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H. Cossette, D. Landriault, E. Marceau, Québec

Risk measures related to the surplus proeess in the

1 Introduction

In Cossette et al. (2003), a compound Markov binomial model is presented which
is an extension to the compound binomial model proposed by Gerber 1988a,b).
The compound binomial model was also examined, among others, by Shiu (1989),
Michel (1989), Willmot (1993), Dickson (1994), Dickson et al. (1995) and

DeVylder and Marceau (1996). In the compound binomial model, the claim
occurrence process is supposed independent whereas, in the compound Markov
binomial model, time dependence is introduced in the claim occurrence process.
In Cossette et al. (2003), we study the aggregate claim amount process and the

computation of the ruin probabilities in the framework of this extension. Upper
bounds and an asymptotic expression for the infinite-time ruin probability are

also provided in Cossette et al. (2004). In this paper, we pursue our study of the

compound Markov binomial model with the investigation of key risk measures

related to the surplus process such as the distributions of the severity of ruin, the

surplus one period prior to ruin and the claim causing ruin.

The compound Markov binomial model is a discrete-time risk model within which
the surplus process N} is defined as

for A.' e N+, where (7o « (u N) corresponds to the initial surplus, c is

the premium rate per period and Xj is the eventual claim amount in period j
(j g pj+). The premium rate c is assumed to be equal to 1. We suppose that at

most one claim can occur per period. Therefore, the r.v.'s X, are defined as

"This research was funded by individual operating grants from the Natural Sciences and

Engineering Research Council of Canada, by the Fonds de recherche sur la nature et les technologies
du Gouvernement du Québec, and by a joint grant from the Chaire en Assurance L'Industrielle-
Alliance (Université Laval).

compound Markov binomial model"

% u + Jjc - Xj

(1)
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We assume that the claim occurrence r.v.'s {!*, Ä: N} are no longer independent
as in the compound binomial model. The dependence structure between the claim
occurrence r.v.'s G N} is introduced via a stationary homogeneous Markov
chain with state space {0, 1} and transition probability matrix

(2)
VPio Pu/

Throughout the paper, we denote the transition probabilities by meaning the

probability of moving from state occurrence i to state occurrence j in a time

period. We assume a correlation parameter 7r (0 < 7r < 1) and a stationary
claim occurrence probability </ (0 < g"< I)- The transition probabilities

Pij Pr(/fc j I /a,-i i) of (2) defined in terms of those two parameters are

P _ /(I - 9) + 7T9 g - TÇ

~ \(i - g) - t(i - g) g + 7r(i-g)

The initial probabilities are Pr(/o 1) g 1 — Pr(/o 0). We can show that

Pr(/fc 1) g for fc G N+, which means that the sequence is stationary.
In addition, we assume that the sequences {/fc,fc G M} and G N+} are

mutually independent with G N+} being a sequence of i.i.d. r.v.'s with

support N*, common probability mass function (p.m.f.) /b and mean /.iß.
To ensure that the infinite-time ruin probability goes to 0 as u —> oo, the

parameters in the compound Markov binomial model are fixed such that

r/Ms < 1
• (4)

In fact, the premium rate can be expressed as 1 (1 + r/)r//iß where r/ is the

(strictly positive) relative risk margin.
The paper is structured as follows: first, we briefly recall key results on the infinite
time ruin probabilities in the compound Markov binomial model presented in
Cossette et al. (2003). In Sections 2 and 3 respectively, the (defective) distribution
of the severity of ruin and the (defective) distribution of the surplus one period

prior ruin are derived from recursive algorithms. We study at the end of Section 3

the joint (defective) distribution of the surplus at ruin and the surplus one period

prior ruin. In addition, the moments of the severity of ruin (defective) distribution
are provided in Section 2. A similar study is made in Section 4 on the claim

causing ruin. Throughout the paper, two specific claim amount distributions are

considered since closed-form expressions can be obtained for the various risk

measures studied. These specific claim amount distributions are also considered
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in Cossette et al. (2004) to find an explicit expression for the ruin probability in
the compound Markov binomial model. Finally, a numerical example is provided
to illustrate and comment the risk measures discussed on a theoretical basis in
previous sections.

2 Ruin probabilities

Let T denote the time of ruin associated to the surplus process [4

{inf
{&, £4 < 0}, if t4 falls below 0 at least once

fceN+

00, if £4 never goes below 0

The conditional and unconditional infinite-time ruin probabilities are respectively
defined as </-(« | P(T < 00 | 4 i) for i 0, 1 and ^>(m) P(T < 00).
Their respective complements are denoted (/>(« | r) and </>(«) and are the con-
ditional and unconditional infinite-time non-ruin probabilities

</>(« |i) i- VK« I 0

Pr([4 > 0,Vfc N+ |/o 0.
and

</>(u) 1 - #u)
Pr(4fc > 0,Vfc e N+).

Obviously, the unconditional non-ruin probabilities can be calculated in terms of
the conditional non-ruin probabilities with

</>(u) I - I 0) + I 1) • (5)

In Cossette et al. (2003), a recursive algorithm is provided to compute the

conditional infinite-time non-ruin probabilities in the compound Markov binomial
model. We recall the result here but we omit the proof.
In the compound Markov binomial model, the infinite-time non-ruin probabilities
are recursively obtained with

0(u - I I 0) - poi X]^ ~ •? I l)Md)
I 0)

^
• (6)

Poo
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and
ii+1

PlO0(« I 0) + TT 0(li + 1 - j I l)/ß(j)
*(« I 1 (7)

Poo - 7r/s(l)

for « e N~0 The starting points of these recursive formulas are

0(O|O) if^, (8)
1 - g

and

0(011) —10) •

"

(9)
Poo - vr/s(l)

Alternative expressions for (6) and (7) are respectively

14— 1

0(u I 0) 0(0 I 0) + -4- ^>(j | 1)(1 - *b(U - 7')), (10)
^ j=0

and

1/ I II /./n I IN Y~^ PO'C ~ -^b(u ~ i)) + 7r/ß(w + I - j) I ^0Cu I 1) 0(0 I i) + 2_, ^I ')
(11)

^0 Poo - tt/s(1)

For specific claim amount distributions, explicit expressions for the ruin proba-
bilities are given in Cossette et al. (2004).
It is obvious that ruin probability is a key indicator of the riskiness of a surplus

process. However, other risk measures can help characterize the behavior of the

surplus process and consequently improve our knowledge of it. This is why, in

the following sections, the distribution of the severity of ruin, the surplus one

period prior ruin and the distribution of the claim causing ruin, among others,

are studied in the framework of the compound Markov binomial model.

Distribution of the severity of ruin

The distribution of the severity of ruin, also called the c/AtnTwit/o« o/;/;e surp/ws

af /•«(>(, was first studied by Gerber et al. (1987) within the classical compound
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Poisson risk model and subsequently by others (e.g. Dufresne and Gerber (1988)
and Dickson (1989)). Dickson (1994) and Dickson et al. (1995) are among the

ones who examine it in the framework of the compound binomial model. Here,
a similar study is made but this time in the framework of the compound Markov
binomial model.

