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B. Wissenschaftliche Mitteilungen

G. Baumgartner, H. Bühlmann, M. Koller, Zurich

Multidimensional valuation of life insurance policies
and fair value

1 Introduction

The aim of this paper is to set out a formal framework of modern valuation
techniques for both life insurance portfolios and contracts. The main idea behind
it is to represent a life insurance contract as a linear combination of basic financial
instruments. We combine these financial instruments to create a multidimensional
valuation portfolio. As there is no liquid market for insurance contracts, we cannot
directly value these contracts. However, for many financial instruments a liquid
market exists. When speaking about the fair value of liquidly traded financial
instruments, then usually refers to market values, i.e. market prices at a specific
date.

In order to price financial instruments which are not liquidly traded, we try to
replicate cash flows from this financial instrument by a combination of liquidly
traded financial instruments (financial engineering, option pricing) and then take
the value (or price) of this replication portfolio as the value (or price) of this
financial instrument. It is normally not possible to replicate pure insurance risks
with financial instruments. But we can replicate expected more generally their
certainty equivalent cash flows arising from an insurance contract, provided we
assume the existence of risk-free instruments for different maturities. In order
to stress the fact that not cash flows themselves but their expected value are
replicated, we are going to use the term KaPo instead of replication portfolio.
Firstly, the actuarial analysis is performed on this multidimensional valuation
portfolio. Secondly, a single number is attached to the valuation portfolio, such

as the traditional mathematical reserve or also any value within the family of fair
value concepts. The procedure follows [De Felice and Moriconi (2002)|.

Specifically, a traditional non-participating life insurance policy can be represented
as a linear combination of zero coupon bonds, which are then valued in a second

step. If the VaPo consists only of zero coupon bonds the calculation of the fair
value and the mathematical reserve is almost the same, only the discount factors
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value of the zero coupon bond) are different. In more general VaPo's, values

of other financial instruments (e.g. European options) may also be included.

Initially, we will introduce some notation to represent a life insurance contract
and to have a formal framework for our valuation. Thereafter, a general procedure
will be outlined which forms a part of our valuation process. Finally, we will
also consider the technical gains and losses caused by the observed mortality.

We will illustrate the concept based on the following two examples:

I Endowment policy with annual premium payment,

II Annuity in payment with single premium payment.

2 Notation

In order to have a formal framework for developing the concept, we first
need some notation. We need to define the vector space of life insurance

policies 0 and also the vector space P spanned by financial instruments e* (i.e.

P (ei,... ,e„j)). In the following we will use a rather general representation
of life insurance policies by means of a Markov model. For the standard actuarial
notation that is used in this paper we refer to [Gerber (1997)].

The Markov model is described by the contractual functions and the

transition probabilities

ap^(f): Payment at time if the person is in state i at time i, e.g. premium
payment;

Payment at time f + 1, if the person is in state i at time f and in state

j at time £ + 1, e.g. death benefit;

Pij(t): Probability of switching from state i to state j in the time interval

[£, £ + 1).

We consider a life insurance contract of a person aged x. (fc can be represented

by the contractual functions:

.9, := 9,«",«if! M6S),

where x denotes the age at entry of the insured person and .5' the set of states.

We write 5 for the set of all possible life insurance contracts.
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The set (vector space) of financial instruments needed for multidimensional
valuation is denoted by J". It is convenient to choose financial instruments e*
which form a basis ß {ej,... ,e„} of JF, i.e.

— (^1 • • • t ^m) •

We will also call the financial instruments e* un//.s, because they span our financial
instruments universe. It is important to distinguish the units from their monetary
value. With the above notation we can represent each financial instrument using
the basis ß. Therefore we only need information about the units e< and not about

any other financial instrument.

At this point it is also important to mention that there might be different choices
for the vector space JF For a traditional non-participating insurance policy J" will
normally consist of zero coupon bonds with different maturities. However, for
more sophisticated policy constructions it could also include other instruments
such as equities, (European) options or also instruments which represent the

difference between the expected cash flows and the random cash flows induced

by the effects of mortality.
In the following we will denote by a zero coupon bond. A zero coupon
bond is a security paying the amount of one monetary unit at time f + fc. With
P(£,£ + fc) we denote the price of this zero coupon bond at time £ (see Appendix
A). The redemption yield of such a bond can be calculated by the formula

P(£, £ + *;)"* - 1

3 Procedure

The valuation of an insurance contract can be done using the following procedure:

• First, we define a linear mapping </?, the va/uar/on, from the set of insurance
contracts Ç? into the vector space F" of valuation portfolios spanned by the
units e*, i 1,... ,m:

: (7 —> F

~ £Ai(<£)e;, 0)
i=l

where A; (<7) denotes the number of units e; needed to represent the
insurance contract </.



Eramp/e of a pure endowment policy of a 30 year old person with maturity
5 years, maturity benefit of one monetary unit and annual premium payment
II. Then

Ai(fiO -n ei

A2(t?) -n 1P30 e2 - Z0O+O

A3(ff) -n 2P30 Ê3 ^(30+2)
and

e4 Z(30+bA4(5) — II 3P30

As(s) -Il • 4P30 ej z(30+4)

Aö(ff) + 5P30 eg ZPO+S)

In a second step we price the valuation portfolio in a monetary amount by

applying the rzccoMntmg pr/nc/pfe r/u

-0 : .F —> R
m m

i= 1 i=l

defined as a linear mapping, i.e.

m m

i= I i=l

Conm/nunce: Again we only need to know </>(<".;), / 1,..., m, in order to
determine the monetary value of an insurance contract. However, this can
be complicated as the prices of certain units might be difficult to calculate

(in particular if no liquid market exists for them).

