1V)2
IZ'E-'IZ

/ S 1/2

U'E-v) * "
/ \ 1/2

(l'El-i/'S-'i/J l'El

In the case iz > 0, the previous table has the following graphical representation:

The table and its graphical representation should be interpreted in the sense that

q* simultaneously
maximizes qV over all q such that q'Eq ^ and satisfies q*'f j/ and
minimizes q'Eq over all q such that q'iz ^ and satisfies q*'£q* <j2
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The curve in the (tV,iz)-plane is called the eJto'en//ro/2/('er; see e.g. Schnieper
[2000|.

In the case jz > 0, the following lemma justifies the ordering of the values of q*
and of y and V in the table and its graphical representation:

4.4 Lemma (Inequalities). Assume /Aar iz > 0. TAew

Proof. Since /z > 0, we have //X V < M(i>) • iz'l M(iz) • IV, and we also

have IV < (l'Xl • i/'X~'iz)^; see Harville [1997; Corollary 14.10.3], This

The following result characterizes the case where all inequalities of Lemma 4.4
are equalities. This characterization is valid without the assumption jz > 0 made
in Lemma 4.4.

4.5 Theorem (Equalities). TAe /oZ/ovv/ng coneA/Zons are er/Vva/e«/:

(a) TAere eVs/s some c G (0, oo) smcA /An/ X^V cl.
(b) TAere eVs/s some c G (0, oo) smcA /Aa/ iz cXl.
(c) TAe vec/or o/ e.rpec/eA re/urns sa/Zs/zes

(d) TAe vec/or o/ expec/erZ re/urns sa/is/Zes

1/2

proves the assertion.

l'xi y^
1/2
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(e) F/ze vector <9/cjtpcc/ed re/Mr«.v .raffs/tos (l'o)^ l'Sl • o'S 'o.

(f) For eac/z o/f/z« opfzmzztozon pzoWem.v and/or rzzzy c/zoz'cc o/r/ze parameters
«r o, Fzez-e existe some g (0, 00) .vzzc/z rfza/ Fze .so/zztz'o« q* .sa/te/ze.y

q* «1.

(g) For any c/zoz'ce 0/0^ S R+, Fze .vo/zzfz'orz q* o/r/ze maxz'mz'za/ton prab/ezzz

vvzY/z respecf to er^ .SY///.v/rV.y

(h) For any c/zoz'ce 0/ o G R+, Fte .yo/zzFo« q* 0/Fze zzzwzVzzz'zarz'o/z praWem
wzV/z re.spec/ to o safte/ze.s

Proof. Obviously, (a) and (b) are equivalent. Assume now that (b) holds. Then

we have l'o cl'Sl, which yields the value of c. Therefore, (b) implies (c),
which means that (b) and (c) are equivalent. Assume again that (b) holds. Then

we have

M(o) c

l'o c l'Sl
o'S ~'o c* l'Sl

Therefore, (b) implies (d). Obviously, (d) implies (e). Assume now that (e) holds.
Then we have o cSl for some c S R; see Harville [1997; Corollary 14.10.3).
This yields I/o cl'Sl and hence c 6 (0,00). Therefore, (e) implies (b).

Finally, the equivalence of (b) and each of (f), (g) and (h) is immediate from of
Theorems 3.1 and 3.2.

Theorem 4.5 is important since it provides necessary and sufficient conditions 011

the vector of expected returns under which

for any choice of <7^ G [0, l'Sl], the solution q* ot the maximization
problem with respect to zr^ satisfies q" [0,1], and

for any choice of o G [0, I/o], the solution q* of the minimization problem
with respect to o satisfies q* G [0,1],

This means that, under the equivalent conditions of Theorem 4.5, the constraint
q* G [0,1] is fulfilled for any reasonable choice of the parameters zr^ or o.

The previous result deserves some comments:
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Condition (b) of Theorem 4.5 is easy to check since it does not require the

inversion of the matrix £.
Condition (b) of Theorem 4.5 is fulfilled if and only if, for each of the

optimization problems and any choice of the parameters or iz, the same

quota is applied to every subportfolio. Therefore, condition (b) of Theorem
4.5 may be regarded as an equilibrium condition for the subportfolios of
the heterogeneous portfolio.

