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B. Wissenschaftliche Mitteilungen

G. BAUMGARTNER, H. BUHLMANN, M. KOLLER, Zurich

Multidimensional valuation of life insurance policies
and fair value

1 Introduction

The aim of this paper is to set out a formal framework of modern valuation
techniques for both life insurance portfolios and contracts. The main idea behind
it is to represent a life insurance contract as a linear combination of basic financial
instruments. We combine these financial instruments to create a multidimensional
valuation portfolio. As there is no liquid market for insurance contracts, we cannot
directly value these contracts. However, for many financial instruments a liquid
market exists. When speaking about the fair value of liquidly traded financial
instruments, then usually refers to market values, i.e. market prices at a specific
date.

[n order to price financial instruments which are not liquidly traded, we try to
replicate cash flows from this financial instrument by a combination of liquidly
traded financial instruments (financial engineering, option pricing) and then take
the value (or price) of this replication portfolio as the value (or price) of this
financial instrument. It is normally not possible to replicate pure insurance risks
with financial instruments. But we can replicate expected more generally their
certainty equivalent cash flows arising from an insurance contract, provided we
assume the existence of risk-free instruments for different maturities. In order
to stress the fact that not cash flows themselves but their expected value are
replicated, we are going to use the term VaPo instead of replication portfolio.
Firstly, the actuarial analysis is performed on this multidimensional valuation
portfolio. Secondly, a single number is attached to the valuation portfolio, such
as the traditional mathematical reserve or also any value within the family of fair
value concepts. The procedure follows [De Felice and Moriconi (2002)].
Specifically, a traditional non-participating life insurance policy can be represented
as a linear combination of zero coupon bonds, which are then valued in a second
step. If the VaPo consists only of zero coupon bonds the calculation of the fair
value and the mathematical reserve is almost the same, only the discount factors
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(= value of the zero coupon bond) are different. In more general VaPo's, values
of other financial instruments (e.g. European options) may also be included.
Initially, we will introduce some notation to represent a life insurance contract
and to have a formal framework for our valuation. Thereafter, a general procedure
will be outlined which forms a part of our valuation process. Finally, we will
also consider the technical gains and losses caused by the observed mortality.

We will illustrate the concept based on the following two examples:

| Endowment policy with annual premium payment,

Il Annuity in payment with single premium payment.

2 Notation

[n order to have a formal framework for developing the concept, we first
need some notation. We need to define the vector space of life insurance
policies G and also the vector space F spanned by financial instruments e; (i.e.
F = {ey,...,em)). In the following we will use a rather general representation
of life insurance policies by means of a Markov model. For the standard actuarial
notation that is used in this paper we refer to [Gerber (1997)].

The Markov model is described by the contractual functions u.[;r“,uffs‘ and the
transition probabilities p;;:

af™(t):  Payment at time £, if the person is in state 4 at time £, e.g. premium
payment;

a_fj‘.’“‘(t): Payment at time ¢+ 1, if the person is in state ¢ at time ¢ and in state
j at time ¢ + 1, e.g. death benefit;

pij(t):  Probability of switching from state 7 to state j in the time interval

£, t+1).

We consider a life insurance contract g,. of a person aged x. g, can be represented
by the contractual functions:

L _Pre Post, . .
Ju = gl‘(u’i aa'ij W L& S)‘

where x denotes the age at entry of the insured person and S the set of states.
We write G for the set of all possible life insurance contracts.
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The set (vector space) of financial instruments needed for multidimensional
valuation is denoted by F. It is convenient to choose financial instruments e,
which form a basis B = {ey,...,e,} of F, ie.

F = ((eh...,(fm)'

We will also call the financial instruments e; units, because they span our financial
instruments universe. It is important to distinguish the units from their monetary
value. With the above notation we can represent each financial instrument using
the basis B. Therefore we only need information about the units e; and not about
any other financial instrument.

At this point it is also important to mention that there might be different choices
for the vector space F. For a traditional non-participating insurance policy F will
normally consist of zero coupon bonds with different maturities. However, for
more sophisticated policy constructions it could also include other instruments
such as equities, (European) options or also instruments which represent the
difference between the expected cash flows and the random cash flows induced
by the effects of mortality.

In the following we will denote by Z(**) a zero coupon bond. A zero coupon
bond is a security paying the amount of one monetary unit at time ¢ + k. With
P(t,t+ k) we denote the price of this zero coupon bond at time ¢ (see Appendix
A). The redemption yield of such a bond can be calculated by the formula

P(t,t + k)% —1.

3 Procedure

The valuation of an insurance contract can be done using the following procedure:

° First, we define a linear mapping ¢, the valuation, from the set of insurance
contracts G into the vector space J of valuation portfolios spanned by the
units €, =1, : s o5

p: G —> F
g — 2 Ailglei, ()

i=1

where \;(g) denotes the number of units e; needed to represent the
insurance contract ¢.
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Example of a pure endowment policy of a 30 year old person with maturity
5 years, maturity benefit of one monetary unit and annual premium payment
I1. Then

)\l(g):"*n € :Z(30)

’\2((]) = -II- P30 €y = Z(:‘O‘H)

M(g) = —I1- 2p3o ey = 7(30+2)
and

A(g) = —11- 3p3o iy &3 7(30+3)

As(g) = =11 4p3o es = Z(0+4)

Ae(g) = +5p30 eg = 7045

In a second step we price the valuation portfolio in a monetary amount by
applying the accounting principle ).