Confiwmfion of the above example: We choose the calculation of the

mathematical reserve as the accounting principle. In this example ?/>(ek) is

the normal discount factor calculated by the technical interest rate i, i.e.

and

- n - n • ,P3o '' - n • 2P30 • ^
^ fc=i A

- fl • 3P30 • vA - fl • 4P30 't/* + 57J30 •
•

m

i= I
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Sc/iemafi'c repre.renlalion:

reality model

At this point it is useful to remark that the mapping ^ defines the accounting
principle applied to the valuation portfolio. There are different possibilities to
define 0, as we will see in a moment. The mapping </> can be defined such that
it represents the valuations in terms of classical mathematical reserves. But it is

also possible to define V in a way to get a variety of valuations which can be

summarized under the concept of fair values.

ftemarP As we consider only finite dimensional vector spaces .A in this paper,
we do not need to worry about continuity of the mappings <p and V as both of
them are linear.

4 Valuation process

We divide the valuation process into three steps:

Step /: We define appropriate «ni/s e^, i 1,..., m, where m denotes the number
of different units used. Each financial instrument represents a possible cash flow
from the payer or to the beneficiary of the policy. The units should form a basis

of all valuations for that policy and span the vector space J" (ei,..., ej.

Step 2: We perform a multidimensional valuation in units with a va/uai/on

porl/b/io (Va-Po) by use of the mapping <p defined in (1).

Step We transform the va/ua/i'on in unite into a monetary accounl by use of
the mapping i/> defined in (2).



32

5 Examples

5. / introduction

In Section 4 we described the three steps of the valuation process. We will
illustrate this process for an endowment policy and an annuity step by step in the

following subsections.

5.2 Endowment po/icy

5.2.1 Situation

We consider an endowment policy with premium payments for a 50 year old
person:

death and maturity benefit C CHF 50'000

age at entry a; 50 years
contract term n 5 years

Äemark'

1. The time scale is in years. For the ease of notation, the time is equal to
the age of the insured person.

2. Benefits are paid at the end of the year when death occurs or at maturity
of the contract.

3. Premiums If are due at /Ac beginning of each year.

4. There are no administration charges.

Convention; Payments receivabie by the policy holder have a positive sign
whereas payments to be marie by the policy holder have a negative sign.

Description o/ fbe insurance contract;

State space 5 {*, f}, where * symbolizes aiive and f represents c/ear/.

Contractual functions:
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The transition probabilities in the period [f, f + 1) are as follows:

P..(f) Pt

9«

Pt*(t) 0

PttW i

Insurance contract: (/50 f/5o(a*"S a***')-

Note that the contractual functions and the transition probabilities are defined
for f 0, 1,2, ...,w where cu denotes the ultimate age in the life table. This
definition is helpful to generalize the procedure (see page 37).

Onr ta.sT: What is the value of this insurance contract

at age 50

at age 51

at age 52

at age 53

at age 54

> be/bre the premium payment fl?

/?e»j£ir£: There are current discussions on fair value and the most important
value is the "value at issue", i.e. the value of the contract at age 50. To see the
evolution of the contract's value it is also interesting to calculate the values after
issue.

In the following we will perform the different steps of the valuation process:

Step I: Definition of the vector space J"

Premium: The premiums H are paid at the beginning of the period (ßoP)
[t, £ + 1), f 50,..., 54. The unit et is a zero coupon bond

with duration f - 50 paying CHF 1 at the beginning of
age t. The premium payment II is therefore represented in
units of such zero coupon bonds.

Death benefits: The death benefits payable at the end of the period (£0P)
[i, f + 1) are also considered as zero coupon bonds 2^'+'),
i 50 54.
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ßemur&: As the death benefits are paid at the end of the year
f they are represented by the units Z^+'> paying CHF I at

age f + 1.

Maturity benefit: The maturity benefit at age 55 is represented by the unit

As a consequence we need the following six units:

Z^, f 50,51,52,53,54,55

They form the basis

ß {Z*\ z", z", Z», Z* Z»}

for our valuation.

5.2.2 Valuation in units at age 50

Step 2: Valuation in units

We consider two valuation schemes:

• Sc/teme A describes

- w/jen the premiums are received and the benefits are paid,

the am««n/ of these payments.

• ScAeme ß shows

the sort o/ units enclosed in the portfolio: e[,..., e.
the «umßer of the different units: Ai (<7so), • • <Vn(ff5o)-

We get all the information needed from the contractual functions and the transition

probabilities.
Observe that Scheme A describes the possible cash flows of premiums and

benefits, whereas Scheme B expresses the cash flows in units of financial
instruments.

Compiling these schemes for an endowment insurance, we will first carry out
the valuation for /50 people using the life table and afterwards we will show an

abstract valuation for one person. This valuation is general and is valid for all
insurance contracts.
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Valuation at age 50 for Z50 people:

Vii/aat/on .vc/iewe A:

payments in

interval [f, f + 1

unit

et

nun

premium

ibcr of units foi

death benefit

Z50 people

maturity benefit

BoP 50

BoP 50

2(30)

2(51)

—(50 • n
(/so • P

BoP 51

BoP 51

^(51)

2(52)

-(51 • ii
(/si -P

BoP 52

BoP 52

2(52)

7(53)

-(52 • n

r/52 • P

BoP 53

BoP 53

2(53)

2(54)

-(53 n

c/53 P

BoP 54

PoP 54

2(54)

2(55)

-(54 • n
((54 • P «55 ' P

Note that the premium payments correspond to short position in the valuation

portfolio.

