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M.M. CLARAMUNT, M. MARMOL, A. ALEGRE, Barcelona

A note on the expected present value of dividends with a
constant barrier in the discrete time model

1 Introduction

The aim of the present study is to formalize the dividend payment policies in the
discrete case for a non-life insurance portfolio, and to obtain the expected present
value of the dividend payments.

The classical model analyses the solvency of non-life insurance portfolios using
the probability of ruin as the criterion. The discrete case has been studied by
various authors, for example, Bowers et al. (1987), Gerber (1988), Michel (1989),
Shiu (1989), Willmot (1993), Willmot and Cai (2001), De Vylder (1996) or Li
and Garrido (2002). Section 2 deals with the alternative approach to be found
in the literature proposing the pay-out of part of the reserves in the form of
dividends (Biihlmann (1970), Gerber (1972, 1981), Paulsen and Gjessing (1997),
Siegl and Tichy (1996, 1999)).

Section 3 deals with the analysis of the dividend payments when the model
is modified to have a constant dividend barrier b(t) = b, assuming discrete
payments, and presents a method for solving such problems. We prove that,
as in the continuous case, the probability of ruin is unity. Biihlmann (1970) and
Gerber (1972) obtain the expectation of the present value assuming two different
particular cases for the distribution of aggregated cost in one period. We present
a solution for the general case, i.e. for any discrete aggregated cost distribution.
The system of linear equations that allows one to find the expectation of the
present value of the dividend payments is obtained, and it is solved using the
matrix form of the system. We also include, in Section 4, a recursive solution,

alternative to Gerber (1972). ’

2 Dividend policy in the discrete case

Following Biihlmann (1970) we take a discrete dividend policy to be that which
makes the payouts at given times, ¢; for i = 1,2,3,..., as long as the level of
reserves at time #; surpasses the cap represented by the dividend barrier. Consider
the equidistant times #; for i = 1,2,3,... with £, = 0, the time unit being one

year.

Mitteilungen der Schweiz. Aktuarvereinigung. Heft 2/2003



150

The level of reserves at ¢; before dividend payments, R, can be defined as
R =u+c-t;— 95 —SD;_|, where §5; is the aggregate of claims in the
period [0,¢;], u is the initial reserve at ty, ¢ is the annual premium income,
SD; =D+ Dy+---+ Dy, Vs <1 is the sum of the dividend payments in an
interval [0,¢;], where SDy = 0, and D; = Max{(R} — b),0} the dividends paid
out at t; for¢ =1,2,3,.

Let v be a constant annual discount rate for all the periods and ¢ the discrete
time of ruin. Then the expected present value of the dividend payments, assuming
that there are dividend payments only up to the time of ruin is

(u,b) {ZD J with ¢, = Min{t; | R; < 0}.

3 Constant barrier: calculation of W (u, b)

We shall now generalize the calculation of the expected present value of the div-
idends, following the approach of Biihlmann (1970) and Gerber (1972), for the
calculation of W(wu, b) in a modified model with a constant dividend barrier, b.
We consider S; = SS5; — 95;_,. We assume that S; are i.i.d. random variables
with common probability function P; = P[S = s| and distribution function
Fs(s) = P[S < s] for s =0,1,2,... . For simplicity, we redefine ¢ as ¢ ¢, so,
for a positive security loading, £[S] < c.

The solution of the problem involves considering the random variable of the total
accumulated claims in a period as a discrete random variable, and the hypothesis
that all monetary values (u, b, ¢, ...) are multiples of some given unit. Neither of
these conditions implies any major restriction on the validity of the model: in the
case of the monetary values, we simply have to change the reference unit, and
in the case of the claims, we shall just have to previously discretize the random
variable if it is not already discrete.

In the constant dividend barrier case the probability of ruin is | in the continuous
case (Bithlmann (1970)). We prove that this is also true in the discrete case. In
the discrete case ruin probability is 1 (u,b) = Pty < o0].

