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S. PiTREBOis, M. Denuit et J.-F. Walhin, Bruxelles, Louvain-la-Neuve

Tarification automobile sur données de panel

I Introduction

/. / Le concept t/e segmentation et ses />«/)/i'cöt/ow.y

Le terme "segmentation" est actuellement considéré comme faisant partie du

jargon professionnel de l'assurance. La segmentation ne se limite pas à la

différenciation tarifaire, bien connue de tous, mais comporte aussi la sélection

du risque à laquelle procède l'assureur lors de la conclusion du contrat (accep-

tation) ou en cours de contrat. Les différentes étapes de la segmentation peuvent
se représenter schématiquement comme suit :

Acceptation du risque
I

Tarification « priori
Imposition de franchises ou de découverts obligatoires

Transformation du risque à assurer

I
Tarification a poster/or;

Résiliation éventuelle

Le principe qui consiste à demander au preneur d'assurance une prime qui

correspond au risque individuel qu'il représente ne peut pas être mis en pratique
dès la souscription du contrat. Ceci requerrait en effet que tous les facteurs

influençant le risque soient connus et que leur impact puisse être établi sans

équivoque. Compte tenu de l'hétérogénéité encore présente au sein des classes

d'assurés créées par l'actuaire, la différence dans les statistiques de sinistres des

assurés ne doit pas seulement être attribuée au hasard mais doit être considérée

dans une certaine mesure comme le reflet de I influence des facteurs de risque

qui n'ont pas été pris en considération « priori. L'intégration de l'historique des

sinistres dans la tarification donne lieu à une personnalisation « posteriori au

moyen d'un système de type bonus-malus ou d'une autre forme "d'experience-
rating".
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7.2 Portee d« rravad

Dans ce travail, nous considérons le problème de la segmentation « pr/on sur
la composante fréquentielle de la prime pure. Nous présentons une méthode

simple et performante de segmentation a prtort et de calcul des fréquences
annuelles de sinistre par l'assureur. La principale originalité de notre démarche

est de reconnaître explicitement l'aspect sériel des données servant de base à

l'établissement du tarif. A cet égard, le présent travail complète et précise certains

aspects de Denuit, Pitrebois & Walhin (2001). Il rejoint à certains endroits

Pinquet, Guillen & Bolancé (2002) et Bolancé, Guillén & Pinquet
(2003), bien que nous nous intéressions ici exclusivement à la tarification « prtort
(la dépendance sérielle entre les observations apparaît donc comme une nuisance)
alors que ces auteurs se focalisent sur la tarification a posteriori (et induisent la

dépendance sérielle à l'aide de variables latentes corrélées).

7.3 Modè/es de regression en tari/zcaiion

De nombreuses techniques statistiques ont été utilisées pour répartir les assurés

en classes aussi homogènes que possible. Globalement, on peut distinguer
les méthodes relevant de l'analyse des données (notamment les arbres de

classification) et celles basées sur les modèles de régression. Cet article est

entièrement consacré à cette dernière optique.

Au cours de la dernière décennie, de nombreux actuaires ont fait usage de

modèles de régression pour des données non-normales. Parmi ceux-ci, on notera
les modèles linéaires généralisés, permettant de modéliser des situations bien

plus variées que ne le permet le modèle linéaire classique. Bien que la régression
linéaire reste une des techniques statistiques les plus utilisées dans beaucoup de

domaines, force est de constater qu'il y a de nombreuses situations où elle ne

s'applique pas (ou très mal) en sciences actuarielles. Nous songeons notamment
à l'analyse des fréquences des sinistres, ou encore à celle de l'occurrence des

sinistres.

7.4 7art/zca//on sur base de données en pane/

Souvent, les actuaires utilisent plusieurs années d'observation afin de construire
leur tarif (dans le but d'augmenter la taille de la base de données, mais aussi

pour éviter d'accorder trop d'importance à des événements relatifs à une année

particulière). Ceci a notamment pour conséquence que certaines des données ne
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seront plus indépendantes. En effet, les observations réalisées sur un même assuré
au cours des différentes périodes considérées sont sans doute corrélées (ce qui est
la raison d'être de la tarification a /?aster/cv/). Nous sommes donc en présence
de données en panel.
Dans le cadre de la tarification a pr/oW, la dépendance existant entre les

observations relatives à la même police est considérée comme une nuisance :

l'actuaire veut à ce stade déterminer l'impact des facteurs observables sur le

risque assuré, et les corrélations existant entre les données l'empêchent de recourir
aux techniques statistiques classiques (pour la plupart fondées sur l'hypothèse
d'indépendance). Nous montrerons ici comment prendre cette dépendance en

compte afin d'améliorer la qualité des estimations à l'aide des techniques
proposées par Liang & Zeger (1986) et Zeger et al. (1988).

Les estimateurs des fréquences de sinistres obtenus sous l'hypothèse d'indépen-
dance des données individuelles relatives à différentes périodes sont convergents
(c'est-à-dire qu'ils tendront en probabilité vers les valeurs population si la taille
de l'échantillon croît). Dès lors, on peut raisonnablement espérer que pour des

portefeuilles automobiles de grande taille, l'impact de l'hypothèse simplificatrice
d'indépendance sur les estimations ponctuelles soit minime. C'est en effet ce que
nous mettrons en évidence dans la partie empirique de notre étude.

/.5 /Voton'on.v

Comme nous l'avons expliqué plus haut, les compagnies d'assurance utilisent
souvent plusieurs périodes d'observation pour construire leur tarif. Les observa-
tions individuelles sont donc doublement indicées, par la police i et la période f.
Dorénavant, représente le nombre de sinistres déclarés par l'assuré « durant la

période U= 1,2,..., n, t 1,2,..., T;, où 7) désigne le nombre de périodes
d'observation pour l'assuré L Nous noterons la durée de la fème période
d'observation pour l'individu i. Lors de chaque modification des variables ob-

servables, un nouvel intervalle commence, de sorte que d;* peut être différent
de 1. Nous supposons que nous disposons par ailleurs d'autres variables as^,
connues au début de la période f, et pouvant servir de facteurs explicatifs pour la

sinistralité de l'assuré i. En plus des variables explicatives, on peut introduire le

temps calendaire en composante de régression afin de prendre en compte certains
événements ponctuels ou d'éventuelles tendances dans la sinistralité, dans l'esprit
de Besson & Partrat (1992).

Typiquement, nous sommes en présence de données de panel : une même variable
est mesurée sur un grand nombre n d'individus au cours du temps, à un nombre

maxi<,<„T; relativement faible de reprises. L'asymptotique se fera ici en faisant
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tendre n vers l'infini, et non pas le nombre d'observations effectuées sur un même

individu (comme c'est typiquement le cas dans le cadre de l'analyse des séries

chronologiques).