Va/nnfion sc/iewe ß:

unit number of units for /so people

et premium benefits total

2(50) —/so • n -/so • II
7(51) -/si • n c/50 • P — «S

1 ' H + (/so ' P
2(52) -Z52 • H (/si • P — ^52 ' n + C?5| • c
7(53) -«53 ' II c/52 • P —(53 • II + c/52 p
2(54) -Z54 • n (/S3 ' P —(54 • n + c/53 ' P
7(55) c/54 • P /S5 • P ^55 ' C "f" f/54 ' C
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Valuation at age 50 for one person:

We obtain the valuation schemes A and B for one person by simply dividing the

payments by Z50. The relations

£-1 t-1
£—a;

0,

=n ^=n p** w ==p** (®, <), f >
A;=cc /c=cc

t a:

else,

£-1

dt J -r -p- — % 't-x Px 9t Pfc =: P*t(Z) • p**(x,i), f > x
/c=x

else,

yield to the following payments in the interval [f,f + I):

premium: p**(50,f) • a^(i) •

death benefit: p**(50,t)

maturity benefit: p*«(50, i + 1) • • Z^+"

Vct/ttd/to« vc/ieme A:

payments in

interval

[t,t + 1)

unit

et premium

number of units for one pet

death benefit

son

maturity benefit

ßoP <

£oP f

2(0
2(t+')

p. «(50, t) •

p*,(50, f) -p»t(t) p„(50,t + l)-o^'(t)

Vci/uaho« sc/tewe Ö:

unit

et

number of units for one person
At

z« p*»(50,f) • aj*(t) + p»«(50,t - 1) -p*f(f - 1) a«°*'(Z - 1)

+p»«(50, f) • a«°"(f - 1)
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With the mapping <p given in (1) we obtain:

</>5o(P5o) — / p**(50, f) •

«=0

+p,«(5o,*~ l) - - o • - ')

+ p„(50,<)-a^"(t-l)]zW
OJ

^p.*(50,f-l) p**(f) • a^(f)

+ p,.(t)-«£"(*- l)]z<«>

]Pp**(50, £- l)[p**(£)

+ p«t(t - 1) a»f (f - 1)£

+ p„(t)-a*"(i- 1)1 Z<«>

£=0

55

£=50

(3)

(4)

The last equation follows since a^(f) a^'(f) a»°*'(0 0 for £ < 50 and
£ > 54.

The above described algorithms are true for an arbitrary Markov model. The

corresponding formulae have to be generalized slightly.

5.2.3 Valuation in units at age 51

Step 2: Valuation in units

Again we consider the valuation for £51 people and also for one person.

Valuation at age 51 for £51 people:

Our valuation scheme A at age 51 corresponds to the valuation scheme A at age
50 leaving out the premium payment and benefits at age 50.
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Vo/norton sc/tme A:

payments in

interval [i,i + I)

unit

et

num

premium

ber of units for
death benefit

/51 people

maturity benefit

PoP 51

PoP 51

^(51)

£(52)
-is. n

rfsi • C

PoP 52

PoP 52

£(52)

^(53)

-«52 n
^52 • C

PoP 53

PoP 53

^(53)

£(54)
-te • n

C?53 • C

PoP 54

PoP 54

£(54)

£(55)

-«54 • n
d54 • C '55 c

Va/tw/to« scheme ß:

unit number of units for /51 people

et premium benefits total

£(51) -ist • n -«51 • n
£(52) -Z52 • n r«51 • C -«52-n + dsi -c
£(53) -«53 n C«52 ' C «53 • n + f«52 • c
£(54) -«54 • n r«53 C —^54 * n + f/53 • c
£(55) r/54 • c «55 • c ^55 • C + c/54 • c

Valuation at age 51 for one person:

We divide the rows of the valuation scheme by «51 and obtain the following

payments in the interval [t,t + 1):

premium: p**(51,<) •

death benefit: p**(51,i)

maturity benefit: p„(5l,t) • p('+'«
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Vfo/wa/f'o« .vc/mme A:

payments in

interval

(M + 1)

unit

e« premium

number of units for one per

death benefit

son

maturity benefit

t 2<t)

£<t+i>
p,.(51,t)-aî"(t)

P»»(51, t) P„t(0 ' ®»t*(0 p„(51,f+ l)a^'(t)

Vfc/uaf/on se/terne ß:

unit

et

number of units

zw p„(51,f) •oJ"(Z)+p**(51,t- 1) • P*t(Z — 1

+ p..(51,Z)-a*?(i- I)

With the mapping </? defined in (I) we obtain:

¥>5i(550) S P**(5M) • a» (Z)

i=l
+ p..(51,Z- l)-p.t(«- I)

+ p„(51,0-aSf(<- 1)]^"

E P.*(5 M - l)[p..W • +p,t(i - 1) • (Z - 1)
t=i

+ p,*(Z) • «*?'(< - 1) ZW

5.2.4 Valuation in units at ages 52, 53 and 54

Valuation at age Z for Zt people, Z 52, 53,54:

The procedure is the same as at age 51 and the premium payments and benefits
at previous ages are left out in the valuation schemes.

Valuation in units at age Z for one person, Z 52,53,54:

The valuation schemes are the same as at age 51 for one person. We simply have

to replace 51 by 52, 53 or 54, respectively.
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5.3 A««i</ry

5.3.1 Situation

We consider an annuity in payment of a 65 year old person:

annuity payment C CHF 15'000 per annum

The transition probabilities in period [£,£ + 1) are as follows:

p**(£) Pt

P*tW 9«

Pt*(0 o

p+t(f) I

Insurance contract: </65 £?65(a*^)-

Oar tos'fc: Which is the value of this insurance contract

at age 65

at age 66

at age 67

at age w — 1

at age cu

Step I: Definition of the units

The annuity payments C payable at age £ are represented by the units ZW,
£ 65,...

age at entry x 65 years

Description o/ £/re /«««ranee contract:

State space 5 {*, f}
Contractual functions:

> always be/ore the annuity payment C?