WP F- — R

m m

D o Nilge: — ¢ ( > /\i(.fl)fiq;) : (2)

i=1 i=|

defined as a linear mapping, i.e.

e m
(Yo Nle) =D Alghb(e)
i=1l =1
Consequence: Again we only need to know t(e;), i = 1,...,m, in order to

determine the monetary value of an insurance contract. However, this can
be complicated as the prices of certain units might be difficult to calculate
(in particular if no liquid market exists for them).

Continuation of the above example: We choose the calculation of the
mathematical reserve as the accounting principle. In this example (ey) is
the normal discount factor calculated by the technical interest rate 4, i.e.

l k
1 (2(30"""')) = (—1 i L) — ¥

and

6
'ep(z,\k(g)z(”““*l)) =—I—-1 py-v—1II+ 3psp - 2

k=1
— T 3p3o - v° — 11+ 4p3o - v* + spso - v’
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Schematic representation:

reality model

; . translate
insurance policy > G

price / value? ¥
valuation
A Y
W

R + : F

accounting

At this point it is useful to remark that the mapping v/ defines the accounting
principle applied to the valuation portfolio. There are different possibilities to
define 7, as we will see in a moment. The mapping ¢ can be defined such that
it represents the valuations in terms of classical mathematical reserves. But it is
also possible to define 1) in a way to get a variety of valuations which can be
summarized under the concept of fair values.

Remark: As we consider only finite dimensional vector spaces F in this paper,
we do not need to worry about continuity of the mappings ¢ and ¢ as both of
them are linear.

+ Valuation process

We divide the valuation process into three steps:

Step 1: We define appropriate units e;,i = 1,...,m, where mn denotes the number
of different units used. Each financial instrument represents a possible cash flow
from the payer or to the beneficiary of the policy. The units should form a basis
of all valuations for that policy and span the vector space F = (¢, ..., e,,).

Step 2: We perform a multidimensional valuation in units with a valuation
portfolio (VaPo) by use of the mapping ¢ defined in (1).

Step 3: We transform the valuation in units into a monetary account by use of
the mapping ) defined in (2).
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-] Examples

5.1  Introduction

[n Section 4 we described the three steps of the valuation process. We will
illustrate this process for an endowment policy and an annuity step by step in the
following subsections.

5.2 Endowment policy

5.2.1 Situation

We consider an endowment policy with premium payments for a 50 year old
person:

death and maturity benefit €' = CHF 50’000

age at entry x = 50 years
contract term n = 5 years

Remarks:

l. The time scale is in years. For the ease of notation, the time is equal to
the age of the insured person.

2. Benefits are paid at the end of the year when death occurs or at maturity
of the contract.

3 Premiums Il are due at the beginning of each year.

4. There are no administration charges.

Convention: Payments receivable by the policy holder have a positive sign
whereas payments to be made by the policy holder have a negative sign.

Description of the insurance contract:

State space S = {*, T}, where % symbolizes alive and | represents dead.
Contractual functions:

~II, t=250,...,54
0, else

- &, t=5,::,54 &, =254
(t) =

*ok
0, else 0, else

0" (t) =
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The transition probabilities in the period [t,¢ + 1) are as follows:

p**("f) = Pt
pei(t) = q
pia(t) = 0
pii(t) = 1

[nsurance contract: gso = gso(ah™, ai9™, alo™).

Note that the contractual functions and the transition probabilities are defined
for t = 0,1,2,...,w where w denotes the ultimate age in the life table. This
definition is helpful to generalize the procedure (see page 37).

Our task: What is the value of this insurance contract
at age 50 )
at age 51
at age 52 r before the premium payment 17

at age 53

at age 54 )

Remark: There are current discussions on fair value and the most important
value is the “value at issue”, i.e. the value of the contract at age 50. To see the
evolution of the contract’s value it is also interesting to calculate the values after
issue.

In the following we will perform the different steps of the valuation process:

Step 1: Definition of the vector space F

Premium: The premiums II are paid at the beginning of the period (BoP)
[t,t+ 1), t = 50,...,54. The unit ¢, is a zero coupon bond
7 with duration ¢ — 50 paying CHF 1 at the beginning of
age t. The premium payment II is therefore represented in
units of such zero coupon bonds.

Death benefits:  The death benefits payable at the end of the period (FoP)
[t,t + 1) are also considered as zero coupon bonds Z(+1),
t =50, ...,94:
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Remark: As the death benefits are paid at the end of the year

t they are represented by the units Z(¢+D paying CHF 1 at
age t + 1.

Maturity benefit: The maturity benefit at age 55 is represented by the unit Z6).
As a consequence we need the following six units:

ZW, t =50,51,52,53,54,55.
They form the basis

B={2% 7%, 752 7%, 7% 75)

for our valuation.

5.2.2 Valuation in units at age 50
Step 2: Valuation in units

We consider two valuation schemes:
° Scheme A describes

—  when the premiums are received and the benefits are paid.

—  the amount of these payments.

° Scheme B shows
—  the sort of units enclosed in the portfolio: ey, ..., ep,.
—~  the number of the different units: A (gso), ..., A\m(gs0)-

We get all the information needed from the contractual functions and the transition
probabilities.

Observe that Scheme A describes the possible cash flows of premiums and
benefits, whereas Scheme B expresses the cash flows in units of financial
instruments.

Compiling these schemes for an endowment insurance, we will first carry out
the valuation for /sy people using the life table and afterwards we will show an
abstract valuation for one person. This valuation is general and is valid for all
insurance contracts.
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Valuation at age 50 for [s) people:

Valuation scheme A:

payments in unit number of units for [sy people
interval [¢, ¢+ 1) e premium | death benefit | maturity benefit

BoP 50 ZO0 1 s - 11

EoP 50 AL dso - C

BoP 51 Z6D | s, - TI

EoP 51 AL ds - C

BoP 52 Z6D | —ls - T

EoP 52 A dsy - C

BoP 53 7G| —ls3 -1

FoP 53 Z8) ds3 - C

BoP 54 769 | —lsy - 11

EoP 54 A dsy - C lss - C

Note that the premium payments correspond to short position in the valuation
portfolio.