/.6 5'core er cor/age r/e.ç v«rà(We.v exp/icarives

Le niveau de risque de chaque assuré est reflété dans un score. Dorénavant,

nous notons ?/,j /3'ajjj le prédicteur linéaire, à savoir une combinaison linéaire

A) + Sj=i /V<4ty des variables explicatives • aq,,,)' relatives à

l'individu i et à la période i. Le prédicteur linéaire r/.;t est encore appelé score

car il permet de ranger les assurés du moins risqué au plus risqué, en suivant les

valeurs croissantes de

Les variables explicatives composant peuvent être de différents types. Cer-
taines d'entre elles peuvent être quantitatives et continues (comme la puissance de

la voiture ou l'âge de l'assuré par exemple). D'autres variables explicatives dont
l'assureur dispose à propos de ses assurés peuvent être quantitatives discrètes (le
nombre d'enfants de l'assuré, par exemple). D'autres encore sont qualitatives ou

catégorielles (comme le sexe ou l'état-civil de l'assuré, par exemple).

Dorénavant, nous supposerons, comme c'est le cas en pratique, que toutes les

variables sont catégorielles; pour plus de détails quant au traitement des variables

continues, voyez Brouhns & Denuit (2003). Une variable catégorielle à A;

facteurs est généralement codée par fc — 1 variables binaires qui sont toutes
nulles pour le niveau de référence. Expliquons la technique de codage à l'aide
de l'exemple élémentaire suivant. Considérons une compagnie segmentant selon

le sexe, le caractère sportif du véhicule et l'âge de l'assuré (3 classes d'âges, à

savoir moins de 30 ans, 30-65 ans et plus de 65 ans). Un assuré sera représenté

par un vecteur binaire donnant les valeurs des variables

X,
0 si l'assuré est un homme
1 si l'assuré est une femme

0 si le véhicule n'a pas de caractère sportif
1 si le véhicule a un caractère sportif

*3
1 si l'assuré a moins de 30 ans

0 sinon

1 si l'assuré a plus de 65 ans

0 sinon.
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On choisit généralement comme niveau de référence (i.e. celui pour lequel toutes
les X, valent 0) les modalités les plus représentées dans le portefeuille. Ici,
le niveau de référence correspond à un homme dans la tranche d'âges 30-65

ans conduisant un véhicule non sportif. Les résultats s'interpréteront ensuite

comme une sur- ou sous-sinistralité par rapport à cette classe de référence.

Ainsi, le vecteur (0,1,1,0) représente un assuré masculin de moins de 30 ans
conduisant un véhicule sportif. Le prédicteur linéaire (ou score) sera de la forme

M, + ; ['intercept /?o représente donc le risque associé à la classe de

référence (i.e. celle pour laquelle X, 0 pour tout /', à savoir les hommes entre
30 et 65 ans dont le véhicule n'a pas de caractère sportif).

/.7 FVe.ven/rm'wi c/u <r/e r/o««eV.v

Dans cet article, nous illustrons nos propos sur tin portefeuille d'assurance belge

comprenant 20 354 polices, observées durant une période de 3 ans. La Figure
I donne une idée de la durée d'exposition au risque des polices en portefeuille.
Un peu plus de 34% des assurés sont restés en portefeuille durant les trois ans.

Pour chaque police et pour chaque année sont renseignés le nombre de sinistres
et certaines caractéristiques de l'assuré : le sexe du conducteur (homme-femme),
l'âge du conducteur (trois classes d'âge : 18 — 22 ans, 23 — 30 ans et > 30 ans),
la puissance du véhictile (trois classes de puissance : < 66kW, 66— 110kW et

> 110kW), la taille de la ville de résidence du conducteur (grande, moyenne
ou petite, en fonction du nombre d'habitants) et la couleur du véhicule (rouge
ou autre). Sur l'ensemble du portefeuille la fréquence annuelle moyenne est de

18.4% (ce qui est largement supérieur à la moyenne européenne).
Les Figures 2 à 6 montrent des histogrammes décrivant, pour chaque variable

explicative, la répartition du portefeuille entre les différents niveaux de la variable

et, pour chacun de ces niveaux, la fréquence moyenne (en %>) de sinistres.
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Figure I: Durée d'exposition au risque (en mois)
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Figure 2: Répartition et fréquence de sinistres selon le sexe du conducteur
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Figure 3: Répartition et fréquence de sinistres selon l'âge du conducteur
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Figure 4: Répartition et fréquence de sinistres selon la puissance du véhicule
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Figure 5: Répartition et fréquence de sinistres selon la taille de la ville
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Figure 6: Répartition et fréquence de sinistres selon la couleur du véhicule
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Ces histogrammes appellent les quelques commentaires suivants. On constate à

la Figure 2 une légère sous-sinistralité pour les femmes (17.7% contre 18.8%),

qui représentent 36%. des assurés du portefeuille. La sur-sinistralité des jeunes
conducteurs ressort clairement de la Figure 3 (mais ils sont sous-représentés
dans le portefeuille). Les fréquences de sinistres semblent décroître avec l'âge,
passant de 30.8% à 20.8% et enfin à 16.3%.. En ce qui concerne la puissance du

véhicule, on constate à la Figure 4 une sous-sinistralité pour les grosses cylindrées.
L'examen de la Figure 5 révèle que la fréquence des sinistres est plus élevée
dans les grandes agglomérations. La sinistralité semble décroître avec la taille de

l'agglomération. Enfin, on constate à la Figure 6 que la couleur rouge ne semble

pas être un facteur aggravant.

2 Régression de Poisson en supposant l'indépendance temporelle

2. / Moz/e/Lrmon

En première approximation, on supposera les indépendantes pour différentes
valeurs de z et de f. Il s'agit bien entendu d'une hypothèse simplificatrice forte
dont nous évaluerons l'impact en comparant les résultats obtenus à ceux fournis

par différentes méthodes permettant de tenir compte de cette dépendance sérielle.
Nous supposons que la loi conditionnelle de sachant a;,, est de Poisson et

nous spécifions une moyenne de forme exponentielle linéaire, i.e.

iVj, =rf Poisson (da exp(r/,, j 1,2 «, f 1,2, ...,7% I

La fréquence de sinistre relative à l'individu z durant la période est A»
du exp(z/it).

2.2 Evtwza/ion pur mcuwuwi r/e vraisemb/nnce

Notons u,t le nombre de sinistres déclarés par l'assuré z durant la période t. La
vraisemblance associée à ces observations vaut alors

il s'agit de la probabilité d'obtenir les observations réalisées au sein du portefeuille
dans le modèle considéré (notez que £ est une fonction des paramètres /3, les

observations étant supposées connues).
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L'estimation de /3 par la méthode du maximum de vraisemblance consiste à

déterminer 3 en maximisant £(/3) : /3 est donc la valeur du paramètre rendant
les observations recueillies par l'actuaire les plus probables. Alin de faciliter
l'obtention du maximum, on passe souvent à la log-vraisemblance, laquelle est
donnée par

n Tj

L(/3) ln£(/3) | — lnnjj! h L lncfjt) — A« j
i= 1 £=1

Comme L est une fonction concave en le paramètre /3, les conditions du premier
ordre sont nécessaires et suffisantes pour caractériser l'estimateur du maximum de

vraisemblance de /3. Cette concavité rend également plus facile l'application des

procédures numériques d'optimisation de la log-vraisemblance. Les conditions au

premier ordre sont

äÄT^(/3) 0 <£> ~ ^' " i=l / =1 i=l i=l

et pour j 1,2,... ,p,

^ L(/3) 0 ^ X] £ '' (3)

' ; i t=i

Si on définit le résidu-fréquence nresjt relatif à l'individu î et a la période f
comme

nrc.Sjj rïjt A», - E[/V<t|®«],

on peut interpréter les équation de vraisemblance (3) comme une relation

d'orthogonalité entre les variables explicatives et les résidus d'estimation

nre.Sjj. Cette orthogonalité peut s'interpréter comme une "indépendance" entre
les résidus d'estimation et les variables explicatives, signifiant que les variables

explicatives n'ont aucun pouvoir prédictif des résidus nres^.