Therefore the basis consists of

ß= {ZW; t 65,66,67,..., w}

5.3.2 Valuation in units at age 65

Step 2: Valuation in units

First, we look at the valuation for Zes and then for one person.

Valuation at age 65 for people:

Vh/j/rtf/o« sc/te/ne /\:

payments in unit number of units for

interval [i, £ + 1) et ?65 people

ßoP 65 2(65) ^65-C

ßoP 66 2(66) /66-C
ßoP 67 2<67) ^67 ' C

ßoP 68 2<68) ^68 ' C

ßoP w - 1 L 1 -C
ßoP Ol L-C

Vb/uaft'on .vc/tcme /?:

unit number of units

et At

2(65) ^65 ' C
2(66) ^66-C
2(67) /ô7 ' C
2(68) ^68 ' C
2(69) ^69 ' C

2(w-i) k-i -C
2(w) L-C
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Valuation at age 65 for one person:

We look at the payments in the interval [t, < + 1) and divide them by Iôs- By
analogy with Section (5.2.2), we obtain

Va/nation scheme A:

payments in unit number of units for one person
interval [£,t + 1) et At

I?oP f zw p**(65,f) • tt^(f)

Va/nation sc/ie/ne ß;

unit number of units

et At

z« p**(65, t) af®(t)

With y as given in (I) we write in short

Mfe) £>..(65,i)-af"(t)] Z<«>

t=i

The valuations at age 66,. ,.,w are calculated analogously as in Sections 5.2.3

and 5.2.4. At this point it is important to remark that formula (3) remains true

also in this case.

6 Monetary Valuation of the VaPo

6./ Basic concept

As indicated in the introduction, the valuation portfolio is evaluated by the

function t/>.

Step 3: Monetary valuation

In (2) we formally detined the map '0 which transforms a valuation in units

(read a valuation portfolio) into money. The function </; can be regarded as an

accounting principle (or as a pricing system).

r/i : Portfolio in units >—> Monetary amount.



43

Qwe.vrio«/ How does V look like?

There are several possibilities. We consider two of them immediately and show
some possible extensions later.

1 f statutory book value 1

> assigns the < > to the units.
-02 J I market value J

First, we look again at the endowment insurance of the 50 year old person and
then at the annuity of the person aged 65.

At this point it is worthwhile to mention that all the calculations performed in the
classical life insurance mathematics such as the fact that the mathematical reserve

equals the present value of the outflows (benefits) minus the present value of the

inflows (premiums) are valid also in this context, as only linearity of the different

maps is required.

6.1.1 Endowment policy

Statutory book value (Traditional mathematical reserves)

The book value of the KaPo gives us the mathematical reserves (Mi?), i.e. the
value of the zero coupon bonds is calculated with the technical interest rate.

Pvamp/e: The book value of the zero coupon bond Z^ with duration to maturity
t — 50 has the value

where (1 + i)~'. Here i denotes the technical interest rate.

Market value

The market value of the HaPr; gives us the /«;>' w//«e. Each unit has its market
value.

£jram/?/e: •= P(50,51) corresponds to the value or price of a zero

coupon bond at age 50 with maturity one year (see Appendix A.2).

(Vota/ion: We denote the value of the HaPo at age under the map V-'i by A//?,
and under ^2 by Vt|t-

The valuation scheme B gives us the value of the VaPo: We multiply the number
of every unit Z^ by the value of Z^ and add them up.
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Valuation at age 50 for one person

In order to calculate the numerical values, we first calculate the premium II with
the use of the equivalence principle, which says that the present value of the

premiums equals the present value of the benefits, i.e.

n ' ®50:5l ~ ^-50:51 ' ^

By using commutation functions of the life table EKM95 with the technical
interest rate 2.5% we receive:

M50 - M55 + D55
premium II — — G^ fVjo - IV55

13'245 — 12'613 + 23'237
50 000 9 375 21

562'903 - 435'605

Vfl/ufl/;on sc/zeme J?/

unit number of units for one person
et premium benefits total

£(50) -9'375 —9'375

£(51) -9'336 208 -9'128
£(52) -9'293 229 —9'064
£(53) -9'246 251 —8'995

£(54) -9'194 275 — 8'919
£(55) 302 48'734 49'03 6

Using the technical interest rate i=2.5% and the two yield curves in Appendix
A.4, relating to the years 2000 or 2002, respectively, we obtain the following
mathematical reserves and the fair values:

payments V30150 term ^5o|50 - term MÄ50
at age structure 2000 structure 2002

50 -9'375.21 —9'375.21 —9'375.2t
51 -8'784.52 —9'043.42 —8'905.20

52 -8'365.82 —8'824.58 — 8'627.53

53 —7'946.17 -8'552.66 -8'352.58
54 ~7'543.31 —8'252.87 —8'080.14

55 39'689.57 44'037.07 43'340.67

total —2'325.45 -11.67 0.00
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Valuation at age 51 for one person:

VWttaf/on jcAewe /i:

unit number of units for one person

et premium benefits total

z(") —9'375 —9'375
Z(52) —9'332 230 -9'102
Z(53) —9'285 252 —9'033
Z(54) —9'233 277 —8'956
Z(5S) 303 48'938 49'241

We do not know the value of the zero coupon bonds at age 51 yet. But if we "lock
in" the term structure at the beginning of the policy then the value P(50,51,52)
of Z<") at age 51 can be calculated as follows (see Appendix A.2):

P(50,52)^''^-ïèôiïïr
This value is called the /orwarr/ /;r/'ce. Calculating every value of Z^' at age 51,

multiplying by the number of Z^ and adding them up we receive the value of
the VaPo at age 51 under the map ^2. denoted by V^so- Km|5o is the value of
the VnPo at age 51 calculated at age 50.