Valuation scheme B:

unit number of units for lsg people
et premium benefits total

ASI I R | —lso 11
7(51) ey + 1 dsy - C' ~ls1 - I+ dsop - C
Z) | s, T | ds - C —ls; - +ds, - C
709 | s 10 | dsy - C ~ls3-M+dsy - C
769 | _jg T | ds3-C —lsq - Il +ds3 - C
7(55) dsg - C | Iss-C lss - C'+dsq - C
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Valuation at age 50 for one person:

We obtain the valuation schemes A and B for one person by simply dividing the
payments by Iso. The relations

¢ t—1 i1}
lb t—axPx = H Pr = H p**(k) =i p**(l', t) i > xy
—, = < k=x k=g
’537 L ) t=u i

(0, else,

(4, | o=

¢

dy 2L = Gpen Pe = @ H P =:Dat(t) - pun(z,t), t>x
= = i lt l:c
ll. k=x

L 0, else,

yield to the following payments in the interval [¢,¢ + 1):
premium: Das (50, ) - abe(t) - Z®)
death benefit: P, (50,¢) - put(t) - (.-,ifiﬁl(t) AGEY)

maturity benefit: p. (50, + 1) - abos(t) . Z(H+D

Valuation scheme A:

payments in | unit number of units for one person
interval ey premium death benefit maturity benefit
(t,t+1)

BoP t ZW® | pus(50,t) - aP(¢)
BoP t | 20D Pes(30,8) - put (t) - a3 (8) | pn (50, 8+ 1) - alS(2)

Valuation scheme B:

unit number of units for one person
€t At

ZO | pun(50,2) - aF°(t) + pun (50,8 — 1) - pay (¢ — 1) - @l (t — 1)
+Pux(50,8) - alP(t — 1)




With the mapping ¢ given in (1) we obtain:

w
pso(gs0) = Z[l)** (50,¢) - aie(t)

t=0
+ Pun (50,8 — 1) - put (t = 1) - alS¥(t = 1)

Doa(50,6) -0l (t — 1)] 20

- Zw:p“(SO,t —-1) [p**(t) cal"(t)

t=0
Fpay(t—1)- (e 1)

+ Dau(t) - a2 (t — )} zZ® (3)
55
= 3P (50, = 1) [pus() - (1)
t=50

+papt—1) -l (t — 1)t
+ paa(t) - “ET[(t =1 z® (4)

The last equation follows since af®(t) = al$™(t) = al®(t) = 0 for ¢ < 50 and

t > 54.

The above described algorithms are true for an arbitrary Markov model. The
corresponding formulae have to be generalized slightly.

5.2.3 Valuation in units at age 51

Step 2: Valuation in units

Again we consider the valuation for [5; people and also for one person.

Valuation at age 51 for l5; people:

Our valuation scheme A at age 51 corresponds to the valuation scheme A at age
50 leaving out the premium payment and benefits at age 50.
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Valuation scheme A:

payments in unit number of units for [5; people
interval [t, ¢+ 1) e premium | death benefit | maturity benefit
BoP 51 ASY I S
FEoP 51 Z(Sz) d51 ¥ O
BoP 52 Z00 1 —ls, 10
EoP 52 Zes dsy - C
BoP 53 ASSORN I S §
EoP 53 AS) dss - C
BoP 54 AL P S
EoP 54 A dsq - C Iss - C
Valuation scheme B:
unit number of units for {5, people
et premium benefits total
Z°es ~lsy - 11 —l5; - TI
7(52) —lsy - TI ds; - C —lsy - 11+ ds, - C
7(53) a1 ds - C —ls3 - [T+ dsy - C
Z(54) —ls5q - 11 dsy - C —lsq - I +ds3 - C
Z(55) dsy - C lss - C lss - C' +dsy - C

Valuation at age 51 for one person:

We divide the rows of the valuation scheme by [s; and obtain the following

payments in the interval [t, + 1):

premium:

death benefit:

maturity benefit: p..(51,t) - a.)

P** (51, t) ) (_l,l:rc(t) . Z(t)

P**(Sl,t) . p*i.(t) . Ut.l:?[(t) r Z(LH)

Post

(f}) . Z(H—l)
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Valuation scheme A:

payments in | unit number of units for one person
interval et premium death benefit maturity benefit
[t,t+1)
t Z0 | pa(S1,8) - al(t)
Z(t+D Pas(51,6) - up(t) - af9(8) | pan (51,84 1) - PO (1)

Valuation scheme B:

unit number of units

ey At

70 Pee(51,8) - P (1) + pua(S1,t — 1) - pug(t — 1) - Pt — 1)
+ Pan(51,8) - aP®(t — 1)

With the mapping ¢ defined in (1) we obtain:

wsi(gs0) = Z[p** (51,t) - al(t)
t=1
+ pax(SLt = 1) - pug(t = 1) - ui"{“(i - 1)
Fpan(S1,) - alo(t — 1)] 20

= ip”(ﬂ,t—— l)[?’**( ) - al™®(t) + pip(t — 1) - uf‘;“(t~

t=1

+I)**( ) P()st(l I)J Z(J‘)

5.2.4 Valuation in units at ages 52, 53 and 54

Valuation at age ¢ for l; people, t = 52, 53, 54:

)

The procedure is the same as at age 51 and the premium payments and benefits

at previous ages are left out in the valuation schemes.