3. / /ri'cw.y/ve /ormute

In this section, we propose, as in Dickson et al. (1995) within the compound
binomial model, recursive algorithms to evaluate the (defective) distribution of
the severity of ruin in the infinite-time horizon. In order to do so, we dehne the

conditional and unconditional probability that ruin occurs and that the severity of
ruin is not greater than y N+, denoted respectively by G(w,y | i) and G(u,y),
as

G(ti,y I z) Pr(T < oo, t/r > —y | /o /> Go tt)

and

G(u, y) Pr(T < oo, Gr > -1/ I i/o u),

for u 6 N and / {0, I}. According to our definitions, there is ruin if the surplus
is strictly inferior to 0 which implies that G(w,0) G(u,() | 0) G(u,0 | 1)

0. We have

G(m, y) (1 — 4/)G(m, y I 0) + 4/G(m, y | I

Note that lim G(w,y | i) V(« I 0 and G(«,y) ^(u). We also dehne
7/—»OO 7/—»OO

y((4, y I î) as

y(u, y I i) Pr(T < oo, Gt -J/ | /q i, C/o u)

G(u,y|i)-G(u,y-l|i) (12)

for y G N+.
A Hrst algorithm to obtain the conditional probability G(u, y | i) for it 6 N,

y N+ and i 6 {0, 1} is given in the following proposition.

Proposi'ft'on / /« 4/ic compoMwrf A/444-fcov W«omia/ auoc/c/, //ie <70444/44404144/ /iro/;«-
feiV/'ry 4/4444 444444 OCC444.S 44414/ 4//44 4 4/zC «'VC/lVy o/ 444444 i'.V 4404 ,(,'4'Cf44C4' 4/44444 y G N+
C'4444 00441/1444444/ 444C444.VlVé'/y w/4/l
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/or it 0 and y N"*",

G(0,y|0) ^L_(£[£A(y+l)]-l), (13)

and

C(0 y I 1)
I 0) + 7r(^B(y+ 1) -Fb(1)) ^Poo — 7r/s( 1)

CO

w/iere jB[ß A y] ^ min(x, y)/s(a:).
X= 1

/or tt, j/ e N+,

G(«-1,|/|0)G(u, y I 0)
Poo

u ti+3/

Poi| ]T)G(u-A;,y| ^)/s(^)+
fc=l /c=xi-f-1

(15)
Poo

and

,n PioG(ii,y|0)^ ^ 7 rFTTYPoo - 7T/ß(l)
u+1 U+Î/+I

£G(u+l-fc,y| l)/fl(*)+£ /b(A)
/c=2 A:=u+2

+ 7T —rrr (16)
POO ~ 7r/ß(l)

Proof: First, by conditioning on the claim occurrence and claim amount (if
necessary) r.v.'s in the first period (i.e. / and £fi) and given the stationarity
of the surplus process, one finds

j+i
G(j,y I 0) PooG(j + 1,2/ I 0) Fpoi J]G(j + 1 — £,y | l)/s(fc)

fc=i

j+y+l
+ Poi £ /sW ^)

fc=j+2
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and

j+i
G(j, 2/| I pioG(j + 1,2/ I 0) + pi I X G(j + 1 — fc, //1 1 )/y(fc)

A;= 1

j+y+i
+pn X <**)

A=j+2

for j e N. The recursive formula (15) follows easily from (17). Also,
substituting (17) in (18) yields

I \ PioGO'j ?/ I 0)
Gu,y I I) TTTnPoo - t/b(1)

j+i j+y+i
X)Ö(j + i-Ä.»M)/B(Ä)+ X /«(*)
A—2 fc=j+2

POO — 7T /B 1

which corresponds to (16). In addition, we derive (14) by combining both
(17) and (18) at j 0. The starting point of the recursive formula which
is given in (13) remains to be proven. For that purpose, we first rearrange
(17) and (18) as

G(j,y |0)-G(j + l,y |0)
/j+ l j+V+l s

Poi (X+ * ~ p I 0/b M + X ~ ^0 + i>?y I o)j (19)
A:— I *=j+2 '

and

j+l j+y+i
| 1)-£<?(, +1-*,y I 0/B(*)- X

A:— I fc=j+2

j+l j+y+l v

P,o G(j + 1, y I 0) -X G(i + 1 - fc, y | I)/B(A) - X /B(*)). (20)
^ fc=i fc=j+2 2

given the equality p,o 1 — Pii for î (0, 1}. Dividing (19) by (20) and
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Po I

PlO

summing for j 0,1 yields

14— 1

X)(G(j',y|0)-G(j + l,y|0))
.7=0

^u-lj+3/+l u-1

X! 53 -E^.y I 0
0=0 fc=j+2 j=0

u—17 + 1

7=0 fe=l

/ll— lj+ l/+l 14—1

- EE /B(*)-E^''»I 1)(1-^b(«-J')))- (21)
S'=0 fc=j+2 .7=0

Taking the limit for m —> oo on both sides of (21) leads to

G(0,3/ I 0)

oo 7+2/+1 tt—1
POl '

PlO

/ oo j-r <y-r i t4— I v

(E E -few ~ I -^b(«-J)))
7=0 fc=i+2 t=0 2
7=0 fc=7+2

oo 7+2/+1 «

E E Um E^-^l 1)(1~^b(J))
Z—V Z ^ u—>00 '

Pm

Om V *—' *—' h—>oo *—'
7=0 fc=7+2 7 1

oo 7+Î/+1
POl '
— E E /*(*)
p'° VÖÄ2

00 \

- lira E^(^-J''Pl l)(l - ^bO'))1j6{o,...,u-i} J • (22)
14—>00 * ' /

7=0 '
In order to apply the dominated convergence theorem to (22), we need a

summable function which majorâtes G(j,p I 1)0 — -Fb(u — j))lje{o,...,«-!}
for Vj G N. Such a function can be

|G(it - j - 1,3/1 1)(1 - -Fs(j + l))lj6{o,...,u-i}| < (1 - FbO + 1))

OO

for which it follows that E(1 ~ ^s0 + 1)) PS - 1 < OO from (4).
7=0
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Consequently, (22) becomes

oo j+y+i
G(0,9 I 0) ^1 ^ NT /g(fe)

P»°J5fc^2

lim G(«-j, 1/1 1)1,^0 u-1}
Pio rrf

OO Î/+I

' 9=0 A:=2

^
9

1-9 ^(l-fs(j))- I

J=0

-i-(E[BA(i/+l)]-l), (23)
I - 9

for 9 G N+.

From (12), one easily obtains .9(u,9 | i) and, in particular, assuming an initial
surplus u equal to 0, we have

^-(1-*B(0)). Î 0

g(0,y|Q= -{ j-a(y)) + 7r/a(y+I)
poo - tt/b(1)

(24)

When 7T 0, we find the same expression of the probability that ruin occurs and

that the severity of ruin is 9 as the one in Dickson et al. (1995).

However, the drawback of the algorithm presented in Proposition 1 is its

unstability in the sense of Panjer and Wang (1993) which is why we present
an alternative equivalent but stable algorithm in Proposition 2.

/YoposiZzon 2 /n z/;e compo44nr/ /War&ov taomwl woriei, a sZaMe aigoriz/î/n zo

twnpnZe zAe conr/iziona/ proèafci/iZies G(t4,9 | i) /or 14, 9 S anr/ i G {0, 1} is

« "+Î4

G(u, 9 I 0 S -2-2/1 ' )0(O> i I «) + XI 2 I 0 (25)
9=1 9-u+l

w/iere .9(0,9 | i) ««4/ Z/ie sZazting poinZs o/z/ie rec44rsive /ormiiia, G(0,9 j 0) and

G(0,9 I 1), are as given respecZive/y in (24), (13) and (14).