The value of Z^ under the map V-'i at age 51 is much easier to calculate: it is

simply

payments Ktoiso » term V50150 term A'/«50

at age structure 2000 structure 2002

51 —9'375.2 —9'375.21 —9'375.21

52 —8'729.I4 -8'944.22 —8'880.22

53 — 8'291.26 -8'668.61 —8'597.22

54 -7'870.91 —8'364.76 -8'316.80
55 41 '413.25 44'634.08 44'610.04

total 7'146.74 9'281.30 9'440.6I
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The next table summarizes the different values of the VaPo:

values

at age t
Vt|5o term

structure 2000
Vi|5o term

structure 2002
MP,

50 —2'325.45 -11.67 0.00
51 7'146.74 9'281.30 9'440.61

52 17'076.73 18'842.83 19'144.35

53 27'521.46 28'784.46 29'126.71
'

54 38'475.03 39'151.72 39'405.28
55 50'000.00 50'000.00 50'000.00

Mathematical reserves and the value of the VaPo

6.1.2 Annuity

Again, we consider the annuity described in Section 5.3 and put the figures of
the table ERM 2000'into the valuation scheme B. Note that the terminal age w

of ERM equals tow= 119.
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Vfo/Mö/i'ott ic/icrne ß:

units

et

number of units

£(65)

£(66)

£(67)

£(68)

£(69)

15'()0()

14'890

14'773

14'646

14'510

0

0

In order to value this scheme we have to know the prices of the zero coupon
bonds with duration to maturity up to 119-65=54 years. For the term structure

given in the Appendix A.4, zero coupon prices are available only for time to

maturities equal to 10 years (term structure 2000) and 30 years (term structure
2002). We consider two possibilities to till in these gaps. For this purpose we
denote by r the maximal time for which the price of the zero coupon bond is

known (e.g. r 10, r 30):

• We set the internal interest rate of zero coupon bonds with duration to

maturity less than r years equal to the internal interest rate of the zero

• We include all the cash flows with time to maturity greater than r to one
cash flow at year r, i.e.

Using these two versions of 0 and the technical interest rate 2.5% we calculate
the fair value and the mathematical reserves at age 65, assuming r=10 years
(term structure 2000) or 30 years (term structure 2002).

coupon bonds Z(65+t)^ j g
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payments V55165, term structure 2000 V55I65 term structure 2002 M i?65

at age 03 04 VA VA

65 15'000.00 15'000.00 15'000.00 15'000.00 15'000.00

66 14'330.24 14'330.24 14'752.59 14'752.59 14'527.l 1

67 13'634.16 13'634.16 14'381.83 14'381.83 14'060.69

68 12'938.64 12'938.64 13'926.19 13'926.19 13'600.41

69 12'272.33 12'272.33 13'426.74 13'426.74 13' 145.72

74 9'126.99 9'126.99 10'684.29 10'684.29 10'938.93

75 8'545.98 8'545.98 10' 129.13 10'129.13 I0'507.72
76 8'029.49 8'402.08 9'571.74 9'571.74 10'078.81

94 1'482.52 3'509.72 2'026.84 2'026.84 2'699.39
95 l'270.70 3'147.86 1'763.04 1 '763.04 2'362.02
96 1'077.77 2'793.80 1'511.76 1'564.74 2'045.22

total 218' 141.69 267'779.49 252'873.64 254'219.93 272'965.81

As before, we look at the different values for future ages of the contract:

values 14|65 term structure 2000 14|65, term structure 2002 Mfi,
at age :r VA VA '03 04

65 218' 141.69 267'779.49 252'873.64 254'219.93 272'965.81

66 212'636.09 264'593.85 24l'863.00 243'231.87 266'363.13

67 207'726.18 262'336.58 232'711.39 234'115.55 259'701.41

68 203'086.14 260'632.12 224'834.60 226'284.70 252'982.89

69 198'298.03 258'968.39 217'640.02 219'144.06 246'214.29
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Mathematical reserves and the value of the VaPo

6.2 /tetw.vi've ca/cu/aft'on 0/ r/ie /wwtary wi/we

6.2.1 Thiele's difference equation

The mathematical reserves can be calculated recursively with Thiele's difference
equation:

+y: Po +^-^i+3+i} • (5)

jes
We imagine being at age f and identify this f to coincide with the year 2000 or
2002. In the above equation denotes the annual discount rate during the
time interval [f + s,f + s+ 1) and the mathematical reserves at age f + s

if the policy holder is in state i
The same method is also applicable to the valuation of the VaPo:

ÖMesf/'o«: How does look with respect to the calculation of Mß|+, and
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Answer;

• Miî<+s: We use the normal discount factor

W+s w.

• K+s|j: ^e forward short rate /(f,r + s) (see Appendix A.3) gives us the

right answer. In (5), replace iv+s by

1

_ -P(M' + s + 1)

l+/(f,r + s) P(f,r + s)

As a consequence of this fact, we can calculate fair values by means of Thiele's
difference equation, using the appropriate parametrization.

6.2.2 Examples

1. We look again at the endowment policy of a 50 year old person. In the

event of surviving s years, the recursion (5) for the value of the VaPo is

V50+s|50 0*^(50 + s) + 'U50+S P50-M {a*°*'(50 + s) + V50+3+1150}

+ V50+S 950+s a^®'(50 + s),

P(50,51 + s)
with the initial condition V56 0, U50+3

p(5Q 59 _f_ g) ' * 0. • • •, 5.

2. Annuity described in Section 6.1.2

hô5+s|65 a*(65 + s) + V65+S • P65+S ' ^65+s+l|65 i

with the initial condition K, 0, s 0,..., w.