Valuation in units at age ¢ for one person, t = 52, 53, 54:

The valuation schemes are the same as at age 51 for one person. We simply have

to replace 51 by 52, 53 or 54, respectively.
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5.3 Annuity
5.3.1 Situation

We consider an annuity in payment of a 65 year old person:

annuity payment € = CHF 15’000 per annum
age at entry T = 65 years

Description of the insurance contract:

State space S = {*,1}
Contractual functions:

e G, t=63 ..
a,(t) =

0, else

The transition probabilities in period [¢,¢ + 1) are as follows:

Pex(t) = Do
P*-r(t) =
pr«(t) = 0
pit(t) = 1

[nsurance contract: ges = ges(at™).

Our task: Which is the value of this insurance contract

3\

at age 65
at age 66

at age 67
> always before the annuity payment C'?

at age w — 1

at age w ]

Step 1: Definition of the units

The annuity payments C' payable at age ¢ are represented by the units Z®),
£=85,...,u.
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Therefore the basis consists of

Bi== { ZW)= b = 65,66, 87,:.: w0} .

5.3.2 Valuation in units at age 65

Step 2: Valuation in units

First, we look at the valuation for lgs and then for one person.

Valuation at age 65 for [ people:

Valuation scheme A:

payments in unit number of units for
interval [¢t, ¢+ 1) e les people
BoP 65 ALY les - C
BoP 66 7166} I
BoP 67 Z(67) leg <&
BoP 68 Z(68) beg ¢ 7
BoP w — 1 Zw-1) boeq il
BoP w Zw) PR

Valuation scheme B:

unit number of units
€ /\t

Z169) lgg +C
Z156) les - C
A lg - C
Z(68) l(,g -
7169 leg - C
Zlw=1) ly—y-C
AS) L, G
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Valuation at age 65 for one person:

We look at the payments in the interval [¢,¢ + 1) and divide them by lgs. By
analogy with Section (5.2.2), we obtain

Valuation scheme A:

payments in unit | number of units for one person
interval[t, t+ 1) e A
BoP t Z ) Dax (65, 1) - a¥™(2)

Valuation scheme B:

unit number of units
(&2 At

70 | pu(65,1) - al(t)

With ¢ as given in (l) we write in short

os(gz) = Y [pas(65,8) - a7(8)] 2
t=1

The valuations at age 66,...,w are calculated analogously as in Sections 5.2.3
and 5.2.4. At this point it is important to remark that formula (3) remains true
also in this case.

6 Monetary Valuation of the VaPo
6.1  Basic concept

As indicated in the introduction, the valuation portfolio is evaluated by the
function ).
Step 3: Monetary valuation

In (2) we formally defined the map @ which transforms a valuation in units
(read a valuation portfolio) into money. The function ¢ can be regarded as an
accounting principle (or as a pricing system).

1 : Portfolio in units — Monetary amount.



Question. How does 1 look like?

There are several possibilities. We consider two of them immediately and show
some possible extensions later.

) . statutory book value :
assigns the to the units.
Un market value

First, we look again at the endowment insurance of the 50 year old person and

then at the annuity of the person aged 65.
At this point it is worthwhile to mention that all the calculations performed in the

classical life insurance mathematics such as the fact that the mathematical reserve
equals the present value of the outflows (benefits) minus the present value of the
inflows (premiums) are valid also in this context, as only linearity of the different
maps is required.

6.1.1 Endowment policy

Statutory book value (Traditional mathematical reserves)

The book value of the VaPo gives us the mathematical reserves (M R), i.e. the
value of the zero coupon bonds is calculated with the technical interest rate.

Example: The book value of the zero coupon bond Z) with duration to maturity
t — 50 has the value

"[’I (Z(t)) - ,”t—S() ’

where (1 +4) ', Here ¢ denotes the technical interest rate.

Market value

The market value of the VaPo gives us the fair value. Each unit has its market
value.

Example: 1),(Z5Y) := P(50,51) corresponds to the value or price of a zero
coupon bond at age 50 with maturity one year (see Appendix A.2).

Notation: We denote the value of the VaPo at age t under the map v, by M R,
and under 1), by Vy;.

The valuation scheme B gives us the value of the VaPo: We multiply the number
of every unit Z(*) by the value of Z(*) and add them up.
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Valuation at age 50 for one person

In order to calculate the numerical values, we first calculate the premium IT with
the use of the equivalence principle, which says that the present value of the
premiums equals the present value of the benefits, i.e.

IL- (sp.5) = Aso:El 2

By using commutation functions of the life table EKM95 with the technical
interest rate 2.5% we receive:
Msy — Mss + Dss

remium I = - C
¥ Nso — Nss

_ 35— 126134+23237
= T 562903 — 435605 U000 =97375.21

Valuation scheme B:

unit number of units for one person
et premium benefits total

Y50 | _9'375 —~9'375
7G| —9/336 | 208 —~9'128
7062 1 9293 | 229 ~9'064
76 | 9246 | 251 —8/995
Z580 | 9194 | 275 —8/919
Zi95) 302 | 48734 | 49036

Using the technical interest rate i=2.5% and the two yield curves in Appendix
A4, relating to the years 2000 or 2002, respectively, we obtain the following
mathematical reserves and the fair values:

payments Vso/s0 » term Vsois0 » term M Rsq

at age structure 2000 | structure 2002
50 —~9375.21 -9'375.21 | —9'375.21
51 —8'784.52 -9'043.42 | —8/905.20
52 —8/365.82 —8'824.58 | —8'627.53
53 ~7'946.17 —8'552.66 | —8352.58
54 —7'543.31 —8'252.87 | —8/080.14
55 39'689.57 44’037.07 | 43/340.67
total —2/325.45 —11.67 0.00
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Valuation at age 51 for one person:

