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S. PrrreBois, M. DeNurt et J.-F. WALHIN, Bruxelles, Louvain-la-Neuve

Tarification automobile sur données de panel

1 Introduction
1.1 Le concept de segmentation et ses implications

Le terme “segmentation” est actuellement considéré comme faisant partie du
jargon professionnel de I'assurance. La segmentation ne se limite pas a la
différenciation tarifaire, bien connue de tous, mais comporte aussi la sélection
du risque a laquelle procéde I'assureur lors de la conclusion du contrat (accep-
tation) ou en cours de contrat. Les différentes étapes de la segmentation peuvent

se représenter schématiquement comme suit

Acceptation du risque
Tarification a priori
[mposition de franchises ou de découverts obligatoires
Transformation du risque a assurer
Tarification a posteriori
Résiliation éventuelle

Le principe qui consiste a demander au preneur d’assurance une prime qui
correspond au risque individuel qu’il représente ne peut pas étre mis en pratique
deés la souscription du contrat. Ceci requerrait en effet que tous les facteurs
influengant le risque soient connus et que leur impact puisse étre €tabli sans
équivoque. Compte tenu de I’hétérogénéité encore présente au sein des classes
d’assurés créées par I’actuaire, la différence dans les statistiques de sinistres des
assurés ne doit pas seulement étre attribuée au hasard mais doit étre considérée
dans une certaine mesure comme le reflet de I'influence des facteurs de risque
qui n’ont pas été pris en considération a priori. L'intégration de I'historique des
sinistres dans la tarification donne lieu a une personnalisation a posteriori au
moyen d’un systeme de type bonus-malus ou d’une autre forme “d’experience-

rating”’.
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1.2 Portée du travail

Dans ce travail, nous considérons le probleme de la segmentation a priori sur
la composante fréquentielle de la prime pure. Nous présentons une méthode
simple et performante de segmentation a priori et de calcul des fréquences
annuelles de sinistre par I’assureur. La principale originalité¢ de notre démarche
est de reconnaitre explicitement 1’aspect sériel des données servant de base a
I’établissement du tarif. A cet égard, le présent travail complete et précise certains
aspects de DENUIT, PITREBOIS & WALHIN (2001). Il rejoint a certains endroits
PINQUET, GUILLEN & BOLANCE (2002) et BoLANCE, GUILLEN & PINQUET
(2003), bien que nous nous intéressions ici exclusivement a la tarification a priori
(la dépendance sérielle entre les observations apparait donc comme une nuisance)
alors que ces auteurs se focalisent sur la tarification a posteriori (et induisent la
dépendance sérielle a ’aide de variables latentes corrélées).

1.3 Modeéles de régression en tarification

De nombreuses techniques statistiques ont €té utilisées pour répartir les assurés
en classes aussi homogeénes que possible. Globalement, on peut distinguer
les méthodes relevant de I’analyse des données (notamment les arbres de
classification) et celles basées sur les modeles de régression. Cet article est
entierement consacré a cette dernicre optique.

Au cours de la derniere décennie, de nombreux actuaires ont fait usage de
modeles de régression pour des données non-normales. Parmi ceux-ci, on notera
les modeles linéaires généralisés, permettant de modéliser des situations bien
plus variées que ne le permet le modele linéaire classique. Bien que la régression
linéaire reste une des techniques statistiques les plus utilisées dans beaucoup de
domaines, force est de constater qu’il y a de nombreuses situations ol elle ne
s’applique pas (ou tres mal) en sciences actuarielles. Nous songeons notamment
a I'analyse des fréquences des sinistres, ou encore a celle de I'occurrence des
sinistres.

1.4 Tarification sur base de données en panel

Souvent, les actuaires utilisent plusieurs années d’observation afin de construire
leur tarif (dans le but d’augmenter la taille de la base de données, mais aussi
pour éviter d’accorder trop d’importance a des €vénements relatifs 2 une année
particuliére). Ceci a notamment pour conséquence que certaines des données ne
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seront plus indépendantes. En effet, les observations réalisées sur un méme assuré
au cours des différentes périodes considérées sont sans doute corrélées (ce qui est
la raison d’étre de la tarification a posteriori). Nous sommes donc en présence
de données en panel.

Dans le cadre de la tarification a priori, la dépendance existant entre les
observations relatives a la méme police est considérée comme une nuisance :
I'actuaire veut a ce stade déterminer I'impact des facteurs observables sur le
risque assuré, et les corrélations existant entre les données I’empéchent de recourir
aux techniques statistiques classiques (pour la plupart fondées sur I’hypothese
d’indépendance). Nous montrerons ici comment prendre cette dépendance en
compte afin d’améliorer la qualité des- estimations a I'aide des techniques
proposées par LIANG & ZEGER (1986) et ZEGER ET AL. (1988).

Les estimateurs des fréquences de sinistres obtenus sous I'hypothese d’indépen-
dance des données individuelles relatives a différentes périodes sont convergents
(c’est-a-dire qu’ils tendront en probabilité vers les valeurs population si la taille
de I’échantillon croit). Des lors, on peut raisonnablement espérer que pour des
portefeuilles automobiles de grande taille, I'impact de I’hypothese simplificatrice
d’indépendance sur les estimations ponctuelles soit minime. C’est en effet ce que
nous mettrons en évidence dans la partie empirique de notre €tude.