Condition (b) of Theorem 4.5 can also be interpreted in terms of the losses 5,
of the subportfolios 2 £ {1,... ,n} and the total loss 5 := ^f=i 1'S:

Condition (b) of Theorem 4.5 is fulfilled if and only if for all subportfolios
the expected return is proportional with the same proportionality factor to
the contribution cov[S,,S] of the subportfolio to the variance of the total
loss. This is a version of the covanVmce principle, applied to the vector of
expected returns.
In the special case where the losses of the subportfolios are uncorrelated

or even independent, condition (b) of Theorem 4.5 is fulfilled if and only
if the ratio r/;/ var[S,] of the expected return and the variance of the loss

is the same for all subportfolios.
If condition (b) of Theorem 4.5 is fulfilled and if iz > 0, then the loss of
every subportfolio is positively correlated with the total loss.

We conclude this section with an example.

4.6 Example. Let n := 2 and

It follows that > 0 if and only if the coordinates of the vector of expected
returns iz satisfy 4i/j < 2iq <5^2- We consider different choices of the vector of
expected returns:

(1) Let

Then we have l'Sl 10 and
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Then we have IV 3 and

and hence

i/XT'i^ I

M(i/) I

Therefore, the optimal vector of quotas q* satisfies q* G [0,1] for every
choice of cr* G [0,1] and for every choice of f G [0, 1].

(2) Let

Therefore, the optimal vector of quotas q* satisfies q' G [0,1] for

every choice of g [0, l'Elj [0,10] and for every choice of

f G [0, IV] [0, 10], which means that every reasonable constraint in any
of the optimization problems yields an optimal vector of quotas q* G [0,1],

Then we have 1'iz 10 and

1

(3) Let

Then we have 1'iz 7 and

and hence

I/'E-'I/ 5

M(iz) 1

Therefore, the optimal vector of quotas q* satisfies q* G [0,1] for every
choice of g [(), 5] and for every choice of i/ G [0,5].
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5 Interval-Constrained Minimization

We have seen that the problem of maximizing the expected return of the primary
insurer under a constraint on the variance of the retention and the problem of
minimizing the variance of the retention of the primary insurer under a constraint
on the expected return may both result in an optimal vector of quotas q*
violating the constraint q* G [0,1]. Therefore, the question arises whether or
not the corresponding optimization problems incorporating the interval-constraint

q G [0,1] can be solved as well.

For the minimization problem, we have the following result:

5.1 Theorem (Interval-Constrained Minimization). Con.Wz/er G [0, IV].
TTien tAe o/Vm/Won proWem

Minimize q'Sq
over i/;e vei -D[o,i](^i •= {<1 G R" | q'f i^,q£ [0,1]}

/ms a nnie/ne vo/niion.

Proof. The map .)s : R x R" —> R given by (x,y)s := x'Sy is an

inner product on the Euclidean space R" which turns R" into a Hilbert space.
Since R" has finite dimension, the induced norm || ||s : R —> R+ given by

||x||s := ((x,x)s)'^ (x'Sx)'^ is equivalent with the Euclidean norm.
The set £>[o,i](^v) is nonempty and convex, and it is also closed under the

Euclidean norm. Since the norm || ||e is equivalent with the Euclidean norm, it
follows that the nonempty and convex set D[o,i](iz, o) is also closed under the

norm jj jjs. Now the assertion follows from the projection theorem in Hilbert

spaces; see e.g. Swartz [1997; Theorem 6.13].