2.3 Signi/tcfl/Zon tari/äzre r/c.v ér/««//wf.v c/e vraz'-seffzWance

Comme les variables explicatives sont les indicatrices des niveaux des facteurs
de risque, les équations de vraisemblance (3) ont une signification tarifaire très

importante. Elles garantissent que pour chaque sous-portefeuille correspondant à
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un niveau d'un des facteurs de risque, le nombre total des sinistres observés est

égal à son homologue théorique. En effet, supposons par exemple que I

si l'individu i est un homme, et 0 sinon; (3) garantit alors pour j 1 que

E E ^ •

hommes hommes

En supposant les coûts des sinistres constamment égaux à 1, ceci garantit donc

que les primes supportées par les hommes compensent exactement les sinistres
causés par ceux-ci. Il n'y a donc pas de transfert de primes entre hommes et
femmes induit par le tarif appliqué par la compagnie.
De plus, en vertu de (2) la somme des primes-fréquence est égale au nombre
total de sinistres déclarés, puisque

n T; n Tj

EE^ EE»«
2=1 £=1 2=1 £=1

pour autant qu'un intercept /?o soit inclus dans le score r/a (c'est-à-dire pour
autant que les fréquences soient exprimées par rapport à une fréquence annuelle
de référence exp(/?o)). Le modèle reconstitue donc sans erreur le nombre total de

sinistres observés.

2.4 VflWflttee asymprot/Vyue r/e.v

La matrice variance-covariance S de l'estimateur du maximum de vraisemblance

/3 du paramètre /3 est l'inverse de la matrice d'information de Fisher T. Elle peut
être estimée par

/- n Ti

MEE œitœ-tAit
M=l t=l

En vertu de la théorie asymptotique de la méthode du maximum de vraisemblance,

3 est approximativement de loi normale de moyenne la vraie valeur du paramètre

et de matrice variance-covariance S. Ceci permet d'obtenir des intervalles et des

zones de confiance pour les paramètres.

2.5 A/ét/îorfe.v r/e sé/ecrion rfev variaWes exp/icc/rive.v

Trois approches existent dans la plupart des logiciels : forward, backward et step-
wise. La procédure forward part d'un modèle sans variables explicatives (compor-



61

tant uniquement un intercept /?o, donc supposant les observations identiquement
distribuées) et incorpore un à un les facteurs de risque jugés les plus pertinents
sur base de la comparaison des log-vraisemblances. Aucune variable n'est plus
introduite lorsque la prise en compte de celles-ci ne rend pas le modèle significa-
tivement meilleur. Cette première approche est donc fort semblable à celle de la

segmentation du portefeuille selon un arbre de classification. Le portefeuille est

éclaté en sous-portefeuilles à mesure que de nouvelles variables sont incorporées
au modèle.
La procédure backward quant à elle part du portefeuille le plus segmenté et

regroupe les classes définies à partir des facteurs les moins pertinents. Ainsi, si le

facteur "présence d'airbags" est jugé non pertinent (car son omission ne détériore

pas significativement le modèle), on regroupera les classes correspondant aux
différentes modalités de ce facteur.

L'approche stepwise conjugue l'esprit des deux algorithmes précédents (elle peut
se voir comme une procédure forward pour laquelle, après chaque inclusion de

variable explicative, on se demande si une des variables entrées dans le modèle

ne pourrait pas être supprimée).
La procédure GENMOD de SAS, qui permet d'effectuer la régression de Poisson,

n'offre pas les procédures décrites ci-dessus (au contraire de LOGISTIC et GLM,

par exemple), mais bien des analyses de types 1 et 3. L'analyse de type 1

introduit une à une les variables dans le modèle, dans l'ordre dans lequel elles

ont été spécifiées dans MODEL. Les résultats de cette analyse dépendent donc

de cet ordre, somme toute arbitraire. Un test du rapport de vraisemblance est

effectué entre deux modèles successifs emboîtés; cela permet de se faire une
idée de la pertinence de la dernière variable introduite, compte tenu de celles

déjà incorporées au modèle. L'analyse de type 1 diffère de la procédure forward

en ce que les variables sont introduites dans l'ordre dans lequel elles ont été

spécifiées par l'utilisateur, et pas en fonction de leur pouvoir prédictif.
On préférera donc l'analyse de type 3 à son homologue de type 1. Cette

analyse comparera le modèle complet (c'est-à-dire comprenant toutes les variables

spécifiées dans MODEL) avec les différents modèles obtenus en supprimant une
des variables. Ceci permet de tester la pertinence de chacune des variables

explicatives, compte tenu des autres. Il s'agit donc de l'optique backward de

sélection des variables tarifaires : à chaque étape, on exclura la variable possédant
la p-valeur la plus élevée, jusqu'à ce qu'aucune variable ne puisse plus être exclue

(i.e. jusqu'à ce que toutes les p-valeurs soient inférieures à un seuil choisi par
l'utilisateur, en général 5%). Il convient ici d'insister sur le fait que l'analyse de

type 3 travaille avec les variables, et pas avec les différents niveaux de celles-
ci. Ainsi, une variable jugée pertinente à l'issue de l'analyse de type 3 pourrait
comporter certains niveaux non-significatifs.
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2.6 ÔMfltàe Je / 'q/urfemenf

Une fois le modèle ajusté (i.e. les variables explicatives pertinentes sélectionnées

et l'estimation du maximum de vraisemblance /3 de /3 obtenue), il est primordial
d'en évaluer la qualité, c'est-à-dire son habileté à décrire le nombre des sinistres
touchant les différents assurés du portefeuille. Cette évaluation peut se faire à

l'aide de la statistique de déviance mesurant la qualité de l'ajustement global
fourni par le modèle.