86

Proof: We first rearrange (21) as

G(ti,j/|0) G(0,y|0)

+
/U— 1 li— lj+?/+l

9
rA I J ri/T 1 \

,2/1 1)(1-FB(U-J))
7=0 .7 =0 /c=j+21-9

G(0,v I 0)

+ if(ÈôHi/l i)(i-fB(i))-EÊ/B(^'))' (26)

'Vi fc=ij=i '
From (23) and (24), (26) becomes

G(u,j/ I 0) ^G(u- j", 2/ I 1)9(0,j I 0)

J=1

+ TZ-((^ A (»+!)]-!)-
fc=ij=i

1A

^G(u- j,j/1 l)fl(0, j I 0)

+ t~—— FX' - + i))i - 9 ~r(

^G(«-j,y| 1)9(0, i I 0)

j=i
u+y

9
+ ïX E (l -ft(3))

j=u+l
1A

^G(u - j,y I 1)9(0, j I 0)

+ £ 9(0,j|0), (27)

j=ti+i

which corresponds to (25) for i — 0.
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To prove (25) for z 1, we first combine (16) and (27)

u+2/

y: G(zz — Ar, 7/ I 1 ).g(0, A; | 0) + ^ y(0, fc | 0)

/ I ' A:=u-H
G(u,y I I) Pio

+ 7T

POO - 7T/ü(l)
u+l «+2/+1

£ G(zz + I - fc, y I 1)/b(A:) + £ /ß(fc)
fc=2 fc=u+2

Poo - 7T/ß(l)

Piop(0, A: I 0) + 7r/fl(fc + 1)

/ v
~ I77~77\ 2/1 U^ POO-TT/OC)

pioff(Q, Ar I 0) -H tt/b(A; + I)
Poo ~ t/b(1)

/c=n-f I

which becomes, using (24),

U+l/

G(zz,y I 1) £G(u-I 1)5(0, j I 1) + 2_ ö(0, j I I)

j=i j=«+i

wiiich completes the proof.
Relation (25) for both « 0,1 have a nice interpretation. The conditional

probability that ruin occurs and that the severity of that ruin is not greater than

i/ knowing that the claim occurrence process is in state z (z G {(), 1}) at time 0

can be interpreted as follows:

a) the first term of (25) gives, for a fixed value of j (j G {1,2,..., u}), the

probability that the surplus falls below its initial surplus for the first time

to a new level it - j given /o z and that eventually ruin occurs and that

severity of ruin is not greater than y.

b) the second term of (25) gives the probability that the first time the surplus
falls below its initial level, the drop in the surplus according to its starting
level w is {u + 1,... ,u + y} given 7o z which ensures that ruin occurs.

For the remainder of this subsection, we consider two claim amount distributions
which admit, as shown in Cossette et al. (2004), an explicit expression for the

ruin probabilities in the compound Markov binomial model (i.e. £? G {1,2} and

B has a geometric distribution). As we will see, these two specific distributions
also lead to a closed-form expression for the conditional probability that ruin
occurs and that the severity of ruin is not greater than y G N+.
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£„ramp/e / Assume rtai rte c/aim amo««( r.v. ß tote va/ues in {1,2} vvirt

/b(2) > 0. 77iere/ore, ;/a c/aim occurs rte surp/us couW siay rte .same or
decrease /rom one unit o/ iis previous /eve/. Ortervwi.se, rte .surp/us a/ways
increases /rom one unit comparer/ to iis previous ieve/. /n suc/i a case, a c/oserf-

/orm expression /or G(u, p | i) /or rt £ N, p £ N~*~ and i £ (0, 1} is given

GK p I i) G(0, p I i) f-M®pLV (28)
\Poo - 7t/b(1)/

Proof: Since ß e {1,2}, (24) for i L can be written as

f
y 1

p(0,p I 1) < Poo-tt/b(1) '
(29)

(o, P/ 1

which implies that (25) at i 1 becomes

G(«, 1/ I 1) *"'^PL G(u- l,p I 1), (30)
Poo - 717b(1)

for it 6 N+. Recursive applications of (30) leads to

GKp I l) ^Pm) ^(0,2/1 1), (31)
\Poo - t/b( I)/

for it £ N"*" which proves (28) for i 1.

Similarly, when ß £ {1,2}, (24) at i 0 can be simplified to

®
/b(2), p I

fl(0,i/|0)={ 1-9 '

(32)
(0, p/1

From (32) and (31), (25) at i 0 becomes

G(«,p|0) ^±-/g(2)G(ü- l,p| 1)

-t^~/B(2)( ^"^PL) G(0,P|1) (33)
1-9 \Poo - tt/b(1)/

for « £ N+. Since (13) and (14) are respectively given by

G(0,p|0) yi-/s(2),
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and

G(0,y|l) P" /g(2)
Poo - t/b(I)

when ße {1,2}, (33) can be rewritten as

G(u,y I 0) ("g(0,y I 0).
VPoo - 7r/s(l)/

/mzmp/e 2 /n cases w/zere f/ze c/az'm amozznZ r.v. ß /zas a geome/rz'c c?zsZrz7mZzon

vWz/z p.m./ /s(i) (1 — a)a*~' /or z G N+, an eip/z'cz'z exprc.s^/on /or G(u, y | i)
/or m G N, y G N+ ant? i G {0,1} z's gz'ven £y

G(u, y M) G(0, y | i) ^J (34)

Fz'rsZ, we /zz'g/z/z'g/zZ a reszz/Z z/zat wz'// 7>e /ze/p/zz/ z'n z/ze proo/ o/ (34). WTzen ß z's

geomeZrz'ca//y z/z'sZrzTmZec? wzz/z parameter a, one can easz7y /znd Z/zaZ

ö(0, y + 1 | i) az/(0, y | z), (35)

/or y G N+.

Proof of (34): Subtracting oG(iz,y | 1) from G(zz. + l,y | 1) and, given
(25) and (35) both at 7 1, one deduces that

G(zz + 1, y I 1 — aG(zz, y | I

u+l u+JZ+l

]Tg(zz + 1 -j,y I l)y(0,j I I) + ^ y(0,j | 1)

j=l j=u+2
/ u «+K \

- a(^G(-zt - j,y I l)y(0, j I I) + ^ y(0,j | l)J
^j=I i=u+i

5(0, 1 I l)G(«,y I 1)

which can be rearranged as

G(u+l,y|l) V/TtG(«,i/|1) (36)
/zoo - ZT/b( 1)

for u G N and y G N+. Recursive applications of (36) yields
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for j N and y £ N+ which completes the proof of (34) for 7=1.
Moreover, for the geometric distribution, it follows from (25) at both 7 0

and 1, when combined to (24), that

rv I i\ ' ~ ^ Poi + 7r(l — a)
IGO,y 1 77 GOï 0 • (38)

'7 Poo - tt(1 - a)

Multiplying G(y,y | 0) by a and then subtracting it from G(j + l,y | 0)
yields

G(j + l,y I 0) - aG(j,y | 0) y(0, 1 | 0)G(j,y | 1)

which becomes, from (38),

GO + l,g I 0) (a + — ~ "j y(0, 1 | 0)W,y I 0)
V 9 Poo - tt( 1 - a) /

Poi +tt(1 - a) I

a + -Vj r a GO, y | 0)
Poo — 7r( 1 — a) y

G(j, y I 0), (39)
Poo — tt( 1 - a)

for j 6 N and y e N~0 Recursive applications of (39) result in (34) for
7 0.

3.2 L/nA to t/ie ram proi>afu7/he.s

Based on probabilistic arguments, we can find (similarly to Dickson (1994) and

Dickson et al. (1995) in the compound binomial model) the following stable

alternative recursive formulas to (6) and (7)

0(" I 0 <A(0 I 7) + 5^0(0, J I 7)0(ri - j I 1). (40)
7=1

The proofs of (40) for 7 0, I are direct consequences of the combinations of
(24) with (10) and (11).
The expression of the conditional non-ruin probabilities <-/>(tt | 7) given in (40)

can be interpreted as

a) the first term corresponds to the probability that the surplus process never
falls below their initial surplus u given Jo 7.
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b) the second term gives, for a fixed value of j e {1,... ,it}, the probability
that the surplus falls below its initial surplus for the first time to a new
level of u — j given To i and that eventually ruin does not occur.