For those readers which are not familiar with arguments from functional analysis,
we present an alternative proof of the theorem which is more lengthy but

elementary:

Alternative Proof. The map / : R" —> R+ given by /(q) := q'Eq is

continuous and the set ö[o,ij(^v) is compact. Therefore, there exist some

q G £>[o, l](^. V satisfying

q'Sq < qXq

for all q G T>[o,i](", f).
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Consider now an arbitrary solution q e D[o,ij(f, f). Then we have

q'Sq q'Sq

Since 0 < (q — q)'S(q — q), we obtain

q'Sq < q'Sq

For c e (0, I define

q := cq+(l - c) q

Since D[o,i](iz, f) is convex, we have q e f[o,i)("j ") and hence

q'Sq < q'Sq

Moreover, straightforward computation yields

q'Sq (cq+(l - r:)q)'s(cq+(1 - c)q)

< q'Sq

Therefore, we have

(cq + (1 - c) qj S^cq + (1 - c) q) q'Sq

Since q'Sq q'Sq, this implies q'Sq q'Sq, hence (q - q)'S(q - q) 0,
and thus q q. Therefore, the solution is unique.

While the previous result is very satisfactory from a theoretical point of view,
it does not yield an explicit solution of the optimization problem. We can
nevertheless indicate a way to determine the solution of the optimization problem
considered in Theorem 5.1:
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For the remainder of this section, let q* denote the solution of the optimization
problem

Minimize q'Eq
over //ie .set £>(zz, i/) := {q g R" | q'iz o}

and let q denote the solution of the optimization problem

Minimize q'Sq
over die .set o) := {q g R" | q'iz r,qg [0,1]}

Since q*'£q* < q'Sq, we have q* g [0,1] if and only if q" q. The following
result may help to determine q in the case q* ^ [0,1]:

5.2 Theorem. Assume t/i«t q" ^ [0,1], 77zen at /east one o/ t/te coordinates o/
q is ec/nai to 0 or 1.

Proof. We assume that all coordinates of q are distinct from 0 and 1 and we
show that this implies q* g [0,1].
Consider q g D(f, o). Since all coordinates of q are distinct from 0 and 1, there

exists some c G (0, I) such that all coordinates of the vector q + c(q — q) are

contained in the interval [0,1], Then we have q + c (q - q) g C[o,i](^, f) and

hence

q'Sq < (q + c (q - q)) S (q + c (q - q))

q'Sq + 2cq'£(q - q) + c* (q - q)'S(q - q)

which yields

0 < 2 q'£(q - q) + c (q - q)'£(q - q)

Since c g (0,1), we obtain

0 < 2 q'£(q - q) + (q - q)'£(q - q)

and hence

q'Sq < q'£q + 2q'£(q-q) + (q-q)'£(q-q)
q'£q

Since q g £>(iz, o) was arbitrary, this implies q* q.

To illustrate the previous result, we present an example:
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5.3 Example. Let n := 2 and

S := and ^:=

as well as

j/ := 9

Theorem 3.2 yields

q*
9/34

^ \36/34

and hence q* £ [0,1], By Theorem 5.2, q is on the boundary of the interval

[0,1], It is easily verified that the only vectors in i>) which are on the

boundary of [0,1] are the vectors

and that these vectors satisfy

q',Sqi 113/64 and q'jEqi 80/64

Therefore, we have q q:-

For the case q* g [0,1], it has been suggested in the literature that the coordinates

of q* which are not contained in the interval [0, 1] should be truncated; see

Biihlmann [1970; p. 115] and Mack [2002; p. 391 ]. This approach is not correct
since it usually leads to a violation ot the constraint qV ja

5.4 Example. In Example 5.3, truncation of the coordinates of the vector

which are not contained in the interval [0, 1] produces the vector

which is not contained in f) since qV — 143/17 < 9.
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It can be seen from the argument used in the alternative proof of Theorem 5.1

that the optimization problem

with (T^ < l'El has a solution as well. However, is seems to be rather delicate
to settle the question of the uniqueness of the solution.

6 Appendix

Throughout this section, let c G R" \ {0} and let <ï> R»xn ^ ^ symmetric
and regular matrix.