6. J Some or/ier /wssiMiries /or 'i/>

In this section we will show another possibility for 1/1 relating to the use of first
and second order tables within the life insurance industry. Under second order
tables we understand the best estimate values for etc. Under first order tables

we understand tables with a PAD (provision for adverse deviation), which are

normally used for pricing and reserving.
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In the following we consider an annuity in payment with the following basis

elements for

expected payment of one unit at time / based on second order basis.

iy(») Difference between expected payments of first and second order tables at

time i with an amount of 1. We consider WW for the modelling of security
loadings.

As financial instruments represent zero coupon bonds and WW swaps

expressed in zero coupon bonds reflecting the uncertainty of the insurance contract
at time i. For an annuity of amount C at age £ 65 we have the following
valuation scheme

age unit ZW unit WW

65 C 0

66 >p" • c (.Pi - ip")-c

X- + T (rrf-r^)-C

Now we can define the following accounting principles:

map description definition

05
book value

first order
05 (y>z«>

06
book value
second order

06

-07
fair value

with PAD
07 £>z<"

08
fair value

w/o PAD
08
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/te/na/fc

• iMZ) for / P is usually called the .statutory tec/tni'ca/ reserve and i/'f>(/)
the secoue/ orr/er mat/iemat/ca/ reserve.

• The value

iM/VW/) ~ I QT^Ü^OM)) / (^AiP(at,z)) ,ze {50,65}

can be interpreted as the demographic loading for the table.

In a second step we now want to look at the corresponding numerical values.

Therefore we consider a 65 year old person together with the generation table
ERM2000 for the first order basis and for the second order basis. In order to

compare the different types of reserves we assume a technical interest of 2.5%
and ignore the single premium payment, i.e.

S {*,!},
I C, f 65,...

<£"(*) {*
{ 0, else

all other contractual functions being 0.

In this case we get the following valuation scheme

number of units

age unit unit

65 15'000.00 0.00

66 14'881.52 8.77

67 14'754.20 18.32

68 14'617.26 28.89

69 14'469.78 40.64

70 14'310.84 53.67

: i

0 10 20 30 40 50 60

duration T
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And further the valuation

map term extrapola- value of the value of the value

struc- tion term unit unit WW
ure structure

0s book value 264'958.07 8'007.74 272'965.81

first order

06 book value 264'958.07 264'958.07

second order

'07 fair value 2000 03 213'246.13 4'895.57 218'141.69

with PAD 2002 03 246'491.96 6'381.68 252'873.64
2000 04 258'105.70 9'673.79 267'779.49
2002 04 247'483.25 6'736.69 254'219.93

08 fair value 2000 03 213'246.13 213'246.13

w/o PAD 2002 03 246'491.96 246'491.96

2000 04 258'105.70 258'105.70
2002 04 247'483.25 247'483.25

Before ending this section we also want to mention that there are various other

possibilities for J" and 0 which can be used to solve the respective concrete

problems. An example for a valuation basis could consist of N,e}
where represent zero coupon bonds with different maturities, reflecting the

expected payments and where e denotes a financial instrument representing the

difference between the expected payments and the random variable. Therefore e

reflects the pure insurance risk.

7 Technical gains / losses

7. /

The valuation schemes used yield a valuation for a deterministic model. The

question now arises what happens if the actual number of deaths deviates from
the expected one.
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Let us assume that all transition probabilities remain unchanged except p^ and

which are replaced by their observed values and ^
Pcc ' * Par

<7x TP

Again the endowment policy and the annuity will be considered. First, we
calculate the value of the VaPo with the observed values. Second, we look
at the difference between the two values.

7.2 Prc/mp/e.s

7.2.1 Endowment policy

We consider again the endowment insurance with a cover period of 5 years for
a 50 year old person.

Vfl/unr/o« .sc/reme 5 at age 50:

unit number of units for one person

ej premium death benefits maturity benefits

^(50) -n
Z(si) i !_n© 3 750 • C

£(52) P50 p** (51,52) n P50 p*t(51) • C

£(53) P5o • p**(51,53) II P5o • p** (51,52) p*t(52) C

£(54) P5o p** (51,54) fi P50 p** (51,53) p*f (53) C

£(55) p50 p** (51,54) p*t(54) • C P50 • p**(51,55) • C

This valuation scheme is not the same as on page 35. We analyze the difference
between the two schemes, which is also an element of P, as P is a linear vector

space. We subtract the number of units of the scheme from the number of units
of the valuation scheme B on page 35.
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/Votafi'ort.' Apx •= Pa; "" Pœ; Atfo •— <7x — <?x-

unit number of units for one person

et premium death benefits maturity benefits

2(30) 0

Z<*> -Ap50 n Ar/5o C

Z<52) _
Apso

P50
p..(50,52) n

Ap5Q

P50
p,»(50,51) • p»t(51)•C

Z<53) _
Ap50

P50
p..(50,53) n

Apso

P50
p*.(50,52) • p,j(52) • C

2(54) Ap50

P50
p»»(50, 54) n

Ap50

P50
p»*(50,53) p»f(53)•C

2(55) &<11
p»» (50,54) • p,(54) • C

Apso /^, „p#*(51,55)•C
P50

Consct/nence: It is important to understand gains and losses expressed in ;/w7.s,

i.e. the annual gains and losses represent also a /wrt/o/z'o (difference of two
different VaPo's).

Generafea/ion.- We use the same notation as on page 35 to look at the difference

between the two schemes.

unit
e«

number of units for one person
At

^(x) 0

£(*+») — Apa; 11 + At/;,; C

ZW, £ > re + 1 + p„,(as,i- l)p*t(* - l)a*r(* ~ ')
Px L

+p**(x',f)a*f (f - 1)

/JemurA:.- For t > £ + 1 the technical gain/loss is a multiple of the number of
units in the deterministic model. The factor is Ap^/Px-
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£'jc«mp/e: We take Q50 1.5 (/50 and receive the following values:

gains/losses
in units

unit number of units for one person total

et premium death benefits maturity benefits

^(50) 0.00 0.00
£(51) -19.53 -104.16 -123.69
£(52) -19.44 0.48 -18.96
£(53) -19.34 0.53 -18.82
£(54) -19.23 0.58 -18.66
£(55) 0.63 101.52 102.15

We would like to draw the attention to the sign of the number of units. The

premium income of the new VaPo is swrz/Zer and the death benefit at the end

of age 50 is much /»'g/ier compared to the old PaPo, although we have two
negative signs.