Notons L(A) la log-vraisemblance du modèle ajusté, où A (An, A12, •

A„r„)• La log-vraisemblance maximale qu'il est possible d'obtenir dans le modèle

spécifiant que les sont des variables indépendantes de loi de Poisson s'obtient
lorsqu'il y a autant de paramètres que d'observations; notons L(n) la log-
vraisemblance de ce modèle (qui prédira pour la Àème observation au cours
de l'année i). La déviance est alors définie comme

D(n,A)=2jL(n)-L(A)},

soit comme deux fois la différence entre la log-vraisemblance maximale et celle
du modèle considéré. Dans notre cas,

D(n, A) 21n{]J J[exp(-n,-,)^y| - 2 ln(j| exp(-Âit)^-
L;=| t=L J

i 1i~Jn T( N

2 53 X] 1
In - (/lit — Ait) ^

»=1 É=1
^ ^

où l'on a posé y In y 0 lorsque y 0. Puisque l'inclusion d'un intercept /L
garantit que (2) est valable, la déviance s'écrit dans ce cas

D(n, Â) 2 53 $3 ^ '

i=i t=i

L'analyse des résidus permet de détecter les observations pour lesquelles le

modèle ne fournit pas une prédiction satisfaisante, i.e. celles pour lesquelles la

valeur observée n« de (V)t et sa valeur prédite Ait diffèrent trop. L'analyse des

résidus permet aussi de détecter les défauts du modèle et suggère souvent la façon
d'y remédier. Dans le cadre de la régression de Poisson, les résidus se définissent
à partir de la contribution de chaque observation à la statistique de déviance £>.

Plus précisément, le résidu associé à l'observation /' durant l'année f est donné
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par

signe(n« - A,« In - (»it - Â,, j
avec la même convention que ci-dessus, à savoir y In y 0 lorsque y 0.

Dans la plupart des applications actuarielles, l'analyse des résidus individuels
n'apprend pas grand chose quant à la qualité de l'ajustement. En effet, ces résidus

présentent une structure forte induite par le petit nombre de valeurs observées pour
les iVji (rarement plus de 4). Si on veut juger de la qualité du modèle, il vaut
mieux grouper les assurés en classes et calculer les résidus au niveau des classes

(en remplaçant par le nombre de sinistres observés pour la classe et A*t

par l'anticipation au niveau de la classe dans la formule du résidu de déviance
donnée plus haut). Contrairement au modèle linéaire classique, la loi des résidus

est difficile à appréhender dans la régression de Poisson. On se contente donc

souvent en pratique de vérifier que les résidus ne laissent plus apparaître de

structure.

2.7 /V&//cf/o« r/c.s" /i'éguertces' anm<e//es t/e .vifu.ïtre.v

Pour l'assuré i et la période i, caractérisés par un vecteur de variables explicatives
la prime fréquence annuelle prédite est exp(a;^/3). Ceci sera aussi le cas pour

les nouveaux assurés présentant les mêmes caractéristiques (l'hypothèse implicite
étant que les nouvelles polices sont conclues par des individus s'identifiant
parfaitement aux assurés qui sont à la base de la construction du tarif; cela

suppose notamment que la compagnie maîtrise parfaitement I"antisélection).
On peut également obtenir un intervalle de confiance pour la prime-fréquence
annuelle. Ceci permettra d'avoir une idée quant à la précision de l'estimation de

celle-ci, et guidera le choix du taux de chargement de sécurité. Partons de la

variance du prédicteur linéaire 77^ 4tA donnée par

Varfàt] •

Comme l'estimateur du maximum de vraisemblance /3 est approximativement
gaussien en grand échantillon, % l'est également et un intervalle de confiance

approximatif au niveau de confiance l - « pour la prime-fréquence annuelle est

alors fourni par

exp I 43 ± *«/2
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2.<S ///».v/rat/wi numm(/i(e

2.8.1 Ajustement du modèle

La procédure GENMOD de SAS permet de réaliser la régression de Poisson du

nombre de sinistres sur les 5 variables explicatives présentées à la Section 1.7.

Les résultats sont présentés dans le Tableau 1.

Variable Level Coeff d Std Error Wald 95% Conf Limit Chi-Sq Pr>ChiSq

Intercept -1.9242 0.0302 -1.9833 -1.8650 4063.54 < .0001

Sexe Femme -0.0581 0.0265 -0.1100 -0.0063 4.82 0.0281

Sexe Homme 0 0 0 0

Age 17-22 0.6651 0.0583 0.5508 0.7793 130.23 < .0001

Age 23 - 30 0.2525 0.0261 0.2015 0.3036 93.87 < .0001

Age > 30 0 0 0 0

Puissance > HOkW -0.0116 0.0750 -0.1586 0.1353 0.02 0.8769

Puissance 66 - 1 IGkW 0.0563 0.0275 0.0024 0.1102 4.19 0.0406

Puissance < 66kW 0 0 0 0

Ville Grande 0.2549 0.0306 0.1949 0.3150 69.27 < .0001

Ville Moyenne 0.0756 0.0311 0.0147 0.1364 5.92 0.0150

Ville Petite 0 0 0 0

Couleur Rouge -0.0236 0.0416 -0.1052 0.0580 0.32 0.5710

Couleur Autre 0 0 0 0

Table 1: Résultats de la régression de Poisson pour le modèle avec les 5 variables

Les estimations ponctuelles des /3j sont fournies dans la troisième colonne
du Tableau 1, les deux premières permettant d'identifier le niveau auquel
le coefficient de régression se rapporte. Les lignes où apparaissent des 0

correspondent aux niveaux de référence des différentes variables tarifaires. La
colonne "Wald 95% Conf Limit" reprend les bornes inférieure et supérieure des

intervalles de confiance pour les paramètres au niveau 95%, calculées à l'aide de

la formule

Coeff/iji 1.96 Std Error $
où 1.96 est le quantile d'ordre 97.5% de la loi normale centrée réduite et Std

Error est la racine du jème élément diagonal de S.
Les colonnes "Chi-Sq" et "Pr>ChiSq", qui est la p-valeur associée, permettent
de tester si le coefficient correspondant est significativement différent de 0.
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Ce test est effectué grâce à la statistique de Wald

(Coeff/jj)'
(Std Error//,)- '

qui obéit approximativement à la loi Chi-carrée à I degré de liberté. On rejettera
la nullité de /?j lorsque la p-valeur est inférieure à 5%. L'examen de la dernière
colonne du Tableau I indique clairement que certaines variables explicatives
pourraient être omises sans nuire à la qualité du modèle.

La valeur de L(3) pour le modèle reprenant les 5 variables explicatives est

-19282.6. L'analyse de Type 3 fournit les résultats présentés au Tableau 2.

L'analyse de Type 3 permet d'examiner la contribution de chacune des variables

par rapport à un modèle ne la contenant pas. Dans la colonne "ChiSquare" est

calculée, pour chaque variable, 2 fois la différence entre la log-vraisemblance
obtenue par le modèle contenant toutes les variables et la log-vraisemblance
du modèle sans la variable en question. Cette statistique est asymptotiquement
distribuée comme une Chi-carrée avec DF degrés de liberté, où DF est le nombre
de paramètres associés à la variable explicative examinée. La dernière colonne

nous fournit la p-valeur associée au test du rapport de vraisemblance; cela permet
d'apprécier la contribution de cette variable explicative à la modélisation du

phénomène étudié.

Source DF ChiSquare Pr > ChiSq

Sexe 1 4.85 0.0276

Age 2 173.56 < .0001

Puissance 2 4.38 0.1120

Ville 2 74.10 < .0001

Couleur 1 0.32 0.5698

Table 2: Résultats de l'analyse de Type 3 pour le modèle avec les 5 variables.