The conditional non-ruin probabilities 0(0 | 0) and 0(0 | 1), given in Cossette et
al. (2003), could also be found using both (13) and (14) since

0(0 I 0) 1 — 0(0 I 0)

1 - lim G(0, </ I 0)
f/—>oo

1 - T—^— (MB - ')
1 - </

1 - q/tg

l-ty '

and

0(0 I 1) 1-0(0 I 1)

1 — lim G(0,2/| 1

jy — oo

P0l(Pß — I + 7T( 1 — /o(Q)
POO - 7r/ö(l)

PlO

POO - 7T/Ü(1)
0(0 I 0).

3. J /Vfomen/.ç o/0c ram seven'/y

Based on Dickson et al. (1995) within the compound binomial model, we derive
the moments of the ruin severity in the compound Markov binomial model. From
a practical point of view, the conditional moments of the ruin severity given
that ruin actually occurs are more interesting. Here, we find the unconditional
moments since the conditional ones can be obtained easily by just dividing them

by the probability that ruin occurs.

Let us denote by IT the amount of surplus at ruin and assume that IT' takes value
0 if no ruin occurs

fT
[ (/y if T < oo

0, if T oo
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The A;"* conditional moment of the ruin severity given that (Jo it and Jo i is

denoted i?[W* | it,i] and defined as

E[W* | it, i] £[W* | J/o u, -Jo i]
oo

^ tü I i) • (41)
10 1

In particular, when it 0, (41) for i 0 and t 1 can be rewritten respectively
as

I 0,0] - ]T w*(l - FbH) (42)
^ 1Ü=1

and

£[H" I 0,1] V»' WiO -^BM) + ^/°("'+ ')

^ POO-TT/B(1)

PIO £[^|0,0]
Poo - 7T/b(1)

(43)+ f 7TT X] Vs('"' + 1) •

Poo -tt/b(1) ^
Let us consider the first three moments of (42) and (43). It can be proven that

the first three conditional moments of the severity of ruin (when Jo 0) are

given by

J?[fL I 0,0] Mb)

I o.o] 5^ + g

and finally,

|0,0] ^(i £[£«] - y £?[£*] + ± £[0*])

Similarly, for Jo 1, the first three conditional moments of the severity of ruin
are given by

^ I 1]
„ ^ m ^ I 0,0] + * (mb - I),
POO-7TJb(1) P00-7T/ß(l)

I 0,1] ^7n I 0-0]
Poo - tt/b(i)
+ ~TTn (^[^1 ~ 2Mb + 1),

Poo - 7t/b(1)
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and finally,

g[^|0,l]= £[W^|0,0]
Poo -
+ T77TT (^[^] - 3J5[ß'] + 3/te - 1) •

Poo - 7T/ß( I)

For «eN, one can compute recursively | u, j] with (41) and

s(w, 0 I ') 0(0, u + p | i) + ]Tp(0, fc I i)p(u - fc, p | 1

/b=l

See Dickson et al. (1995) for more details on the procedure.

4 Distribution of the surplus a period prior ruin

The distribution of the surplus immediately prior to ruin was first considered
in the framework of the classical risk model by Dufresne and Gerber (1988)
and further examined by Dickson (1992). In the compound binomial model, the

distribution of the surplus one period prior ruin has been studied by Dickson
et al. (1995). Since the compound Markov binomial model is an extension to
the compound binomial model, the results on the distribution of the surplus one

period prior ruin presented in this paper extends the ones provided in Dickson et
al. (1995).
Given an initial surplus tt N, we denote the conditional and unconditional

probabilities that ruin occurs and that the surplus a period prior ruin is inferior
or equal to p respectively by

F(w,p I i) Pr(T < oo, f/r-i < P I «),

and

F(u, p) Pr(T < oo,f/r-i < p | f/o w),

for i {0, 1} and u, p £ N. It follows that

F(u, p) (1 - p)F(u, p I 0) + çF(u, p I 1).

We also define /(w, p | i) as

I/^(w.?y I 0-^(«»0- i M), ?/G....mp|«)= p, • (44)
[ /' (it, 0 I »), 0 0

for i £ {0, I} and u N.
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In the following proposition, we give a first recursive algorithm to obtain the

conditional (defective) distribution of the surplus one period prior ruin. The

proof here is similar to the one given in Proposition 1 and we therefore outline
only the major steps.

Proposition J /n t/fe compound A/urfcov Wnomiai mode/, die condifionai (de/ec-
dve) r/istn£i«tion o/die surp/us a period prior ruin is given iry

• /or rt 0 und y G N,

F(0,î/|0)

F(0,y| 1)

9
-(£?[BA(y + 2)]-l);

1 - g

Pio-F(0,y |0)+tt(1-/b(1))
Poo-tt/B(1)

(45)

(46)

/or « G N+ onri y G N,

n«- 1.2/I 0)
I 0)

Poo
U

^F(n-fc,y| l)/ß(A;)
fc=i- Poi —-

Poo

'{"<!/+1} £ /s(fc)
fc=u+i

Poi— •; (47)
Poo

y-i/ I I \ Pio f (u, y of C«.P i) TTTT
Poo - tt/b(1)

+ rr

£F(u-/y I l)/s(j + 1)

7=1

POO - 7T/B(1)

+ '{«<«} Ljtw+l /ßO' + 1)
+ 7T 1, (48)

POO - 7r/ß(l)

{1
if A is true

0, otherwise
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Proof: First, we condition F(j, zy | z) on both r.v.'s 7| and ß| (if necessary)
and given the stationarity of the surplus process, one finds

10= + 1,?/ I 0)

/j+l oo

+ Pii (£-F(j + ' ~ ^>2/I O/flW + l{y<j/} ^ /ß(^')J (49)
V=l fc=7+2 '

for j,y G N and z 6 {0, 1}. One easily sees that (47) is derived from (49)
at z 0 and (48) is obtained by combining (49) at both z 0 and z 1.

Moreover, (46) is a direct consequence of (49) at z 0 and j 0 and (49)
at z 1 and j 0. However, one must still prove (45) which corresponds
to the starting point of the recursive formulas.

For that purpose, we first sum (49) for j =0,1,..., zz - 1 and given the

equality pio 1 ~ Pu for z 6 {0, 1}, one finds

F(0,z/|0)-F(zz,y |0)
u-1 OO

-?E'(,<»> £ /»(*>
P'O fc=j+2

£(n?,2/ I - E^ I o/BW
4_nV fc=lPlO y=0 ^ fc=l

i-1
Poi

U — 1 / txJ \

£ iu<,> £ /BW - 10(1 - fb(« - j»),
„•_n V fc=i'4-2 'P'O j=0 ^ A=7+2

(50)

for zz G N+ and z/ N. Then, taking the limit zz —> oo and applying the
dominated convergence theorem (as in Proposition l), we obtain

/hi— l

9m 2/ I 0) T£- Jim £ lü<„} £ /ß(fc)
' 7=0 fc=j+2

i=l
y oo

E E /«(*)

£f(zz-j,z/1 l)(l - Fß(j))^

^j=0fc=j+2

-J-(S[5A(y + 2)]-l) (51

since lim F(zz, z/ | 0) 0 for z/ G N due to (4).
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From (44) and results of Proposition 3, one easily obtains /(«, y | i). In
particular, assuming an initial surplus m equal to 0, we have

/(0,y I i)
1 - <7

(l-Fßfe+l)): i 0

Pot
(52)

- Poo - t/b(1) (1-F*(y + 1)), 1

for j/ N. When 7r 0, (52) is equivalent to the associated result obtained in
Dickson et al. (1995) in the framework of the compound binomial model.