Theorem 1 Ruin probability in a model with a constant dividend barrier
assuming discrete payments is one, (u,b) =1
Proof. ¢ (u,b) for u = b, considering the situation at time ¢y, is

b+c
Y(b,b)- (1= Fs(c)) = > w(b+c—sb)Py+ 1~ Fs(b+c) (1)

s=c+1
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We know, for ~ > 0, that ¢)(b — h,b) > 4/(b,b), and rearranging terms, (1) can
be written as

(0, 0) - (1 — Fs(b+¢)) > 1 — Fg(b+ c) )
and in view of (2), 1)(b,b) > 1, then

V(b —h,b) > (b b) > 1

which implies 1) (u, b) = (b, b) = 1. ™
Biihlmann (1970) proposed a system of finite difference equations to calculate
W (u,b), considering the situation at time #,, and solving it for the particular case
in which the variation in the reserves is dichotomous, taking only the values —1
and 1. Since the only random factor considered in the model is the occurrence
of claims, the case that Biihlmann calculated implies that the claims in a given
period can only take the values (¢ + 1) and (¢ — 1). Gerber (1972) considers the
system where the variation in the reserves can take the values 1,0, —1,-2,...
and the claims in a given period are multiples of the premium.

To generalize the calculation of W (u,b), we shall analyse the situation of the
process at time ¢, so,

W(u,b) =v- E[W(R} — D,,b) + D] (3)

The dividend payments in ¢, will depend on whether R} = u + ¢ — s is greater
or lesser than the level of the barrier b:

° Case 1: [} is greater than the level of the barrier 0. In this case, the
dividend payments in ¢, D, = S Dy, are positive, with their amount being
the difference between R} and the barrier b, i.e. Dy =u+c—s—b. Also,
to obtain W (u,b) the calculated future dividends must be discounted to 7,

which are given by W (b, b).

. Case 2: %} is less than or equal to the level of the barrier b, independently
of what happened in the interval (0,¢]. In this case, for the calculation of
W (u,b), we must discount W(u + ¢ — s,b).

To determine the expression for the expected present value of the dividend
payments, we shall formalize the two cases described previously, by setting up a

system of linear equations.
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According to the initial level of reserves u, such that v < b, one can define b+ 1
equations for the calculation of W (wu,b) with u = 0,... b.

Theorem 2 For x=0,1,...,¢c,c+1,...,b

c—(xz+1)

Wo-o,0)=v: (W0 Fsle-)+ Y (c-s—a) P,
s=0
b
+ Z W(b—s,b)- Ps-l—c—a;:l (4)
g=I

Proof. W (u,b) is calculated, using the law of total probability, as the discounted
sum of D, and the expected present value of the future dividends in ¢;:

2 If the initial level of reserves coincides with the barrier level, v = b
First, let us consider the case in which the total of claims s coincides
with the premium income c. At t; therefore, the level of reserves is
R =b+c—s=b,then D, =0.

In those cases when the amount of claims s lies in the interval [0,¢ — 1],
there will be dividend payments, since R} = b+ ¢ — s is greater than b,
with D| = ¢ — s, so that the level of reserves after dividend payment will
be 4 == b

Finally, let us consider the cases in which the aggregate claims amount s
lies in the interval [c+ 1, b+ c¢|. The level of reserves at ¢, R} = b+c—s,
is less than b, then D = 0.

Obviously R and D; depend on s, so we can write

S RT D; RT_'DI
[0,¢—1] btc—s | c—s b
c b 0 b

e+ Lb+c | b+c—s 0 b+c—s

Then, from (3)
c—1

W(b,b) =v- |W(bb) Fs(c)+ > (c—s)- P,

s=0

b
S Wb 50) P,g-m] )
s=1
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If the initial level of reserves is below the barrier by less than ¢ units,

b—c<u<hb
The equation for u = b—ax, when x = 1,..., ¢ — | results from taking into

account that the level of reserves at ¢, is
Ri=b-az+c—s (6)

[f s < ¢— x then (6) is greater than b, and therefore leads to dividend
payment, where D; = ¢ — s — x would have to be paid out, leaving the
new level of reserves at b.