Valuation scheme B:

unit number of units for one person

e premium benefits total
ZzGD | _9'375 —9/375
Z62) | —9332 | 230 —9102
ZG) | _9/285 | 252 —~9’033
z4 | 9233 | 277 —8'956
Z59) 303 | 48938 | 49241

We do not know the value of the zero coupon bonds at age 51 yet. But if we “lock
in” the term structure at the beginning of the policy then the value P(50,51,52)
of Z62) at age 51 can be calculated as follows (see Appendix A.2):

P(50,52)

P(50,51,52) = ——.
(50,51,52) = 550, 51)

This value is called the forward price. Calculating every value of Z() at age 51,

multiplying by the number of Z(") and adding them up we receive the value of

the ViaPo at age 51 under the map ¢», denoted by V559, V550 is the value of

the VaPo at age 51 calculated at age 50.

The value of Z*) under the map 1/, at age 51 is much easier to calculate: it is

simply vt
payments Vsojs0 » term Vsols0 » term M Rsp

at age structure 2000 | structure 2002
51 —9375.21 —-9'375.21 | —9375.21
) —8'729.14 —8044.22 | —8'880.22
33 —8'291.26 —8'668.61 | —8'597.22
54 ~7'870.91 —8'364.76 | —8'316.80
55 41'413.25 44'634.08 44'610.04
total 7'146.74 9'281.30 9'440.61
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The next table summarizes the different values of the VaPo:

values Vis0 » term Vijso » term MR,
at age ¢ structure 2000 structure 2002
50 —2'325.45 —11.67 0.00
51 7'146.74 9281.30 9'440.61
2 17'076.73 18'842.83 19'144.35
53 27'521.46 28'784.46 29'126.71
54 38'475.03 39'151.72 39'405.28
55 50"000.00 50"000.00 50"000.00

Mathematical reserves and the value of the VaPo
50000 T T T T

40000

30000 -

20000

CHF

— MR,
— -V _glerm structure 2002
— - V| _gderm structure 2000

10000

10000 - R
50

6.1.2 Annuity

Again, we consider the annuity described in Section 5.3 and put the figures of
the table ERM 2000'into the valuation scheme B. Note that the terminal age w
of ERM equals to w = 119.
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Valuation scheme B:

units number of units
(&

Z.65) 15000
A 14'890
Z(67) 14773
7(68) 14'646
F46% 14’510

Z(“; -1) 6
Zw 0

[n order to value this scheme we have to know the prices of the zero coupon
bonds with duration to maturity up to 119-65=54 years. For the term structure
given in the Appendix A.4, zero coupon prices are available only for time to
maturities equal to 10 years (term structure 2000) and 30 years (term structure
2002). We consider two possibilities to fill in these gaps. For this purpose we
denote by 7 the maximal time for which the price of the zero coupon bond is

known (e.g. 7 = 10,7 = 30):

° We set the internal interest rate of zero coupon bonds with duration to
maturity less than 7 years equal to the internal interest rate of the zero

coupon bonds Z5+7) e,

P(65,65 + k)

k<t
$a(25H9) =
P(65,65+7)", k>T

)
k
=

o We include all the cash flows with time to maturity greater than 7 to one
cash flow at year 7, i.e.

P(65,65+k), k<

Ya(Z20) =
P(65,65+7T), k>

Using these two versions of 1 and the technical interest rate 2.5% we calculate

the fair value and the mathematical reserves at age 65, assuming 7=10 years

(term structure 2000) or 30 years (term structure 2002).
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payments | Vgs|es , term structure 2000| Vis|gs , term structure 2002 M Rgs
at age V3 Py 3 n
65 157000.00 157000.00 | 15'000.00 157000.00 | 15'000.00
66 14'330.24 1433024 | 14'752.59 14'752.59 | 14'527.11
67 13'634.16 13'634.16 | 14/381.83 14'381.83 14'060.69
68 12/938.64 12'938.64 | 13/926.19 137926.19 | 13/600.41
69 12272.33 12/272.33 13'426.74 13'426.74 | 13'145.72
74 9'126.99 9'126.99 | 10'684.29 10'684.29 | 10'938.93
75 8'545.98 8'545.98 10"129.13 10'129.13 10'507.72
76 8'029.49 8/402.08 9'571.74 9'571.74 | 10'078.81
9l4 1'482.52 3509.72 2/026.84 2/026.84 2/699.39
95 1'270.70 3'147.86 1'763.04 1'763.04 2/362.02
96 1'077.77 2/793.80 1’511.76 1'564.74 2/045.22
total 218'141.69 | 267'779.49 | 252'873.64 | 254'219.93 272'965.81

As before, we look at the different values for future ages of the contract:

values Vales » term structure 2000 V65 » term structure 2002 MR,
at age w Y3 N P W4
65 218'141.69 | 267779.49 | 252'873.64 | 254'219.93 | 272/965.81
66 212/636.09 | 264'593.85 | 241'863.00 | 243'231.87 | 266'363.13
67 207'726.18 | 262'336.58 | 232/711.39 | 234'115.55 | 259'701.41
68 203'086.14 | 260'632.12 | 224’834.60 | 226/284.70 | 252'982.89
69 217'640.02 | 219'144.06 | 246'214.29

198'298.03

258'968.39
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Mathematical reserves and the value of the VaPo

300000 T T r T v L ! ! ! 1
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200000
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L 150000
@)

100000

50000

65 70 75 80 85 90 95 100 105 110 115

6.2 Recursive calculation of the monetary value

6.2.1 Thiele’s difference equation

The mathematical reserves can be calculated recursively with Thiele’s difference
equation:
MR:,, =ai™(t+3)
+ > v pig(t+ $){a™(t+s) + MR} (5)
JES
We imagine being at age ¢ and identify this ¢ to coincide with the year 2000 or

2002. In the above equation vy denotes the annual discount rate during the
time interval [t + s,¢+ s+ 1) and MR}, ; the mathematical reserves at age ¢ + s

if the policy holder is in state .
The same method is also applicable to the valuation of the VaPo:

Question: How does vy look with respect to the calculation of MR, and
‘/F‘+s|t?
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Answer:

o M Ry4s: We use the normal discount factor

Vs = V.