However, the algorithm proposed in Proposition 3 is unstable according to Panjer
and Wang (1993). We remedy to this weakness by presenting an alternative and
stable algorithm in the proposition that follows.

Proposition 4 7n t/ze compound iV/«r/:ov binontia/ /-node/, « sfab/e a/gord/im to

compute t/ie condition«/ (de/ecfive) distribution o/ t/ie snrp/us one period prior
rwm w

F(tt,y I 0)

y+l
I 0)-F(u-/,y I 1) + ]T p(0, j I 0), it <p

j=ti+i.7

I 0)F('U - j, 1/ I 1),
o=l

it > y

(53)

and

F(it,y I 1) <

y+i
5^5(0,j I l)F(it-/y I 1)+ J] 5(0,j I 1)

y=ti+i

I

tt(1 -Fs(y + 2))

Poo - tt/b(1)

£</(o,j I 11).
j=I

« < P

it > y

(54)

/or it e N+ and y G N vv/îere y(0, j | i) is as given in (24). T/ie starting points
o/f/ie a/gorit/im, F(0,y | 0) and F(0,y | 1), are respective/y given in (45) and
(46).
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Proof: We begin with the proof of (53). Using (51), we rearrange (50) as

/ 2/ co u— 1 oo

I o) 77—(E X! X] -^(fc)1-9 j —0 /c—ji+2 ji—'0 /e—j+2

•u — 1

9

9
7=0

u— 1

+ rr7 (X> -« +1)) - E - W +1)))
" ^7=0 7=0 7

* X>(«-7,9| i)(i-^(i))
«7=1

2/

9
+ l{u<y} E ~ ^

7=u

From (24) at « 0, (55) can be rewritten as

u y+i
F(u,y I 0) y~^F(n - j,y | 0.9(0,./' | 0)+ 1{„<„} ^ .9(0,7 I 0), (56)

7=1 7=«+'

which corresponds to (53).

To obtain (54), we modify (48) with (56) which yields

r/ in V^Pio9(0,7 I 0) + 7r/s(7 + 1)
F(tt, 9 1) > 777 7' (w -7,91 1

t-f Poo-7r/fl(0
7 1

3/+1 oo

P10 X] ^,7 I 0) + 7T ^ /fl(j + 1)

I /="+' 7="+'
r /1 \ * W')* ' Poo-7/B(0
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From (24) at 7 I, (57) becomes

F(u,p I 1) ]Ty(0,j I I 1)

j=i
y+l

which completes the proof of (54).
The stable algorithm provided in Proposition 4 is useful to obtain an explicit
expression for the distribution of the surplus one period prior ruin for the two
specific claim amount distributions introduced previously in the context of the

severity of ruin.

Fxa/nple J (con/WMfl/ton o/ Fxampie 7J For cases w/tere 77 G {1,2} wit/j

/b(2) > 0, a c/ose(7-/orm erp/'ess/ori/or t/ie conditional fde/écrive) c/isfr/fcut/on

o/ tAe surplus one period prior ruin is

n», y I ») f ^(0, y 10, (58)
VPoo - 7r/ß(l)/

/or « G N~*\ p G N and 7 G {0, 1}.

Proof: From (29), (54) becomes

F(u,p| 1)=.9(0,1 I l)F(«-l,y| 1)

Pu/B(2)
Poo - 7r/ß(l) - 1,2/1 1), (59)

for -u G N+ and p G N. Recursive applications of (59) yields (58) for 7=1.
Similarly, by combining (32) and (53), one has

F(u, p | 0) - 1,2/1 1), (60)

for u G N* and p G N. From (58) at 7 1, (60) becomes

F(u,p|0) g^W ^(0,p I 1) - (61)
1 -y VPoo -tt/s(1)/

In the case where 77 G {1,2}, (45) and (46) can be simplified to F(0, p | 0)
^ /s(2) and F(0,p | 1) /ß(2) which permits to rewrite

I-P ' POO-TT/S(1)
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(61) as

F(u, i/ I 0) C » I
'

\Poo-7T/ß(l)/

ßra/np/e 4 fconPriiitoz'on o/fi+owzp/e 2) Attum/ng a geometoi'c c/Avir/Antoon vv/r/j

parameter a /or z/ff c/azwz amonn/ rv. /A, Pie profcaAnVify Pia? rzzz'n occurs anp
Pia/ f/ze vizr'p/iz.s a period przor rnz'n w z'n/erior or er/««/ to y « given /;y

g poo - ?r(l - a) / a y
1 - g Pol + 7r(l - a) Vpoo .-7r/ß(l)/
• ^(0,3/ I 1) - a7r(Poo - t/B(1))«

(Poo-^/H(1))^'-Q^'
Poo - tt/b(1) - a

g Poo — zr(l—a)F(fc,p I 0)

y < A:

1—g Pol +tt(1 - a) I Vpoo -7r/s(l)
)V(0,y| I)

POO - Tt/bC)

POI

Poo - tt/b(1)

-,,ïi+2

a

y+2 POO ~ 7T/B(1)'

anP
^Poo - 7r/ß(l)

P > &

(62)

~T7n) (^(0,p I 1) - a7r(poo-7t/b(1))»
Vpoo - tt/bU)' V

(poo - t/b(1))"+' - a^+'
• apoi

F(*,y| 1)

74» - 7t/b(1) - a

fc

Poo - t/b(1)

Pqi

POO—T/B(1)

m 1/1 1)

I - f——
y+2 ^P00-7r/ß(l)2

I - Vpoo-7r/s(l)^

/or A; G N+.

y < A:

y > A-

(63)
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and, given (54) andProof: Subtracting aF('tt,y | 1) from F(it + 1,3/

(35) both at i 1, one deduces that

-F('u + 1, y I 1 — C»F(M, 3/ I 1

ff(0,l I l)f(u,|/| 1)

~ ' {"=2/1 I r /-1 \ (1 ~ -fs(î/ + 2))
Poo — 7T/s(l)

- 1{„<V} fs(0, P + 2 I 1) - (1 - Ps(y + 2))
V Poo-t/B(1)

0(0, 1 I 1)-F(w,0 I 1) - -^7-7^ (^'{«=2/} +P0|l{„<y})
Poo-7r/ß(l)

which also can be rewritten as

aF(u+ 1, 2/ I 1)
Poo - tt/b(1)

^v,2/+2

F(«,y| 1)

(64)
POO - 7TJ

Successive applications of (64) yields (63).
Moreover, for the geometric distribution, it follows, from (53), (54) and (24),
that

0 POO 7T I CT

F(*,1/|0)

1-0 P01 + tt(1 - a)

F(fc,0| 1) v2/+2

Poo - tt/b(1)

0 Poo 2t 1 a)
1),

A: < 3/

A' > y

(65)

1-0 Pol + 7r( 1 — a)

Then, we obtain (62) by combining (63) and (65).
Having separately examined the (defective) distributions of the surplus at ruin
and the surplus before ruin, we now consider their joint (defective) distribution.
Let us define by

F(w, x, 2/ I i) Pr(T < 00, t/y-i < x, £/r > -3/1 do i, L/o '«) (66)

the probability that ruin occurs, that the surplus one period before ruin is lower

or equal to .t and that the surplus at ruin is not greater than 3/ given an initial
occurrence state /o L
The joint (defective) distribution of the surplus one period before ruin and the

severity of ruin can be computed recursively as stated in the following proposition.
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/VopostZton 5 /« f/te compound M«/'Zx>v Zuno/n/flZ twotZe/, f/ie />«>;/ proZwZi/Zffy

F(u,x,y I i) can he compMferf /•ecwrjZveZ)' vv/r/i

• /<•„• a 0, x e N «/«:/ y £ N+,

a:

F(0,x,y I 0) — £(Mj + y + 1) - Fß(j + 1)) ;

P'° feOJ j/4-1

pioF(0,x,y I 0) + 7r^/s(j)
F(0,x,y I 1) TTnPoo - 7r/ß(l)

/br it £ N+, x e N c/t/tZ y £ N+,

rv mi F(u - l,x,y | 0)
F(u,x,y |0) —

7=2

u «+!/

E^C* - &,x,y I l)/ß(fc) + 1

{ti<X+ 1 } X! ^(A:)
/e=l fc=u+1

Pol ~
Poo

-, in F(it, x, y |0)
F(u, x, y 1 pio TTTn

POO - 7T/0( U

+ 7T

E^('" + 1 - fc,x,y I 1)/Ö(A;) + lj tt<cc} X] /B(^)
/c=2 A:=-u+2

7^00 - tt/B(1)

Proof: Similar to the proofs of Propositions 1 and 3.