L'examen des résultats des Tableaux I et 2 nous permet de diminuer le nombre
de variables explicatives. Nous constatons en effet que la variable "couleur du

véhicule" n'est pas significative. Son omission n'affecte pas le modèle, comme
en témoigne la p-valeur de 56.98% du Tableau 2. Nous l'éliminons donc du

modèle. Nous résumons ci-après les conclusions obtenues en poursuivant l'analyse
statistique (sans fournir les résultats numériques). Dans une deuxième étape nous

regroupons les niveaux de puissance "66 — 110kW" et "> 110kW" en une seule
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classe étant donné que le niveau "> 1 l()kW" n'est pas significatif. A chaque fois,
ces modifications n'affectent pas la qualité du modèle. Nous en arrivons alors au
modèle retenu, lequel est décrit au Tableau 3.

Variable Level Coeff d Std Error Wald 95% Conf Limit Chi-Sq Pr>ChiSq

Intercept -1.9277 0.0299 -1.9862 -1.8692 4165.69 < .0001

Sexe Femme -0.0575 0.0265 -0.1093 -0.0056 4.72 0.0299

Sexe Homme 0 0 0 0

Age 17 - 22 0.6668 0.0582 0.5526 0.7809 131.02 < .0001

Age 23-30 0.2547 0.0260 0.2038 0.3056 96.09 < .0001

Age > 30 0 0 0 0

Puissance > 66kW 0.0508 0.0269 -0.0019 0.1034 3.57 0.0587

Puissance < 66kW 0 0 0 0

Ville Grande 0.2545 0.0306 0.1944 0.3145 69.03 < .0001

Ville Moyenne 0.0757 0.0311 0.0148 0.1365 5.93 0.0148

Ville Petite 0 0 0 0

Table 3: Résultats de la régression de Poisson pour le modèle final.

La log-vraisemblance vaut -19 283.2 et l'analyse de Type 3 fournit les résultats

présentés au Tableau 4. A l'exception de la variable puissance, toutes les variables
sont statistiquement significatives et l'omission d'une quelconque d'entre elles
détériore significativement le modèle (au seuil de 5%). Nous décidons cependant
de garder la variable puissance en raison de son importance dans les tarifs
pratiqués par les compagnies d'assurances et du faible dépassement du seuil
(0.93%, seulement). La log-vraisemblance du modèle final est à peine moins
bonne que celle du modèle non contraint (à savoir, -19 282.6).

Source DF ChiSquare Pr > ChiSq

Sexe 1 4.74 0.0294

Age 2 176.07 < .0001

Puissance 1 3.56 0.0593

Ville 2 73.82 < .0001

Table 4: Résultats de l'analyse de Type 3 pour le modèle final.
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2.8.2 Qualité de l'ajustement

La Figure 7 décrit les résidus de déviance individuels. On peut y constater la
structure reflétant les quelques valeurs observées pour les A^. On ne peut donc

juger de la qualité du modèle sur base de la Figure 7. Si on recalcule les résidus

par classes, on obtient la Figure 8. On n'y constate aucune structure particulière,
mais des valeurs assez élevées de certains résidus, qui mettent en question la

justesse du modèle.

Figure 7: Graphe des résidus individuels en fonction des valeurs prédites

Deviance Residual

Predicted Value

Figure 8: Graphe des résidus par classe 'en fonction des valeurs prédites

2.8.3 Surdispersion

Le modèle de Poisson impose des contraintes assez fortes sur les deux premiers
moments de la variable de comptage compte tenu des facteurs de risque a;^,
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puisque

— Var[iV^|ccjtj — (4)

Ceci revient donc à supposer l'égalité entre le nombre moyen de sinistre et la
variabilité de ce nombre au sein de chaque classe de risque. L'équidispersion (4)
est rarement satisfaite en pratique, ce qui met en doute le modèle de Poisson
En pratique, afin de vérifier la validité de (4), on calcule pour chaque classe de
risque la moyenne et la variance empirique des nombres des sinistres, m/,, et <t|,
disons, et on porte le nuage de points {(/«*,, <?£), Â; 1,2,...} en graphique'
Ceci permet de voir comment la variance évolue en fonction de la moyenne.
Lorsque les points sont autour de la première bissectrice du quadrillage, on peut
considérer que les deux premiers moments conditionnels sont égaux, ce qui valide
(4) et conforte le modèle de Poisson. Dans le cas contraire, on observe souvent
un phénomène de surdispersion, c'est-à-dire des classes pour lesquelles ^ > m*,.
Ce phénomène est dû la plupart du temps à des variables omises.

Figure 9: Vérification de la validité de (4) sur les données

On peut en effet donner une interprétation simple de la surdispersion. Pour ce
faire, considérons deux classes de risque C, et CS sans effet de surdispersion
(<7, Toi et (?| m,), mais que l'on aurait omis de séparer. Dans la classe
C[ U 62, la moyenne vaut m pim; + P2W2 où pi et pi désignent les poids
relatifs de C, et CS, respectivement. La variance quant à elle passe à

(T" pi<7} +P202 + Pl(l — »0^ + p2('»-2 — '»)' •

On constate donc une surdispersion dans C'iUCS puisque S" > m, l'égalité n'étant
possible que si m, rrL-. On comprend donc aisément que l'oubli de variables
explicatives importantes puisse conduire à une surdispersion des observations au
sein des classes de risque.

00 0.2 0.3 0.4 0.5

Moy ennes empiriques
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La Figure 9 montre les points (rn^.. <t| correspondant aux classes de risque du
modèle final décrit au Tableau 3. On y constate une forte surdispersion et ce

pour toutes les catégories d'assurés. Les points sont en effet situés au-
dessus de la première bissectrice du quadrillage. Ceci nous conduit également
à considérer que le modèle de Poisson avec indépendance temporelle n'est pas
adapté.

Il est possible de tenir compte de la surdispersion constatée dans les données,

sans reconnaître l'éventuelle dépendance sérielle. A cette fin, on recourt soit à

un modèle de Poisson mélange, soit à une approche de quasi-vraisemblance en

spécifiant

Var[iV;t|a;;t] 0E[A%|a7t] 0Ait

Afin d'éprouver graphiquement la validité de cette dernière relation, nous avons

ajusté le nuage de points de la Figure 9 à l'aide d'une droite passant par l'origine
(donc d'équation y o.t). Ceci donne un paramètre de dispersion 0 estimé
à 1.9122 et un coefficient de détermination 7?" 86.17% (ce qui signifie que
la droite explique plus de 86% de la variabilité du nuage de points). A titre
de comparaison, si nous avions tenté un ajustement à l'aide d'une courbe du

second degré (du type y a; + 72:% caractéristique du lien moyenne-variance
dans un modèle de Poisson mélange), on aurait obtenu y x 4- 2.9545a% avec

fi* 90.90%. Un mélange de Poisson (la loi binomiale négative, par exemple)
aurait donc pu également être considéré. Nous privilégions cependant dans cet

article une approche de quasi-vraisemblance. Cela consiste à déterminer /3 en

résolvant le système (2)-(3). Ensuite, % est obtenu en divisant soit la déviance,

soit la statistique de Pearson par le nombre de degrés de liberté. La valeur estimée

de r/> sur nos données est 1.35, ce qui traduit bien la surdispersion des données.