The value of the above PaPo is:

monetary
gains / losses

payments
at age

AV50150 - term
structure 2000

AV50150 term
structure 2002

AM i?5o

50 0.00 0.00 0.00
51 -119.04 -122.54 -120.67
52 -17.50 -18.46 -18.05
53 -16.62 -17.89 -17.47
54 -15.78 -17.26 -16.90
55 82.68 91.74 90.29

total -86.26 -84.42 -82.81

Cowver/uence: The value of the new PaPo is higher than the old one due to the

negative sign. Moreover, the value of the new PaPo with structure 2002 has a

positive sign (see the corresponding value on page 44):

-11.67 - (-84.42) 72.75.

7.2.2 Annuity

We consider the annuity described in Section 5.3 and work out the valuation

scheme B with the changed mortality
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Va/ttaft'o« «.7ieme fl at age 65:

unit

et

number of units for one person
At

^(65) C

2<66) P65 ' C

2(67) P65 ' p*«(66,67) • C

2<68) P65 - p.* (66,68) C

2(w) P65 -p*.(66,w) C

We look again at the difference of the schemes before and after changing the
mortality rates 955:

unit number of units for one person

et At

2(65) 0

2(66) Ap65 • C

2(67) ^ • p**(65,67) • C
P65

2(68) ^ • p**(65,68) • C
P65

2(w) ^.p„(65,w)-C
P65



58

Ge«erafea/f'o«: We use the same notation as on page 35 and look at the difference
between this scheme and the scheme on page 42.

unit number of units for one person
et At

£(X) 0

ZW, i > x •p**(x,f) •

Pa;

ßemörp Again, for f > x the technical loss/gain is a multiple of the number of
units in the deterministic model with the factor Ap^/p^. If p^ < p^ then the

value of the new VaPo is still smaller than the value of the old one because

Apz Pz - Px > 0.

/« mtmbmv

Va/Mflt/on sc/teme ß at age 65:

in units

unit

et

number of units for one person
At

^(65) 0.00
^(66) 54.86
^(67) 54.42
^(68) 53.96
2'(69) 53.46

monetary
gains/losses

A^65|65 A^65|65

payments term structure 2000 term structure 2002 AMP50
at age ^3 '04 '03 '04

65 0.00 0.00 0.00 0.00 0.00
66 52.79 52.79 54.35 54.35 53.52
67 50.23 50.23 52.98 52.98 51.80
68 47.67 47.67 51.30 51.30 50.10
69 45.21 45.21 49.46 49.46 48.43
70 42.83 42.83 47.52 47.52 46.77

total 748.36 931.23 876.31 881.27 950.33
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Con.vee/uence: As mentioned before the value of the new PoPo is smaller than

the value of the old one. Because the actual number of deaths is higher than the

expected one, the annuity payments are reduced and therefore the PaPo has a

lower value.

A Time value of money

A. / /rt/ror/wc/tort

The market value over time of investment bonds depends on the term structure

of interest rates. This dependency can be expressed by interest rate curves as:

• the time curve of zero coupon prices;

• yield curves;

• the curve of forward short rates.

A.2 /Vice structure o/zero coupon /wnr/.v

The market trend of financial instruments is random, therefore we clearly have

to say vv/zen the financial instruments are considered. We assume to be at time f:

A zero coupon /tont/ is a financial instrument paying one cash unit at

time t + T with absolute certainty:

Question: How much does cost at time t + r?

De/iw'/iorts: We call this price P(f,f+ r, f + T). The price is fixed at time f and

will be paid at time f + r.
If r 0, P(f, t + T) := P(f, f, < + T) is named the spot price.

If r > 0, P(f, f + r, f + T) is called the /orworti price.
The curve 7; : s i-> P(<, / + s) is referred to as the time-/ curve o/zero coupon

pr/ces.

0 ,0 0, 1 o,...

We will use the notation instead of
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/?em«r&: The shape of 7t(s) depends on f. For every i, we get a new curve.

Fropo.viti'cw: Knowing all spot prices, the forward prices can be calculated by the

formula

Pit f I r t I Ti - ^(M + T)

A.J /nterest rates

öe/zmt/ons;

Y*(£,£ + T,i 4~ JT) !=/*(£,£ 4-T,£4~ T) — 1

If r 0, K(f, f + T) := Y(f, f, f + T) is named the spot rate.

If r > 0, y(f, f + r, f + T) is called /orwarr/ rate.

The yte/c/ curve <5( : s i—» y(M + s) shows the connection between the interest

rates and the time to maturity of zero coupon bonds. It is a snapshot of the term
structure at time t.

If T r + 1, /(i, f + t) := y(f, f + r, f + r + 1) is called the /orwarr/ s/zorf rate
The curve Of : s /(M + s) is referred to as the curve o//orvvurd s/zort rate.v.