One can use the results of the previous proposition in order to obtain G(u, y | Z)

and f/"(-it, x | i) for it N+, x N, y N+ and t £ {0,1} since

G (it, y I i) lim F(it,x,y | i) and F(it,x | i) lim F(tt,x,y | i). For
^ * ' ' x->oo i/->oo

example, we have

G(0, y I 0) lim F(0,x,y | 0)
x—>oo

oo

^^(Fß(j+y+l))-Fß(j + l))
P>o ,=o

OO

9
'

1-9
9

1-9

Ec - + o - Ec - + '))
7=0 7=1/

(E[BA(y+l)]-l),
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and

F(0, .r I 0) lim F(0,avy | 0)
2/—>oo

a;

— lim V(Tß(j + y + 1) - Fß(j + 1))
Pto »-"»pj

' j=o

-!_(£[£ A (z +2)]-1).

5 Distribution of the claim causing ruin

Another quantity of interest to improve our knowledge of the surplus process is
the distribution of the claim amount that caused ruin. Clearly, in discrete-time
risk models, the claim causing ruin is equal to the sum of the surplus a period
prior ruin, the premium income for the period in which the ruin occurs and the

surplus at ruin. The distribution of the claim amount causing ruin has been first
studied by Dufresne and Gerber (1988) and Dickson (1993) in the context of the

classical risk model.

Therefore, let us denote respectively by J7(tt,y | /) and T/((i,y) the conditional
and unconditional probability that ruin occurs and that the claim that caused ruin
is lower or equal to y which are defined as

JJ(it, j/ I i) Pr(T < oo, [/<ß_ I + I — t/j' < j; I io i) >

and

J/(u,y) Pr(T < oo, L/t-i + 1 — CJr < î/),

for w e N, y G {2,3,...} and i 6 {0, 1}. We have

iJ(it, y) 1 — y I 0) + ç/f(u, y | 1).

In the following proposition, we present a recursive algorithm to compute the

conditional probabilities J/(m, y | /).

Proposi/tört b /« die compound AJaiTov d/nom/a/ mode/, die condidona/ (de/ec-

dve) disfridndon o/ die c/oim causing ndn is given dy
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/or m 0 «mc/ y G {2,3,...},

i/-2 y

tf(o,y|o) rr-E E /bW; (67)
^i=ofc=j+2

pio77(0,p | 0) + rr]T/ß(j)

"(»•»i"=—«-,/,(îr— «*>

/or « G N~^ a/J<7 (/ G {2,3,...},

ff(u-l,y|0)
77 (u, y 0)

poo

ti 2/

77(rr - fc, p 1 Q/i?(fc) + ){«<j/-i} ^ /b(&)
fc=l fc=u+l- Poi ; (69)

Poo

.s Pio77(u,?y | 0)
77 (u, y I TTiT^ Poo-tt/B(1)

«+1 y

E "<« + t - j,P | l)/s(j) + l{u<y-2} ^ /ß(j)
7=2 7'=u-f2

+ 7T- rrn; • 70)
Poo - 7r/s(l)

Proof: The proof is similar to the ones of the previous propositions which
explains why we only outline the major steps.

By first conditioning on the claim occurrence and claim amount (if neces-

sary) r.v.'s in the first period (i.e. 7| and Si) and given the stationarity of
the surplus process, one finds

77(j, y I i) Pio77(j + 1, y | 0)

/j + i y x

Tpu(y)77(j+1-fc,pIi)/fl(fc)+i{j+2<u> /s(fc)j-
H-=l fc=j+2

-7

(71)

(69) follows easily from (71) at « 0 and (70) is the direct consequence of
combining (71) at 2 0 and i 1. Moreover, (68) is obtained with the
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combination of (71) at i I and j 0 with (71) at i 0 and j 0. It
remains to prove the starting point of the recursive formula given in (67).

First, summing (71) for j 0,1,...,'«— I and given p/o 1 — Pu for
î G {0, 1}, one obtains

#(0,2/1 0) — i7(«, y I 0)

IZ7f£ i(i+2<„}Ê/bW - X>(7,y 11)(1 -i^(u-j))) • (72)
7 Vj=o &=j+2 j=o 7

Then, taking the limit « —> oo, applying the dominated convergence theorem
(as in Propositions 1 and 3) and since lim //(«, y | 0) 0 for y G {2, 3,...}

-U—>00

due to (4), we obtain the desired result.

The algorithms proposed in Proposition 6 for the distribution of the claim causing
ruin are however unstable. A stable algorithm is provided in the next proposition.

Propos/ho« 7 /n the compound IWarhov binomial model, a .stable algorithm to

compute the conditional (de/ecfive) distribution o/the claim causing ruin is

T/(«,y I 0)

X/l(0, j I 0)id(u- j',2/ I 1)

.7=1

+ I 0) - 0(0' 0 I 0)) > « < y - 2

j=«+l
(73)

]T</(0, j I 0)ff('«- j,y I 1)
:

.7=1

« > y — 2

and

5^0(0.7 I l)iî(«- j,y I I)
J=1

2/-1

id(«,2/ I 1) <

t /n lis PlOd(0,2/ I 0) \ - ~+ V (5(0,7 1) T7TT ' "^0-2
Poo Tt/s 1 (74)

X] 0(0-7 I l)tf(^-7>0 I 1):

S

« > 2/ - 2
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Proof: We begin by proving (73). First, by rearranging (72) using (67)
and (24), one finds

14— 1

tf(w,2/ I 0) y-7-X^''^ I 0(1 - - j))
j=o

+ r^(£ Ê /s(fc) - X] l{j+2<3/} X]
* \j=0 fc=j+2 j=0 fc=j+2
14

0(1-^(7))1-9^
y-2 y

+ - _
l{u<y-2} X X /B(&)

' j=u fc=j+2

X.9(0,7|0)F/(n-j',y| I)

y-i
+ '{«<y-2} X I 0) - (?(0,j/ I 0)). (75)

j=«+i

By considering both cases tt < y - 2 and « > y - 2, the result easily follows.
To prove (74), we combine (75) and (70)

vO PioSf(0>7 I 0) + 7r/s(j + 1)
»<«> » I ') £ ,«-,/„(!) -*»1»

.7=1

+ l{«<y-2} XZ
Piofif(0,j j 0) + ir/ß(j H l)

Poo~T/B(1)

£ 9(0.W|0)
POO -f/s( I ),=„+,

14 1/— 1

XsC.i I 10 + 0«<y-2i X ®(®'J I 0
j=i i= » 11

J—11 I '
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Let us define by | i) Pr(T < oo, fr-i + 1 — £/t 2/ | Jo i) the

probability that the claim causing ruin is equal to y for y 6 {2,3,...} given that

«éN and /q «. It follows that

ft (it, 2/ I i)
H (it, y I <) - if(u, y - I I i), y {3,4,...}
tf(it,y | i), y 2

In particular, assuming an initial surplus u equal to 0, one deduces, from
Proposition 6, that

* j=0 fc=j+2 ' j=0 fc=j+2

~ 1)/b(P)

and

Poi(y- I)/s(j/) +7r/ij(y)
MO,?/ I I)

Poo - 7t/b(1)

for y G {2,3,...}.
Cases for which an explicit expression can be found for the distribution of the

claim causing ruin are presented in the following examples,

£xamp/e 5 (continuation o/Examp/e /) 77ie c/aim amount rv. ß fate va/iie.v

in {1,2} wit/i /s(2) > 0. For t/iß spec/a/ case, a c7ojer/-/brm expression /or t/ie

(c/e/ective,) f/ßtri/mtion o/t/ie c/aim catti/ng ruin iß given èy

#K2/10 * I M7)
VPOO - 2TJB( 1 /

/or it S NM y G {2,3,...} ant/ i G {0, 1}.