° Viyspe: The forward short rate f(¢,r + s) (see Appendix A.3) gives us the
right answer. In (5), replace v, by

1 Pt,r +s+1)

L+ f(t,r+s)  P(t,r+5s)

Upgs =

As a consequence of this fact, we can calculate fair values by means of Thiele’s
difference equation, using the appropriate parametrization.

6.2.2 Examples

L. We look again® at the endowment policy of a 50 year old person. In the
event of surviving s years, the recursion (5) for the value of the VaPo is
V5045150 = ;" (50 + 8) + Usoys Psots {abe(50 + s) + Vs0-4-5+1)50 }
+ Vso4s G50+ a4 (50 + ),

P(s0,51+8) o .

with the initial condition Vsg = 0, vsgs = P(50,50 + )"
B 3 S

2 Annuity described in Section 6.1.2

‘ P , f
Vosts(65 = Gy (65 + ) + V6s+s * Dos+s * Ves+s+1/65 »

with the initial condition V, =0, s =0,...,w.

6.3 Some other possibilities for 1)

In this section we will show another possibility for ¢ relating to the use of first
and second order tables within the life insurance industry. Under second order
tables we understand the best estimate values for ¢, etc. Under first order tables
we understand tables with a PAD (provision for adverse deviation), which are
normally used for pricing and reserving.
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In the following we consider an annuity in payment with the following basis

elements for JF:

ZW  expected payment of one unit at time 4 based on second order basis.

W) Difference between expected payments of first and second order tables at
time 7 with an amount of 1. We consider W () for the modelling of security

loadings.

As financial instruments Z() represent zero coupon bonds and W swaps
expressed in zero coupon bonds reflecting the uncertainty of the insurance contract
at time i. For an annuity of amount C' at age = = 65 we have the following

valuation scheme

age unit 2

unit W@

65 C
66 |p:f,1 -C

z4+7 | plf-C

0
(I’Pi- - |’P5€-[) -C

(-pL - -pI)-C

Now we can define the following accounting principles:

definition

map description

book value
s .

first order

book value
Ve

second order
4 fair value
0 )

with PAD
, fair value
g

w/o PAD
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Remarks:

° Ps(f) for f € F is usually called the statutory technical reserve and 1s( f)
the second order mathematical reserve.

° The value

WD) =1 = (Y mP@,i)) [ (3 MP(w,i) 2 € {50,65)
can be‘interpreted as the demographic loading for the table.

In a second step we now want to look at the corresponding numerical values.
Therefore we consider a 65 year old person together with the generation table
ERM?2000 for the first order basis and for the second order basis. In order to
compare the different types of reserves we assume a technical interest of 2.5%
and ignore the single premium payment, i.e.

§={x1},

C, t=65,...,w
a,;(t) =
0, else

all other contractual functions being 0.

In this case we get the following valuation scheme

number of units

15000 1A

age | unit ZG | unit W (. | ' ' "
65 | 15'000.00 0.00 |

66 | 14'881.52 877 |

67 | 14'754.20 1832 %

68 | 14'617.26 | 28.89

69 | 1446978 | 40.64 & *

70 14'310.84 53.67

~

0 10 20 [ 50 60
duration T
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And further the valuation

map term | extrapola- | value of the | value of the value
struc- | tion term unit 2 unit W (%)
ure structure
s | book value 264'958.07 | 8/007.74 | 272/965.81
first order
s | book value 264'958.07 264'958.07
second order
Wy | fair value 2000 s 213'246.13 | 4895.57 | 218'141.69
with PAD 2002 3 246'491.96 6'381.68 | 252/873.64
2000 i 258'105.70 | 9'673.79 | 267'779.49
2002 N 247'483.25 6'736.69 | 254'219.93
s | fair value 2000 s 213'246.13 2137246.13
w/o PAD 2002 2 246'491.96 246'491.96
2000 N 258'105.70 258'105.70
2002 1y 247'483.25 247'483.25

Before ending this section we also want to mention that there are various other
possibilities for F and which can be used to solve the respective concrete
problems. An example for a valuation basis F could consist of {Z();i € N, e}
where Z() represent zero coupon bonds with different maturities, reflecting the
expected payments and where e denotes a financial instrument representing the
difference between the expected payments and the random variable. Therefore ¢

reflects the pure insurance risk.

7

7l

Introduction

Technical gains / losses

The valuation schemes used yield a valuation for a deterministic model. The
question now arises what happens if the actual number of deaths deviates from

the expected one.
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Let us assume that all transition probabilities remain unchanged except p, and
¢, which are replaced by their observed values p, and ¢,

p:l.‘ — p:l,

(IJIJ = q:!: .

Again the endowment policy and the annuity will be considered. First, we
calculate the value of the VaPo with the observed values. Second, we look
at the difference between the two values.

7.2 Examples

7.2.1 Endowment policy

We consider again the endowment insurance with a cover period of 5 years for
a 50 year old person.