Pro/70sit/on: The fundamental relations between zero coupon prices and interest
rates are the following:

P(f, t + T, i + T)
[I +y(f,f+ r,f + T)]^

[I + y(t, t + T)]^ [1 + y(f,i + r)r[l + y(f,f + r,f + T)f ^

^ ^

[1 + /(£> i)][l + /(^i t + 1)]... [1 + /(£, f FT— 1)]
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A. 4 Tmn ,vrn(cfwre.s

Term structure 10.5.2000: Swap rates,

term structure 26.11.2002: CHF LIBOR Terminraten,

both converted into zero coupon prices.

duration term structure 10.5.2000 term structure 26.1 1.2002

to maturity spot rates value spot rates value

S r(M + s) P(i, t + s) K(M + s) « + s)

1 3.91% 0.96239 0.93% 0.99075

2 4.09% 0.92294 1.35% 0.97355

3 4.22% 0.88342 1.69% 0.95084

4 4.28% 0.84576 1.96% 0.92532

5 4.32% 0.80940 2.17% 0.89806

6 4.38% 0.77322 2.35% 0.86984

7 4.45% 0.73727 2.50% 0.84112

8 4.52% 0.70210 2.64% 0.81157

9 4.58% 0.66809 2.77% 0.78209

10 4.64% 0.63535 2.88% 0.75305
11 2.98% 0.72380

12 3.08% 0.69501

13 3.16% 0.66736

14 3.23% 0.64082
15 3.29% 0.61539

16 3.34% 0.59109
17 3.38% 0.56787

18 3.42% 0.54571

19 3.45% 0.52460

20 3.48% 0.50446

21 3.50% 0.48527

22 3.52% 0.46704

23 3.53% 0.44980

24 3.54% 0.43355

25 3.55% 0.41833

26 3.55% 0.40420

27 3.54% 0.39101

28 3.53% 0.37860

29 3.52% 0.36691

30 3.50% 0.35585
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zero coupon prices 2000 und 2002

duration T

internal rate structure



63

Bibliography

[De Felice and Moriconi (2002)] DE FELICE, M., MORICONI, F. (2002) Finanza dell'Assicura-
zione sulla Vita, Principî per 1'asset-liability management e per la misurazione dell'embedded
value, In G/ornaie de//7s/i7h/o itai/rmo rfeg// Am/art, 13-89, Volume LXV, Roma.

[Gerber (1997)] GERBER, H.U. (1997) Lt/e insurance Afaiiiemai/cs. Springer, Berlin Heidelberg.

[Hoem (1969)] HOEM, J.M. (1969) Markov chain models in life insurance. In ß/ä«er der
De«/.5c7ien Geseiisciiq/i ///'' Vers/c/ierangsmadiemai/L

[Koller (2000)] KOLLER, M. (2000) Slocimsl/sciie Aiodei/e in der Letensvers/cAerang. Springer,
Heidelberg.

[Moller (1995)] MOLLER, C.M. (1995) A counting processs approach to stochastic interest. In
insurance Afodiemal/ce and Économies.

[Norberg and Moller (1996)] NORBERG, R. and MOLLF.R, C.M. (1996) Thiele's differential
equation by stochastic interest of diffusion type. In Scond. Acmar/n/ /.

[Norberg (1990 a)] NORBERG, R. (1990 a) Payment measures, interest and discounting. In

iStwtt/. AcfioiriVi/ 7..

[Norberg (1990 b)| NORBERG, R. (1990 b) Differential equations for higher order moments of
present values in life insurance, insurance.' Afaiiiemof/cs and Economics.

[Norberg (1991)] NORBERG, R. (1991) Reserves in life and pension insurance. In Scnnd.

Ac/iiorioi /..

Gabi Baumgartner
.Swiss Life
General Guisan-Quai 40
CH - 8022 Zürich
+41 43 284 69 09

gabriela.baumgartner@swisslife.ch

Prof. Dr. Hans Bühlmann
Nidelbadstrasse 22
CH - 8803 Rüschlikon
+41 1 724 10 84

hbuhl@math.ethz.ch

Prof. Dr. Michael Koller
Swiss Life
General Guisan-Quai 40
CH - 8022 Zürich
+41 43 284 43 65

michael.koller@swisslife.ch



64

Abstract

This paper illustrates one possible way to value a life insurance contract. The difficulty in giving
a value to an insurance contract is the fact that there exists no liquid market for these contracts.
However there is a liquid market for many financial instruments. Therefore we represent a life
insurance contract as combination of financial instruments with payoffs which match the evpec/erf
liabilities. Instead of valuing the insurance contract, we value the portfolio consisting of the

financial instruments. Applying different accounting principles on the same portfolio we attach the

mathematical reserve or the fair value to the portfolio.

Zusammenfassung

Dieser Artikel zeigt eine Möglichkeit, wie Lebensversicherungsverträge bewertet werden können.

Weil kein liquider Markt für Versicherungsverträge besteht, ist es schwierig, ihnen einen Wert
zuzuweisen. Wir umgehen dieses Problem, indem ein Versicherungsvertrag als Kombination von
Finanzinstrumenten dargestellt wird mit Payoffs, die den erwarteten Verpflichtungen entsprechen,
denn für die meisten Finanzinstrumente existiert ein liquider Markt. Auf diese Weise kann anstelle
des Versicherungsvertrages das Portfolio bestehend aus Finanzinstrumenten bewertet werden. Durch

Anwendung verschiedener Bewertungsprinzipien auf das Portfolio wird das Deckungskapital oder

der Fair Value bestimmt.

Résumé

Cet article décrit une méthode d'évaluation pour les contrats d'assurance vie. La difficulté d'une
telle évaluation réside dans l'absence de marché liquide. Nous contournons ce problème en

représentant un contrat d'assurance vie comme combinaison d'instruments financiers dont les flux
sont identiques à l'espérance mathématique des engagements. Comme il existe un marché liquide

pour la plupart des instruments financiers, nous pouvons alors évaluer le portefeuille de ces

instruments financiers au lieu du contrat d'assurance. En appliquant différents principes comptables
au même portefeuille, on peut calculer la provision mathématique ou la valeur juste.
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