Our first result concerns maximization of y'c under a constraint on y'<I?y:

6.1 Theorem (Maximization). Co«.v/V/er i/jeE i_. 77m« t/ie opfhmzatio« prob/er«

A/cLww'ze y'c
over t/ie set <p) := {y R" | y't&y </>^}

Aax t/;e ««m/we so/udo«

Proof. The assertion is obvious in the case 0. Assume now that G (0, oo).
It is clear that y* G £($, </?). For each y G £(<&, y>), we have

Maximize
over r/ze set £[o,i](£,(T) := {qe R" | q'Sq ^,që [0,1]}

Since 0 < (y - y*)'<Ê>(y - y*) 2<^ - 2y'$y*, we have

y'$y* < y*'$y*

and hence

c'y < c'y*

which proves that y* is a solution.
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Consider now an arbitrary solution y. Then we have

c'y c'y*

and hence

y'*y* y*'*y*
Since y'<f>y* y*'d>y* ^ y'$y, we obtain (y - y*)'d>(y - y*) 0 and

hence y y*. Therefore, the solution is unique.

Our second result concerns minimization of y'd>y under a constraint on y'c:

6.2 Theorem (Minimization). Co«.v/V/er é £ IT. 77ren f/m op/ÛHiza/ion proWem

M/nwn/'ze y'd'y
over r/m .se/ £>(c,c) := {y £ Ft" | y'c c}

/to.v //ze Hw/V/ue so/w/ton

y* <h c
c'd> 'c

owe/ //îe minimum /.s c^/c'd> 'c.

Proof. It is clear that y* £ Z?(c, c). For each y £ Z?(c, <•;), we have

c
y'<f>y* -y'c* ^ c'<t> 'c

c'<h ' c

and hence

y'<Fy* y*'*y*

This yields 0 < (y - y*)'d>(y - y*) y'^y - y*'$y* and hence

y*'$y* < y'd>y

which proves that y* is a solution.
Consider now an arbitrary solution y. Since y'd>y* y*'<Fy* y'd»y, we
obtain (y - y*)'d>(y - y*) 0 and hence y y*. Therefore, the solution is

unique.

The two preceding results are related as follows:
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6.3 Corollary (Duality). Con.v/e/er ^ G R+ ewe/ c G R satis/yin#

^2
2 c

c'<& 'c

77te« r/ie so/of/ons o///ie opt/m/zeit/on proè/ems

A/euc/m/ze y'c
over r/ze .vet {y G R | y'$y <p^}

one/

M/n/m/ze y'<l'y
over f/ze ser {y G R" | y'c c}

eire /e/ent/co/.

This is immediate from Theorems 6.1 and 6.2.
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Abstract

In the present paper we study optimal quota share reinsurance for a heterogeneous portfolio with
possibly dependent lines of business. More precisely, we determine quotas which maximize the

expected return when the variance of the retention is fixed or minimize the variance of the retention
when the expected return is fixed. The results require only that the variance of the vector of losses

of the different lines of business is regular. We thus extend results which are known for the case

of uncorrelated lines of business.

Zusammenfassung

In der vorliegenden Arbeit untersuchen wir die optimale Form der Quoten-Ruckversicherung für
einen heterogenen Bestand, bei dem Abhängigkeiten zwischen den einzelnen Geschäftszweigen
bestehen können. Wir bestimmen Quoten, die bei gegebener Varianz des Selbstbehaltes den

erwarteten Ertrag maximieren oder bei gegebenem Ertrag die Varianz des Selbstbehaltes minimieren.
Die Ergebnisse erfordern nur die Regularität der Varianz des Vektors der Verluste der einzelnen

Geschäftszweige und verallgemeinern daher bekannte Ergebnisse für den Fall unkorrelierter

Geschäftszweige.

Résumé

Dans cette article on étudie la forme optimale de la réassurance quote-part pour un portefeuille
hétérogène dont les différents secteurs peuvent être dépendants. Plus précisément, on détermine les

quotes-parts qui maximisent le revenu quand la variance du risque retenu est donnée ou minimisent
la variance du risque retenu quand le revenu est donné. Les résultats sont valables sous la seule

condition que la variance du vecteur des pertes des différents secteurs soit régulière. Ils généralisent
donc des résultats qui sont connus dans le cas des secteurs non-corrélés.


	Optimal quota share reinsurance for dependent lines of business