Valuation scheme B at age 50:

unit number of units for one person
e premium death benefits maturity benefits
Z0) I
Zeh —pso - 11 Gso  C
ZOD | —pso - P (51,52) - 11 Pso - pat(51) - C

ZO0 | —Pso - pax(51,53) - 11| Pso - Pax(51,52) - put (52) - C

Z0D | —pso - pan(S1,54) - 11| fso - pas(51,53) - piy(53) - C
28 Bso* Prs(51,54) - puy(54) - C | Fso - pus(51,55) - C

This valuation scheme is not the same as on page 35. We analyze the difference
between the two schemes, which is also an element of F, as F is a linear vector
space. We subtract the number of units of the scheme from the number of units
of the valuation scheme B on page 35.
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Notation: Apy =Py — Pey Az = @@ — Ga-
unit number of units for one person
e premium death benefits maturity benefits
7(50) 0
7(51) —Apso - 11 Agso - C
7062 | _ Apso  pee(50,52) - T1 o i - P (50,51) - put (51) - C
Ps0 Pso
7(53) B Apso - pex(50,53) - TI ﬂ-‘ﬂ - e (50,52) - puy (52) - C
P50 pso .
‘ A
760 | AP (50, 54) - T1 P30 . pan(50,53) - put(53) - C
P50 pPs0
A A
7(55) P . pun(50,54) - put(54) - C | =ER 4. (51,55) - C
Ps0 Pso

Consequence: It is important to understand gains and losses expressed in units,
i.e. the annual gains and losses represent also a portfolio (ditference of two

different VaPo’s).

Generalization: We use the same notation as on page 35 to look at the difference

between the two schemes.

number of units for one person

unit
(&9} /\t
Z(:L‘) 0
Z(1:+l) _Ap;t: I + Aq;v C

= [— Pas (T, 1) aF() + po(, t — D) pai(t — 1) af:?“(t - 1)

+Pux (2, 8) a2 (£ — 1)

Remark: For t > x + 1 the technical gain/loss is a multiple of the number of
units in the deterministic model. The factor is Ap,/p,.
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Example: We take ¢sp = 1.5 - gso and receive the following values:

unit number of units for one person total
e premium | death benefits | maturity benefits

A 0.00 0.00
gains/losses  ZOD | 19,53 | —104.16 ~123.69
inunits  Z02 | _19.44 0.48 ~18.96
ZG3) | ~19.34 0.53 ~18.82
ZG% | -19.23 0.58 —18.66
yASS) 0.63 101.52 102.15

We would like to draw the attention to the sign of the number of units. The
premium income of the new ValPo is smaller and the death benefit at the end
of age 50 is much higher compared to the old VaPo, although we have two

negative signs.

The value of the above VaPo is:

payments AVsg)s50 » term AVspis0 » term AM Rs

at age structure 2000 structure 2002
50 0.00 0.00 0.00
tar 51 . —119.04 —122.54 —120.67
T - ~17.50 ~18.46 ~18.05
gatlis £ 108 53 ~16.62 ~17.89 —17.47
54 —15.78 —-17.26 —16.90
558 82.68 91.74 90.29
total —86.26 —84.42 —82.81

Consequence: The value of the new VaPo is higher than the old one due to the
negative sign. Moreover, the value of the new VaPo with structure 2002 has a
positive sign (see the corresponding value on page 44):

—~11.67 — (—84.42) =72.75.

7.2.2 Annuity

We consider the annuity described in Section 5.3 and work out the valuation
scheme B with the changed mortality ges.
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Valuation scheme B at age 65:

unit number of units for one person
(&%) /\t

Z'%) C

Z(66) Pes - C

AL Pos - Pxx (66,67) - C

Z198) Dos - Prx(66,68) - C

VAL Dos - Px+(06,w) - C

We look again at the difference of the schemes before and after changing the
mortality rates qes:

unit number of units for one person
Ct /\t

A 0

AL Apes - C

Z(67) Apes ., (65,67)-C
Pes

7(68) APes ., (65,68) - C
Pos
A.

Z(«) PS5 . pes(65,w) - C
P65
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Generalization: We use the same notation as on page 35 and look at the difference
between this scheme and the scheme on page 42.

unit number of units for one person
€ /\t
Z(:L‘) 0
A
ZW t> g pp:c Pei(z, 1) - ™ (8)
€T

Remark: Again, for ¢t > x the technical loss/gain is a multiple of the number of
units in the deterministic model with the factor Ap,/p,. If p, < p, then the
value of the new VaPo is still smaller than the value of the old one because
Apy = Dy — Pg > 0.

In numbers:

Valuation scheme B at age 65:

unit | number of units for one person
€} ’\t
Z(53) 0.00
gains/losses Z\%) 54.86
in units 27 54.42
215 53.96
Z%) 53.46
AVgsies AVsies
payments | term structure 2000 | term structure 2002 AM Rsg
at age P (N n Py
65 0.00 0.00 0.00 0.00 0.00
66 52.79 52.79 | 54.35 54.35 53.52
Hmionetaty 67 50.23 50.23 | 52.98 52.98 51.80
gains/losses g 47.67 47.67 | 51.30 5130 | 50.10
69 45.21 4521 | 49.46 49.46 48.43
70 42.83 42.83 | 47.52 47.52 46.77
total 748.36 931.23 | 876.31 881.27 950.33
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Consequence: As mentioned before the value of the new VaPo is smaller than
the value of the old one. Because the actual number of deaths is higher than the
expected one, the annuity payments are reduced and therefore the VaPo has a

lower value.