Proof: From (29), (74) becomes

Jï(it,y I 1) y(0,1 I l)i/(u- 1,2/| 1)

Pn/ß(2)
Poo - tt/b(1)

J7(U — 1,2/1 I), (78)

for ii G N+ and y G {2,3,...}. Successive applications of (78) yields (77) for
2=1.
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Similarly, by combining (32) and (73), one has

7/B(2)
ff(«,»|0) T7(u -1,2/| 1) (79)

for m e N+ and y S {2,3,...}. From (77) at i 1, (79) becomes

ff(«,2/ I 0)
<?/b(2)/ PII/B(2)

1 - 9 VPoo - tt/bO)
#(0,2/ (80)

In the case where I? {1,2}, (67) and (68) are respectively given by

7/(0,2/ I 0)
1 - g

permits to rewrite (80) as

/b(2) and 7/(0,2/ Pi i

P00 - 7T/B( I
/b(2) which

This completes the proof of (77).

Exa/np/e 6 (continuation o/£xamp/e 2) Hdzen die c/airn amount rv. 7/ /ia.y «

geometric r/«fr/i>ution, an explicit e.t'pre.y.vion /or the conditional distribution o/
the claim causing ruin can he /ound. Since this e.rpre.v.vio/i i.y carnher.yorne, vre

pre.yent instead the two /oi/ovving re/ation.y o/ infere.vt

T/(u +1,2/1 I)
pqq _ ^(1) ^'5 ' ^ ~ *{«<!/-2} 5 (0,2/ | 1)

+«»-" °.ë, ""
2/-1

X! 5(0,2/ I 0),I
PlO

Poo - tt/bO;
(81)

j=u+2

and

g Poo — 7r( 1 — a)
1 - g Pol + tr(l - a)

//(&, 2/ I 1), 2/ < & + 2

1 - g Pol + tt(1 - a)
7r( 1 — a) ((—1

/, \ 2Z 5(0,2/ 0), 2/ > fc + 2
Poi+T(1-«)^,

(82)
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Successive app/icaf/ons o/ (81) y/e/r/ a c/osec?-/orm expressi'o« /or //(u, y | 1)

vvA/cA i>«p/i'es, /ram (82), /Aar ff(u, y | 0) Aas a/so an exp/i'c/f express/on.

6 Numerical example

To illustrate the theoretical results obtained in the previous sections, consider
the following example. Assume that the claim amount r.v. I? is geometrically
distributed with p.m.f. /ß(Z) (1 — a)cP~' for i G N+ and mean 10. Moreover,

suppose that Pr(/fc 1) <y 0.08 and that the relative security margin r/ is

equal to 25 %. We consider three cases for 7r: 7r 0 (independence), 7r 0.4
and 7T 0.8 from which one deduces, in each case, the transition probability
matrix P of (3). Exact values for the distributions of the severity of ruin, the

surplus one period prior ruin and the claim causing ruin are given in the following
tables (see pp. 110-112).
The results contained in Tables 1 to 4 and in Figures 1 and 2 allow the following
observations and comments:

• Based on the results presented in Tables 1 to 4, one could be inclined to
think that, for a given initial surplus u and a given y, the values of G(u, y),
P(-u,y) and P(u,y) increase with 7r. Other choices of distributions for the

claim amount P doesn't necessarily lead to that conclusion.

• In Tables 1 to 4, the values of G(rt,y)> P(ii,y) and if(u,y) all increase

with a for a given value of 7r and a given y. This observation doesn't
necessarily hold for other choices of distributions for the claim amount r.v.

P. This is confirmed by Figures 1 and 2.

• For a given point y of any of the distributions, the impact of 7r seems

more influent for high initial surplus levels. It can be explained by the fact
that the ruin probabilities seem more sensitive to the dependence parameter
7t for high initial surplus values since, for low initial surplus values, ruin
events occur more independently of 7r due to its proximity to the ruin
barrier. The impact of 7r is thus minimized when w 0 for the three

distributions considered.

• The values of G'(rqy), P(rt,y) and if(«,y) converge all to the same
numerical value as y —> oo i.e.

lim G(rt,y) lim P(u,y) lim F/(n, y) /('/,).
2y—>00 i/—>oo 2/—>oo
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• Figures 1 and 2 confirm our intuition that the distribution of the claim
causing ruin given that ruin occurred should be more dangerous on
stochastic order than the individual claim amount distribution. On average,
the amount of the claim causing ruin given that ruin occurred is larger than

a random individual claim amount.
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Table I. The (defective) distribution of the severity of ruin from an initial surplus
of 0 for 7T ~ 0, 0.4 and 0.8.

G(u y 1 o) G(u 2/ 1 0 G(ii,i/)

j/A 0.4 0.8 0.4 0.8 0 0.4 0.8

t 0.07826 0.07826 0.08684 0.09558 0.07826 0.07895 0.07965
2 0.14870 0.14870 0.16500 0.18159 0.14870 0.15000 0.15133
3 0.21209 0.21209 0.23534 0.25901 0.21209 0.21395 0.21584
4 0.26914 0.26914 0.29865 0.32868 0.26914 0.27150 0.27390
5 0.32049 0.32049 0.35563 0.39139 0.32049 0.32330 0.32616

10 0.50973 0.50973 0.56562 0.62250 0.50973 0.51420 0.51875
15 0.62148 0.62148 0.68962 0.75897 0.62148 0.62693 0.63248
20 0.68746 0.68746 0.76284 0.83956 0.68746 0.69349 0.69963
25 0.72643 0.72643 0.80608 0.88714 0.72643 0.73280 0.73928
30 0.74943 0.74943 0.83161 0.91524 0.74943 0.75601 0.76270
40 0.77104 0.77104 0.85559 0.94163 0.77104 0.77780 0.78469
50 0.77858 0.77858 0.86395 0.95083 0.77858 0.78540 0.79236
60 0.78120 0.78120 0.86686 0.95403 0.78120 0.78805 0.79503
80 0.78244 0.78244 0.86823 0.95554 0.78244 0.78930 0.79629

100 0.78259 0.78259 0.86840 0.95573 0.78259 0.78945 0.79644
200 0.78261 0.78261 0.86842 0.95575 0.78261 0.78947 0.79646
500 0.78261 0.78261 0.86842 0.95575 0.78261 0.78947 0.79646

Table 2. The (defective) distribution of the severity of ruin from an initial surplus
of 20 for 7r 0, 0.4 and 0.8

G(a 2/|0) C(u l/l I) G(u,j/)