L'introduction du paramètre de surdispersion </> gonfle les variances et les

covariances des /3j (lesquelles sont multipliées par <•/>). Ceci a pour effet de

réduire la valeur des statistiques de test utilisées pour éprouver la nullité des

ou la pertinence de l'inclusion de certaines variables dans le modèle. La

prise en compte de la surdispersion peut donc mener à l'exclusion de variables

tarifaires qui auraient été conservées dans le modèle de Poisson pur. On observe

un phénomène de ce type sur notre jeu de données, la y-valeur de la variable

puissance dans l'analyse de type 3 passant à 10.44%.
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3 Prise en compte de la dépendance temporelle

J. / Detection e/e / 7/,vpecf .v<?r/t7

Afin d'avoir une première idée du type de dépendance existant entre les iV^,
on peut par exemple considérer les observations TV^, t 2, i

l,...,n, et effectuer une régression de celles-ci sur les variables explicatives
ccjt correspondantes ainsi que le nombre iVj^_i de sinistres observés au cours de

la période de couverture précédente. Ceci permettra également de voir l'effet de

l'inclusion de valeurs passées de la variable d'intérêt sur les variables explicatives.
Afin de mettre cette dépendance en évidence, nous travaillons avec les obser-
vations des deux dernières années à notre disposition. Nous considérons donc
les observations A/jj, £ 2,3, i et nous effectuons une régression
de celles-ci sur les variables explicatives x# correspondantes auxquelles nous

ajoutons la variable i.e. le nombre de sinistres observés au cours de la

période précédente. Nous partons d'un modèle contenant les 5 variables explica-
tives déjà présentées et nous l'affinons, comme précédemment, par étapes suc-
cessives, grâce à l'analyse de Type 3. Nous commençons par éliminer la variable
"couleur du véhicule" qui a une p-valeur de de 27.37% et dans une deuxième

étape nous éliminons la variable "sexe du conducteur" dont la p-valeur est deve-

nue 21.10%. Nous obtenons alors le modèle dont les résultats sont présentés dans

les Tableaux 5 et 6. Le coefficient de régression obtenu pour le nombre passé de

sinistres est hautement significatif, ce qui indique une dépendance sérielle.

Variable Level Coeff /3 Std Error Wald 95% Conf Limit Chi-Sq Pr>ChiSq

Intercept -2.0405 0.0370 -2.1131 -1.9680 3041.80 < .0001

Age 17 - 22 0.5841 0.0983 0.3914 0.7767 35.31 < .0001

Age 23 - 30 0.1822 0.0348 0.1140 0.2503 27.41 < .0001

Age > 30 0 0 0 0

Puissance > IlOkW -0.0745 0.1035 -2.2773 0.1283 0.52 0.4716

Puissance 66 - 110kW 0.0933 0.0357 0.0233 0.1633 6.83 0.0090

Puissance < 66kW 0 0 0 0

Ville Grande 0.2201 0.0412 0.1394 0.3009 28.54 < .0001

Ville Moyenne 0.1050 0.0413 0.0242 0.1859 6.48 0.0109

Ville Petite 0 0 0 0

iVt-i 0.3113 0.0371 0.2387 0.3839 70.59 < .0001

Table 5: Résultats de la régression pour le modèle tenant compte de la sinistralité
passée.
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Source DF ChiSquare Pr > ChiSq

Age 2 50.58 < .0001

Puissance 2 7.94 0.0188

Ville 2 28.68 < .0001

1 63.38 < .0001

Table 6: Résultats de l'analyse de Type 3 pour le modèle tenant compte de la

sinistralité passée.

Dans une deuxième approche nous repartons de la fréquence obtenue sous

l'hypothèse d'indépendance et sans ajout du nombre de sinistres de l'année

précédente comme variable explicative. Cette prime est alors corrigée par un

facteur multiplicatif, obtenu par une régression de Poisson sur la seule variable
"nombre de sinistres de l'année précédente" (en mettant la prime fréquence
obtenue sous l'hypothèse d'indépendance en offset). Les résultats de cette

régression se trouvent dans les Tableaux 7 et 8.

Variable Coeff a Std Error Wald 95% Conf Limit Chi-Sq Pr>ChiSq

Intercept -0.1147 0.0180 -0.1500 -0.0793 40.42 < .0001

fv,_, 0.3040 0.0370 0.2316 0.3765 67.65 < .0001

Table 7: Résultats de la régression pour le modèle tenant compte de la sinistralité

passée en figeant l'influence des variables explicatives.

Source DF ChiSquare Pr > ChiSq

/V,-i 1 60.84 < .0001

Table 8: Résultats de l'analyse de Type 3 pour le modèle tenant compte de la

sinistralité passée en figeant l'influence des variables explicatives.

Il est intéressant de noter au passage que cette manière de procéder fournit
immédiatement des coefficients bonus-malus "à la française". En effet, le Tableau
7 nous apprend que les assurés qui n'ont déclaré aucun sinistre sur l'année verront
leur prime multipliée par

exp(-0.1147) 0.8916
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alors que ceux ayant déclaré fc sinistres subiront une majoration de prime valant

exp(-0.1147 + A; x 0.3040) 0.8916 x (1.3553)*=.

Il est toujours intéressant de comparer ces coefficients à ceux produits par un

modèle plus orthodoxe formulé en termes de variables latentes.

Les données suggèrent donc une dépendance sérielle. Cela invalide les résultats
obtenus à la section précédente, lesquels se fondent notamment sur l'hypothèse

que les AT sont indépendantes pour différentes valeurs de i et de f. Théorique-
ment, on peut cependant montrer que l'estimateur du maximum de vraisem-

blance /3 calculé sous l'hypothèse d'indépendance sérielle (donc avec erreur de

spécification) est convergent. Si la taille du portefeuille est suffisamment grande,

on s'attend donc à peu d'impact sur les estimations ponctuelles des différents A,.
Par contre, la variance de /3 ne peut plus être calculée comme décrit plus haut,

et est quant à elle affectée par la dépendance sérielle.

3.2 T.stiVufldon z/es paramètres' à /'atV/e r/e /a fec/tme/ue GZ3E

En présence de dépendance sérielle, on pourrait songer à garder l'estimateur
du maximum de vraisemblance dans le modèle de Poisson avec indépendance

temporelle (donc solution de (2)-(3)), choix qui se justifie par le caractère

convergent de celui-ci. Comme l'ont montré Liang & Zeger (1986), il est

possible d'améliorer cette approche (i.e. d'obtenir des estimateurs dont la variance

asymptotique sera plus faible que celle de ceux que nous venons de décrire). Il

s'agit de la méthode des GEE (pour l'anglais "Generalized Estimating Equation")
proposée par Liang & Zeger (1986). Les estimateurs fournis par cette méthode

sont convergents ; on espère donc que les estimations ainsi obtenues seront
de bonne qualité vu le grand nombre d'observations dont dispose en général
l'actuaire.