A Time value of money

A.l  Introduction

The market value over time of investment bonds depends on the term structure
of interest rates. This dependency can be expressed by interest rate curves as:

° the time curve of zero coupon prices;
] yield curves;
° the curve of forward short rates.

A2 Price structure of zero coupon bonds

The market trend of financial instruments is random, therefore we clearly have
to say when the financial instruments are considered. We assume to be at time ¢:

A zero coupon bond Z+T) is a financial instrument paying one cash unit at
time ¢ + 7" with absolute certainty:

z4T=(0 ,0,...,0, 1 J0,...).
L1 t+T

We will use the notation Z(T) instead of Z{¢+7),

Question: How much does 7 (T) cost at time t + 77

Definitions: We call this price P(t,t+ 7.t +T'). The price is fixed at time ¢ and
will be paid at time £ + 7.

If =0, P(t,t +7T):= P(t,t,t +T) is named the spot price.

If 7 >0, P(t,t+7,t+T)is called the forward price.

The curve 7y, : s +— P(t,t + s) is referred to as the time-t curve of zero coupon

prices.
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Remark: The shape of v;(s) depends on t. For every t, we get a new curve.

Proposition: Knowing all spot prices, the forward prices can be calculated by the
formula

P(t,t+T)

P(t,t+’l’,t+T): “]3'(-{“5_'_—7_)

A3 Interest rates
Definitions:
Yt t+7,t+T):=Plt,t+7t+T) T+ — 1.

If7=0,Y(tt+T):=Y(ttt+T)is named the spot rate.
Ifr>0,Y(tt+7t+T)is called forward rate.

The yield curve &; : s+ Y (t,t + s) shows the connection between the interest
rates and the time to maturity of zero coupon bonds. It is a snapshot of the term
structure at time .

T =7+1, f(t,t+7) =Y, t+71,t+7+1) is called the forward short rate
The curve oy : s +— f(t,t+ s) is referred to as the curve of forward short rates.

Proposition: The fundamental relations between zero coupon prices and interest
rates are the following:

|
[l +Y(t,t+7t+T)7-"

Pt t+1,t+T)=

L+ Y+ D) =1+ Y+ LY (et + T

l
M+ fEO)L+ fEt+ D). 1+ fE,t+T - 1))

P(t,t+7T) =



A4 Term structures

Term structure 10.5.2000: Swap rates,
term structure 26.11.2002: CHF LIBOR Terminraten,

both converted into zero coupon prices.

duration term structure 10.5.2000 | term structure 26.11.2002
to maturity spot rates value spot rates value
s Y(t,t+s) | Pit,t+s) | Y(t,t+3s) | P(tt+s)
1 3.91% 0.96239 0.93% 0.99075
2 4.09% 0.92294 1.35% 0.97355
3 4.22% (0.88342 1.69% 0.95084
4 4.28% 0.84576 1.96% 0.92532
3 4.32% 0.80940 2.17% 0.89806
6 4.38% 0.77322 2.35% 0.86984
7 4.45% 0.73727 2.50% 0.84112
8 4.52% 0.70210 2.64% 0.81157
9 4.58% 0.66809 2.77% 0.78209
10 4.64% 0.63535 2.88% 0.75305
Il 2.98% 0.72380
12 3.08% 0.69501
13 3.16% 0.66736
14 3.23% 0.64082
15 3.29% 0.61539
16 3.34% 0.59109
17 3.38% 0.56787
18 3.42% 0.54571
19 3.45% 0.52460
20 3.48% 0.50446
21 3.50% 0.48527
22 3.52% 0.46704
23 3.53% 0.44980
24 3.54% 0.43355
25 3.55% 0.41833
26 3.55% 0.40420
27 3.54% 0.39101
28 3.53% 0.37860
29 3.52% 0.36691
30 3.50% 0.35585
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Abstract

This paper illustrates one possible way to value a life insurance contract. The difficulty in giving
a value to an insurance contract is the fact that there exists no liquid market for these contracts.
However there is a liquid market for many financial instruments. Therefore we represent a life
insurance contract as combination of financial instruments with payoffs which match the expected
liabilities. Instead of valuing the insurance contract, we value the portfolio consisting of the
financial instruments. Applying different accounting principles on the same portfolio we attach the
mathematical reserve or the fair value to the portfolio.

Zusammenfassung

Dieser Artikel zeigt eine Moglichkeit, wie Lebensversicherungsvertrige bewertet werden konnen.
Weil kein liquider Markt fiir Versicherungsvertrige besteht, ist es schwierig, ihnen einen Wert
zuzuweisen. Wir umgehen dieses Problem, indem ein Versicherungsvertrag als Kombination von
Finanzinstrumenten dargestellt wird mit Payoffs, die den erwarteten Verpflichtungen entsprechen,
denn fiir die meisten Finanzinstrumente existiert ein liquider Markt. Auf diese Weise kann anstelle
des Versicherungsvertrages das Portfolio bestehend aus Finanzinstrumenten bewertet werden. Durch
Anwendung verschiedener Bewertungsprinzipien auf das Portfolio wird das Deckungskapital oder
der Fair Value bestimmt.

Résumé

Cet article décrit une méthode d’évaluation pour les contrats d’assurance vie. La difficulté d’une
telle évaluation réside dans l'absence de marché liquide. Nous contournons ce probléme en
représentant un contrat d’assurance vie comme combinaison d’instruments financiers dont les flux
sont identiques a I'espérance mathématique des engagements. Comme il existe un marché liquide
pour la plupart des instruments financiers, nous pouvons alors évaluer le portefeuille de ces
instruments financiers au lieu du contrat d’assurance. En appliquant différents principes comptables
au méme portefeuille, on peut calculer la provision mathématique ou la valeur juste.
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