3/A 0.4 0.8 0.4 0.8 0 0.4 0.8

1 0.06005 0.07162 0.06663 0.08746 0.05042 0.06057 0.07289
2 0.11409 0.13608 0.12660 0.16618 0.09581 0.11509 0.13848
3 0.16273 0.19409 0.18057 0.23703 0.13665 0.16416 0.19752
4 0.20650 0.24630 0.22915 0.30079 0.17341 0.20832 0.25066
5 0.24590 0.29329 0.27287 0.35817 0.20649 0.24806 0.29848

10 0.39111 0.46647 0.43399 0.56967 0.32842 0.39454 0.47472
15 0.47685 0.56873 0.52913 0.69456 0.40042 0.48103 0.57880
20 0.52748 0.62912 0.58531 0.76830 0.44294 0.53210 0.64025
25 0.55737 0.66477 0.61849 0.81185 0.46804 0.56226 0.67654
30 0.57502 0.68583 0.63808 0.83756 0.48287 0.58007 0.69797

40 0.59160 0.70560 0.65647 0.86171 0,49679 0.59679 0.71809

50 0.59738 0.71250 0.66289 0.87013 0.50164 0.60262 0.72511

60 0.59940 0.71490 0.66512 0.87306 0.50334 0.60466 0.72755

80 0.60035 0.71603 0.66618 0.87444 0.50413 0.60561 0.72870
100 0.60046 0.71617 0.66630 0.87461 0.50423 0.60573 0.72884

200 0.60048 0.71619 0.66632 0.87464 0.50424 0.60575 0.72886
500 0.60048 0.71619 0.66632 0.87464 0.50424 0.60575 0.72886
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Table 3. The (defective) distribution of the surplus one period prior ruin for
7T 0, 0.4 and 0.8.

F(u,3/)

it 0 « 20

f/f 0 0.4 0.8 0 0.4 0.8

1 0.14870 0.17558 0.20294 0.01138 0.05450 0.11429
2 0.21209 0.23697 0.26229 0.02140 0.08182 0.16479
3 0.26914 0.29222 0.31571 0.03356 0.10885 0.21129
4 0.32049 0.34194 0.36378 0.04739 0.13540 0.25409
5 0.36670 0.38670 0.40705 0.06250 0.16134 0.29347

10 0.53702 0.55164 0.56652 0.14693 0.27851 0.44754
15 0.63759 0.64903 0.66068 0.22967 0.37162 0.54812
20 0.69698 0.70655 0.71628 0.30896 0.45045 0.62206
25 0.73204 0.74051 0.74912 0.38893 0.51404 0.66580
30 0.75275 0.76056 0.76850 0.43615 0.55160 0.69162
40 0.77220 0.77939 0.78671 0.48050 0.58687 0.71588
50 0.77898 0.78596 0.79306 0.49596 0.59916 0.72434
60 0.78134 0.78825 0.79528 0.50135 0.60345 0.72728
80 0.78245 0.78932 0.79632 0.50389 0.60547 0.72867

100 0.78259 0.78946 0.79644 0.50420 0.60571 0.72884
200 0.78261 0.78947 0.79646 0.50424 0.60575 0.72886
500 0.78261 0.78947 0.79646 0.50424 0.60575 0.72886

Table 4. The (defective) distribution of the claim causing ruin for
TT 0, 0.4 and 0.8.

//(it, a/)

u 0 u 20

V/T 0 0.4 0.8 0 0.4 0.8

2 0.00783 0.01074 0.01370 0.00040 0.00271 0.00595
3 0.02191 0.02722 0.03262 0.00150 0.00789 0.01678

4 0.04093 0.04820 0.05559 0.00349 0.01529 0.03158
5 0.06375 0.07260 0.08160 0.00650 0.02464 0.04955

10 0.20653 0.21935 0.23240 0.03767 0.09273 0.16606
15 0.35292 0.36613 0.37958 0.09082 0.17855 0.29219
20 0.47602 0.48830 0.50080 0.15498 0.26501 0.40405
25 0.57036 0.58141 0.59265 0.22683 0.34769 0.49762
30 0.63885 0.64876 0.65886 0.29840 0.41994 0.56933

40 0.71963 0.72796 0.73645 0.40316 0.51765 0.65721

50 0.75617 0.76369 0.77134 0.45878 0.56690 0.69829
60 0.77183 0.77897 0.78624 0.48482 0.58937 0,71625

80 0.78092 0.78783 0.79486 0.50101 0.60307 0.72686
100 0.78236 0.78923 0.79622 0.50374 0.60534 0.72856
200 0.78261 0.78947 0.79646 0.50424 0.60575 0.72886
500 0.78261 0.78947 0.79646 0.50424 0.60575 0.72886
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Distribution of the claim causing ruin given ruin occurs
vs Distribution of the individual claim amount (u 0)

Figure 1

Distribution of the claim causing ruin given ruin occurs
vs Distribution of the individual claim amount (u 20)

y

Figure 2
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Abstract

Gerber (I988a,b) has proposed a compound binomial model, as an approximation to the classical

risk model, to describe the surplus process of an insurance company. Within the compound
binomial model, the claims occur according to a binomial process with independent increments.
Cossette et al. (2003) present a compound Markov binomial model which is an extension of
Gerber's model. The compound Markov binomial model is based on a Markov binomial process
which introduces dependency between claim occurrences over time. In this paper, we study, in

details, some properties of the surplus process within the compound Markov binomial model.

Recursive formulas for the computation of the distribution of the severity of ruin and the surplus

one period prior to ruin are provided. Finally, we examine the computation of the joint distribution
of the surplus prior and after the ruin and the distribution of the claim causing ruin.

Résumé

Gerber (1988a,b) a proposé le modèle binomial composé pour décrire le processus de surplus
d'une compagnie d'assurance. Ce modèle en temps discret peut être utilisé pour approximer le

modèle classique de risque qui est basé sur le processus Poisson composé. Dans le cadre du

modèle binomial composé, les sinistres surviennent selon un processus binomial avec incréments

indépendants. Cossette et al. (2003) a proposé le modèle Markov binomial composé basé sur

un processus Markov binomial introduisant une relation de dépendance entre la survenance des

sinistres. Dans ce papier, on étudie, en détails, certaines propriétés du processus de surplus dans

le modèle Markov binomial composé. Des algorithmes récursifs sont présentés pour calculer la

distribution de la sévérité de la ruine et celle du surplus une période avant la ruine. Pour conclure,

on étudie aussi l'évaluation de la distribution conjointe de la sévérité de la ruine et du surplus

une période avant la ruine ainsi que la distribution du montant du sinistre qui cause la ruine.

Zusammenfassung

Gerber 1988a,b) hat ein zusammengesetztes Binomial-Modell als Approximation zum klassischen

Risikomodell vorgeschlagen, um den Ergebnisprozess einer Versicherungsgesellschaft zu beschreiben.

Im zusammengesetzten Binomial-Modell treten die einzelnen Schaden gemäss eines Binomial-

Prozesses mit unabhängigen Zuwächsen auf. Cossette et al. (2003a) haben ein zusammengesetztes
Markov Binomial-Modell vorgeschlagen, das eine Erweiterung von Gerbers Modell darstellt. Das

zusammengesetzte Markov Binomial-Modell stützt sich auf einen Markov Binomialprozess, der

eine Abhängigkeit zwischen den Schadeneintrittszeiten einführt. In diesem Artikel studieren wir
detailliert einige Eigenschaften des Ergebnisprozesses im zusammengesetzten Markov Binomial-
Modell. Es werden rekursive Formeln zur Berechnung der Verteilung der Höhe des Ruins, sowie

des Ergebnisses eine Periode vor dem Ruin angegeben. Schliesslich wird noch die gemeinsame

Verteilung der Ergebnisse vor und nach einem Ruin sowie die Verteilung des Schadens, der zum

Ruin führte, untersucht.
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