[f s > ¢ —x then (6) is less than b. In this case, there will be no dividend
payment, 1J; = 0. Also, so as not to cause ruin, one must have that
b—x+¢—-s5>0= s <b-—x+c Hence, the amount of s has to lie in
the interval [¢c — z + 1,¢ — x + b].

Lastly, if s = ¢ — z, R =b-ax+c—s=band D, =0.

Then

s R} D Ry — D,
[0, —z — 1] b—z+c—s | c—s—x b
cC—Z b 0 b
c—z+l,c—ax+b | b—z+c—s 0 b—z+c—3
So, from (3)
e—(x+1)

Wh—-2z,0)=v- {W(b, b) - Fs(c—x) + Z (c—s—2x)- P,
5=0

b
+ Z I/V(b == 85 b) : Ps+c—~a:} (7)
s=1

If the initial level of reserves is below the barrier by at least ¢ units,

0<u<b-c<hb
Now, for uw = b — x, when = ¢,c+ 1,...,b, the level of reserves is

R} = b—x + ¢ — s, which is therefore always less than b given the values
of x. There is therefore no dividend payment.
So, from (3)
b+(c—wx)
Wh—ab)y=v > Wh-a+c—sb) P (8)

s=0
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where the upper-limit of the sum prevents the case in which the level of
reserves is negative, b—x +c—s>0 = s<b+ (c—u).

We can observe that the expressions (5), (7) and (8) are included in the general
expression (4). #l

The matrix form of the system defined in expression (4) is obtained in Ap-
pendix A.

4 Analysis of the ¢ = 1 case

[f we assume that the distribution of the total cost in a period is concentrated
in multiples of the premium, so ¢ = 1, it is possible to calculate W (u,b) as a
recursive process. We present an alternative solution to that of Gerber (1972).
As E[S] < c¢=1, then Py > 0.

Theorem 3 Ffor x =0,1,...,6—1

b
W(b—z,b) = Cll(‘l)) ; (03(:1;) + Z Wi(b—s,b) -CQ(S,IL')) (9)
> s=wx+1

where C\(x), Cy(s,z) and Cy(x) are calculated in a recursive form,

Ciz+1)=Ci(z)- (1=v-P)—v-FB- Cilz+1,2)
Ca(s,z+ 1) =Cas,z) v- P+ Ci(z) - v-Ps_y, s=x+2,...,b
Cy(x+ 1) =v- Py Ci(x) = P2, P[‘)”~+2

where C1(0) = 1 —v-Py—v-Fy, Cy(5,0) = v-Psy) fors=1,...,b, C5(0) =v-Fy

and W(0,b) = ":(‘z).

QO

The proot of Theorem 3 is in Appendix B.

Appendix A

It can be readily verified that the generalization of the system presented in
Theorem 2, and defined by equations (5), (7) and (8), can be written in matrix
form v-A-w+v-D = w, where A is the matrix of coeffcients made up of
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different submatrices A = (M f{fl) with M, a vector of (¢ + 1) components
(E[S] < ¢, then Fg(c—1) > O), M> a matrix of order (¢ + 1) x b, M3 a null
vector of (b — ¢) components and M, a matrix of order (b — ¢) x b. The matrix
A'is therefore a square matrix of order (b+ 1),

(Fl-((‘) Pest Feys Feqs Perp )
Fyle—1} B Peyt FPey2 ST FPevb-1
PIH(C - 2) AP('eI R -P(:+I see e R:+b—2
F,(0) p P, P L P,
A: O [)0 P[ P2 Pb__|
0 0 By P Ce e ¥ R.‘—!—b—-l
() O 0 [)() e st i . es _[){;.}_],_2
0 0 0 0 e = s s
\0 o 0 0 . B ... P

The vector of independent terms D is of order (b+ 1) x 1, formed by ¢ first
elements different from zero, and the remaining b+ 1 — ¢ elements equal to zero.
w 1s the vector of b -+ 1 unknowns,

[ (-i((_ — ) Py ) ([ Wb )
5=0
(f((f ~g—=1)Ps W(b—1,b)
s=0
D Z;(( —s=2)-P | _ .| Wb-29
l;() W (b : ¢,b)
0 W(b—c—1,b)
o ) L won )

The solution of system is @ = [[ —v - A]~" - v - D. As the spectral norm of the
matrix v - A is less than one, [{ — v - A] is regular.