L'idée est simple : retenir l'estimateur du maximum de vraisemblance /3 solution
de (2)-(3) pour estimer /3 dans le modèle avec effet aléatoire n'est certainement

pas optimal puisqu'on ne tient pas compte de la structure de corrélation des AT,.
Réécrivons le système (2)-(3) sous forme vectorielle :

n

- E[AT,|) 0 où X.; (œ.j,,.. .,x«-
2= 1

(5)
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La matrice de covariance des TV« dans le modèle de Poisson avec indépendance
sérielle est

A,;

/Ai, 0 0 \
0 A,, 0

V 0 0 • • A<r, /
Cette matrice ne rend donc compte ni de la surdispersion, ni de la dépendance

sérielle présente dans les données. Si on fait apparaître explicitement la matrice

A, dans (5), on obtient

<9

E[iVi]) A-'K-E[iVi]) 0 (6)

puisque

Ö/3
E[iVi] A,Xi

Le principe des GEE consiste à substituer à A, dans (6) un candidat plus

raisonnable pour la matrice variance-covariance de iV,, plus raisonnable signifiant
ici rendant compte de la surdispersion et de la corrélation temporelle. Spécifions
à présent une forme plausible pour la matrice de covariance de AT; : on pourrait

penser à

Vi Ml^Äi(a)A]^
où la matrice de corrélation 72;(et) rend compte de la dépendance sérielle existant

entre les composantes de TV; et dépend d'un certain nombre de paramètres a. La

matrice 72, est une sous-matrice carrée de dimension 7, x T; d une matrice 72 de

dimension T„,ax x Y',,,,,* dont les éléments ne dépendent pas des caractéristiques

atjt de l'individu /. La surdispersion est quant à elle prise en compte puisque

Var[A^] Notez que la matrice V; ainsi définie n'est la matrice de

covariance de X, que si 22, est la matrice de corrélation de 2Vj, ce qui n'est pas

nécessairement le cas.
Comme annoncé ci-dessus, l'idée consiste alors à substituer la matrice V,; à X,
dans (6), et de retenir comme estimation de la solution de

Ë(^E[^])Vr'(ni-E[JVi]) 0 (7)
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Cette dernière relation exprime également une orthogonalité entre les résidus
de régression et les variables explicatives. Les estimateurs ainsi obtenus sont

convergents quel que soit le choix de la matrice jR;(a). On sent évidemment
bien qu'ils seront d'autant plus précis que iïj(a) est proche de la véritable
matrice de corrélation de iV,.

3.3 Morfé/isario« r/e /« r/é/renr/rmce à /VuV/e r/e /ri "vvor/r/ng correto/ow

Comme nous l'avons compris à la lecture de ce qui précède, c'est la matrice de

corrélation lï, qui tient compte de la dépendance entre les observations relatives
à un même assuré. Cette matrice de dimension T) x T) est appelée "working
correlation matrix". Il s'agit d'une matrice de corrélation de forme spécifiée
dépendant d'un certain nombre de paramètres repris dans le vecteur a.
Si flj(a) Identité, (7) donne exactement les équations de vraisemblance (5)
sous l'hypothèse d'indépendance.

En général, on spécifie dans le cadre de la tarification a priori une matrice Ä»(a)
traduisant une structure de type autorégressive. Ainsi, les éléments diagonaux de

Ä; valent 1 et hors diagonale, l'élément j/c vaut pour |j - A:| < m et 0

pour |j — fc| > m. On prendra m 7„,ax — 1. Les composantes du vecteur a
paramétrant la matrice K;(a) décrivant le type de dépendance entre les données

sont à estimer sur base des observations.

3.4 c/e.v e.sr/m«r/o«.v

L'équation (7) est généralement résolue à l'aide d'une méthode du score de Fisher
modifiée pour /3 et une estimation des moments pour a (nous renvoyons le

lecteur à Liang & Zeger (1986) pour une description complète de la méthode).
^(0)

Spécifiquement, partant d'une valeur initiale /3 solution du système (2)-(3),
nous calculons

-O+i) ^ -0) ^
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où ß,;(/3) ÄE[-/Vj] et Sj(/3) iVj - E[7V,]. A chaque étape, ^ et a sont

réestimés à partir des résidus de Pearson

p _
— Ajf

grâce aux formules

n T;
r/>

^ ^i=ii=i
et

xj Y E X>M^

3.5 ///«.v/ra/iow /»w/ié/vV/Mf

La dépendance sérielle des iV,< à z fixé ayant clairement été mise en évidence à

la Section 3.1, il importe de mesurer l'impact de l'hypothèse d'indépendance sur

l'estimation des fréquences. L'approche GEE peut être réalisée par la procédure
GENMOD de SAS. Une sélection des variables, basée comme précédemment

sur l'analyse de Type 3, nous conduit à retenir les mêmes variables que pour
le modèle où l'on supposait l'indépendance. Les résultats se trouvent dans les

Tableaux 9 et 10. L'estimation de la "working correlation matrix" de structure

autorégressive d'ordre 2 (i.e. d'ordre 7„,ax - ') donne

I 0.0493 0.0462 \
0.0493 1 0.0493
0.0462 0.0493 I /

et 0 1.3437.

Si on compare les ,0 des Tableaux 3 (sous l'hypothèse d'indépendance) et 9

(reconnaissant la dépendance sérielle), on constate des différences modestes. Les

erreurs-standards sont systématiquement plus élevées dans l'approche GEE (la

dépendance sérielle augmentant la surdispersion).
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Variable Level Coeff 0 Std Error 95% Conf Limit Z Pr> |%j

Intercept -1.9233 0.0319 -1.9858 -1.8608 -60.32 < .0001

Sexe Femme —0.0581 0.0289 -0. 1148 -0.0014 -2.01 0.0446

Sexe Homme 0 0 0 0

Age 17 - 22 0.6586 0.0617 0.5376 0.7797 10.67 < .0001

Age 22 - 30 0.2557 0.0281 0.2006 0.3107 9.10 < .0001

Age > 30 0 0 0 0

Puissance > 66kW 0.0532 0.0292 -0.0041 0.1105 1.82 0.0686

Puissance < 66kW 0 0 0 0

Ville Grande 0.2542 0.0332 0.1892 0.3192 7.67 < .0001

Ville Moyenne 0.0719 0.0336 0.0060 0.1379 2.14 0.0326

Ville Petite 0 0 0 0

Table 9: Résultats de la régression de Poisson avec approche GEE.

Source DF ChiSquare Pr > ChiSq

Sexe 1 4.09 0.0431

Age 2 128.79 < .0001

Puissance 1 3.28 0.0701

Ville 2 60.71 < .0001

Table 10: Résultats de l'analyse de Type 3 pour le modèle avec approche GEE.