156

Appendix B

Proof. From (4) when ¢ = 1 and x = 0, we obtain

b
|
I’V(b,b)-—- =0 B -9 B, . (U-P0+’U-§:1/V(b-—b,b)-PS+1> (B1)

s=1
and for z = 1
,U b
W(b—1,b) = =7 [W(b,b)'Po—P'ZW(b—S,b)-PS] (B2)

§=2
If we substitute (B1) in (B2), simplifying terms gives
W(b—1,b)

b
VP Y W(b—s,b) (VP Pepr+v- P (1—v- P —v- R))
. g=2

(l—’U-P1)-(l—’U-P|~U'Po)—’U2-H)-P2
(B3)

Putting C,(1) = (I —v - P) - (1l —=v - P —v-F) —v* B b,
02(8, ].) ——"Uz-P()-Pg_H-{"’U-P‘,'(l-—”U-P|—’U'Po) Vs > | and C’g(l) :'UZ-P(;Z,
|

b
(B3) can be re-written as W(b — 1,b) = —— (03(1) + Wb - s,b) -
Cl(l) §=2

(Ca(s, l)), and generalized to (9).
Now we show (9) by induction. We assume (9) is true for x, and we show that
it is true for z + 1. From (4) whenc=1land u=b—-x — 1, (0 < 2 < b)
(l—v-P) WH-z-10b)
b=z

=v (W20 B+ > Wh—z—1-5b): Py (B4)

s=1

We substitute (9) in (B4),
W(—x—1,b)

b
(U P() 3 C}(’l‘) -+ Z I/V(b - S,b) : (’U : P() : Cz(.‘i,LE) + Cl (iE) U PSﬁ;E)
s=x+2

C’[(.L)(l —’U‘Pl)—U'Po-CQ(iU+ 1,.1,)

(B3)
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which implies

Wb —(x+1),b)

b

|

- e I 000 o 11 WIJ—S,b)-Cz(S,-’U+1)) (B6)
Cilz+ 1) (3(7 ) ;2 (

0 (9) is demonstrated. ‘
From (BS5) and (B6), we obtain the recursive formula for C'(x), Ca(s, ) and

C5(x), where the initial values are obtained from (B1) and (9). ‘
To calculate W (0, b), we calculate (4) for ¢ = I and « = b, and (9) for z = b—1,
and we solve the system. .
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Abstract

The process of free reserves in a non-life insurance portfolio as defined in the classical model of
risk theory is modified by the introduction of dividend policies that set maximum levels for the
accumulation of reserves. The work presents a general solution to calculate the expected present
value of dividends based on a system of linear equations for discrete dividend payments in the

case of a constant dividend barrier.

Résumé

On modifie le processus de réserves libres d’une compagnie d’assurances n.o.n-vic, zcll qt?'ll 'est
définit dans le modele classique de la théorie du risque, en introduisant une polmquc. de (!lslnbmmn
de dividendes qui pose un niveau maximum d’accumulation de réserves. Ce travail pres:er.ne une
solution générale du calcul de I'espérance mathématique de la valeur actuelle des (llVl([t‘,l,IdCS
distribués, basée sur un systéme d’équations linéaires des paiements discrets dans le cas d’une

barri¢re constante.

Zusammenfassung

Der Prozess der freien Reserven in einem Nichtleben-Versicherungsportefeuille, wie cr.?m
klassischen Modell der Risikotheorie definiert ist, wird modifiziert durch eine Dividendenpolitik,
welche obere Schranken fiir das Aufnen der Reserven setzt. Fiir den Fall einer konstanten
Dividendenschranke wird eine allgemeine Losung fiir die Berechnung des cr\'vurlctcn Bz}.rwer.‘ls der
Dividenden vorgestellt. Diese Losung basiert auf einem System linearer Gleichungen fir diskrete

Dividendenzahlungen.
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