3.6 /mpflct .sur /e.v

Pour terminer, comparons les fréquences obtenues en supposant l'indépendance
sérielle ou en reconnaissant explicitement la dépendance temporelle; celles-ci
sont fournies aux Tableaux 11 et 12. On constate des différences au niveau des

estimations des fréquences annuelles de sinistre associées aux classes de risque,
mais ces différences restent limitées (elles seront néanmoins exacerbées par la

multiplication par le coût moyen d'un sinistre et par les chargements de sécurité

et commerciaux). La prise en considération de la dépendance sérielle a également
un impact sur les intervalles de confiance pour les fréquences, lesquels sont plus
larges dans l'approche GEE.
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Classes de risque Fréquences

Sexe Age Puissance Ville Inf Prime Sup

Homme 17-22 < 66 Petite 0.25251 0.28339 0.31084

Moyenne 0.27221 0.30566 0.34322

Grande 0.32535 0.3655 0.41061

> 66 Petite 0.26395 0.29815 0.33678

Moyenne 0.28464 0.32158 0.36332

Grande 0.34027 0.38454 0.43457

23-30 < 66 Petite 0.17708 0.18768 0.19892

Moyenne 0.19135 0.20243 0.21416

Grande 0.22878 0.24206 0.25612

> 66 Petite 0.1848 0.19746 0.21099

Moyenne 0.19976 0.21298 0.22707

Grande 0.23893 0.25467 0.27146

> 30 < 66 Petite 0.13721 0.14548 0.15425

Moyenne 0.1483 0.15692 0.16604

Grande 0.17754 0.18764 0.19831

> 66 Petite 0.14413 0.15306 0.16254

Moyenne 0.15588 0.16509 0.17485

Grande 0.18668 0.19741 0.20876

Femme 17-22 < 66 Petite 0.23779 0.26756 0.30106

Moyenne 0.25631 0.28859 0.32494

Grande 0.30646 0.34509 0.38859

> 66 Petite 0.24766 0.2815 0.31996

Moyenne 0.26704 0.30362 0.34523

Grande 0.31935 0.36307 0.41277

23-30 < 66 Petite 0.16643 0.1772 0.18867

Moyenne 0.17975 0.19113 0.20322

Grande 0.21509 0.22855 0.24285

> 66 Petite 0.17265 0.18643 0.20131

Moyenne 0.18652 0.20108 0.21679

Grartde 0.22322 0.24045 0.25901

> 30 < 66 Petite 0.12906 0.13736 0.14619

Moyenne 0.13942 0.14816 0.15743

Grande 0.16703 0.17716 0.1879

> 66 Petite 0.13462 0.14451 0.15513

Moyenne 0.14549 0.15587 0.1670

Grande 0.17431 0.18639 0.1993

Table II: Estimations ties fréquences des différentes classes de risque sous

l'hypothèse d'indépendance.
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Classes de risque Fréquences

Sexe Age Puissance Ville Inf Prime Sup

Homme 17-22 < 66 Petite 0.24954 0.28233 0.31942

Moyenne 0.26804 0.30348 0.34338

Grande 0.32137 0.36405 0.41240

> 66 Petite 0.26135 0.29776 0.33924

Moyenne 0.28104 0.31996 0.36428

Grande 0.33671 0.38395 0.43781

23-30 < 66 Petite 0.17725 0.18869 0.20086

Moyenne 0.19059 0.20276 0.21571

Grande 0.22865 0.24331 0.25890

> 66 Petite 0.18531 0.19899 0.21369

Moyenne 0.19965 0.21384 0.22904

Grande 0.23918 0.25660 0.27529

> 30 < 66 Petite 0.13727 0.14612 0.15554

Moyenne 0.14759 0.15701 0.16704

Grande 0.17748 0.18842 0.20003

> 66 Petite 0.14455 0.15410 0.16429

Moyenne 0.15578 0.16560 0.17603

Grande 0.18701 0.19871 0.21114

Femme 17-22 < 66 Petite 0.23532 0.26634 0.30156

Moyenne 0.25294 0.28625 0.32396

Grande 0.30359 0.34350 0.38865

> 66 Petite 0.24518 0.28095 0.32193

Moyenne 0.26381 0.30190 0.34550

Grande 0.31640 0.36227 0.41479

23-30 < 66 Petite 0.16643 0.17804 0.19045

Moyenne 0.17918 0.19131 0.20427

Grande 0.21541 0.22957 0.24466

> 66 Petite 0.17254 0.18776 0.20427

Moyenne 0.18606 0.20177 0.21880

Grande 0.22333 0.24210 0.26248

> 30 < 66 Petite 0.12867 0.13787 0.14773

Moyenne 0.13851 0.14815 0.15847

Grande 0.16687 0.17778 0.18940

> 66 Petite 0.13426 0.14540 0.15747

Moyenne 0.14477 0.15625 0.16864

Grande 0.17409 0.18750 0.20193

Table 12: Estimations des fréquences des différentes classes de risque dans

l'approche GEE.
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4 En guise de conclusion...

L'enseignement principal qui nous semble devoir être tiré de la présente étude est

que I impact de l'hypothèse d'indépendance des données individuelles relatives à

différentes périodes d'observation, communément utilisée au sein des compagnies
d assurance lorsqu'il s'agit de construire une tarification « p/w/7 en s'appuyant
sur plusieurs années d'observation, ne semble pas avoir d'impact conséquent sur
l'estimation des fréquences de sinistres. Théoriquement, cela s'explique par le ca-
ractère convergent des estimateurs obtenus sous cette hypothèse d'indépendance,
et par la taille souvent considérable des portefeuilles d'assurance automobile. Ce-
pendant, la reconnaissance de l'aspect sériel ties données augmente la variance des

estimateurs, et, partant, la largeur des intervalles de confiance sur les fréquence.
Ceci doit être pris en considération lors de la fixation de la hauteur du charge-
ment de sécurité. Dans des cas extrêmes, la prise en compte de la dépendance
temporelle peut même conduire à l'exclusion de certaines variables tarifaires.
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Résumé

Souvent, les actuaires utilisent plusieurs années d'observation de leur portefeuille automobile afin de

personnaliser les fréquences de sinistres. Ils négligent cependant la plupart du temps la dépendance
sérielle existant entre les données relatives ü un même individu. Cet article examine précisément à

l'aide des "Generalized Estimating Equations" (GEE) l'impact de cette approche sur les estimations
des fréquences de sinistres. Une illustration est proposée à l'aide du logiciel SAS sur base d'un
portefeuille d'assurance automobile belge observé au cours de trois années.

Summary

In third party liability automobile insurance, actuaries often pool several observation periods to
determine the price list. The serial dependence arising from the fact that the same individuals are
followed and produce correlated claim numbers is nevertheless almost always neglected in practice,
this paper examines with the help of the Generalized Estimating Equations (GEE) technique the

impact of this approach on the estimation of claim frequencies. A numerical illustration on a

Belgian portfolio observed during three years is performed with the statistical software SAS.

Zusammenfassung

Oft verwenden die Aktuare mehrere Beobachtungsjahre ihres Autohaftpflicht-Portefeuilles um

Schadenfrequenzen zu bestimmen. Meistens wird jedoch die serielle Abhängigkeit zwischen den

Daten des gleichen Individuums vernachlässigt. Mit Hilfe von "Generalized Estimating Equations'
(GEE) wird im Artikel die Auswirkung dieses Vorgehens auf die Schadenfrequenzen untersucht. Ein

numerisches Beispiel, basierend auf einem belgischen Portefeuille, welches drei Beobachtungsjahre
umfasst, verdeutlicht diesen Zugang. Dabei wurde die Statistiksoftware SAS eingesetzt.
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