1.5  Notations

Comme nous I'avons expliqué plus haut, les compagnies d’assurance utilisent
souvent plusieurs périodes d’observation pour construire leur tarif. Les observa-
tions individuelles sont donc doublement indicées, par la police ¢ et la période ¢.
Dorénavant, N;; représente le nombre de sinistres déclarés par I’assuré€ 7 durant la
période ¢, i = 1,2,...,n, t = 1,2,...,T;, ou T; désigne le nombre de périodes
d’observation pour I’assuré i. Nous noterons d;; la durée de la teme période
d’observation pour I'individu 7. Lors de chaque modification des variables ob-
servables, un nouvel intervalle commence, de sorte que d;; peut &tre différent
de 1. Nous supposons que nous disposons par ailleurs d’autres variables ax;;,
connues au début de la période ¢, et pouvant servir de facteurs explicatifs pour la
sinistralité de I’assuré i. En plus des variables explicatives, on peut introduire le
temps calendaire en composante de régression afin de prendre en compte certains
événements ponctuels ou d’éventuelles tendances dans la sinistralité, dans I’esprit
de BESSON & PARTRAT (1992).

Typiquement, nous sommes en présence de données de panel : une méme variable
est mesurée sur un grand nombre n d’individus au cours du temps, a un nombre
max,<;<, 1; relativement faible de reprises. L’asymptotique se fera ici en faisant
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tendre n vers I’infini, et non pas le nombre d’observations effectuées sur un méme
individu (comme c’est typiquement le cas dans le cadre de I'analyse des séries
chronologiques).

1.6 Score et codage des variables explicatives

Le niveau de risque de chaque assuré est reflété dans un score. Dorénavant,
nous notons 17;; = Bla;, le prédicteur linéaire, a savoir une combinaison linéaire
Bo + 25’:1 Bjxy; des variables explicatives @y = (1,21, ..., Tirp)" relatives a
individu 7 et a la période ¢. Le prédicteur linéaire 1;; est encore appelé score
car il permet de ranger les assurés du moins risqué au plus risqué, en suivant les
valeurs croissantes de 7;;.

Les variables explicatives composant x;; peuvent étre de différents types. Cer-
taines d’entre elles peuvent étre quantitatives et continues (comme la puissance de
la voiture ou I’age de I'assuré par exemple). D’autres variables explicatives dont
["assureur dispose a propos de ses assurés peuvent &tre quantitatives discretes (le
nombre d’enfants de I’assuré, par exemple). D autres encore sont qualitatives ou
catégorielles (comme le sexe ou I’état-civil de I'assuré, par exemple).
Dorénavant, nous supposerons, comme c’est le cas en pratique, que toutes les
variables sont catégorielles ; pour plus de détails quant au traitement des variables
continues, voyez BROUHNS & DeNUIT (2003). Une variable catégorielle a A
facteurs est généralement codée par k£ — | variables binaires qui sont toutes
nulles pour le niveau de référence. Expliquons la technique de codage a I'aide
de 'exemple élémentaire suivant, Considérons une compagnie segmentant selon
le sexe, le caractere sportif du véhicule et I'dge de I'assuré (3 classes d’dges, a
savoir moins de 30 ans, 30-65 ans et plus de 65 ans). Un assuré sera représenté
par un vecteur binaire donnant les valeurs des variables

% 0 si 'assuré est un homme
A= e 4 5
L | si "assuré est une femme

X 0 si le véhicule n’a pas de caractere sportif
270 1 si le véhicule a un caractére sportif
v | si I'assuré a moins de 30 ans
A3 = i
) 0 sinon
Y | si 'assuré a plus de 65 ans
4 = .
i 0 sinon.
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On choisit généralement comme niveau de référence (i.e. celui pour lequel toutes
les X, valent 0) les modalités les plus représentées dans le portefeuille. Ici,
le niveau de référence correspond a un homme dans la tranche d’ages 30-65
ans conduisant un véhicule non sportif. Les résultats s’interpréteront ensuite
comme une sur- ou sous-sinistralité par rapport a cette classe de référence.
Ainsi, le vecteur (0,1,1,0) représente un assuré masculin de moins de 30 ans
conduisant un véhicule sportif. Le prédicteur linéaire (ou score) sera de la forme
G + th, 3;X;; Uintercept [y représente donc le risque associ¢ a la classe de
référence (i.e. celle pour laquelle X; = 0 pour tout i, a savoir les hommes entre
30 et 65 ans dont le véhicule n’a pas de caractere sportif).

1.7 Présentation du jeu de données

Dans cet article, nous illustrons nos propos sur un portefeuille d’assurance belge
comprenant 20 354 polices, observées durant une période de 3 ans. La Figure
| donne une idée de la durée d’exposition au risque des polices en portefeuille.
Un peu plus de 34% des assurés sont restés en portefeuille durant les trois ans.
Pour chaque police et pour chaque année sont renseignés le nombre de sinistres
et certaines caractéristiques de 'assuré : le sexe du conducteur (homme-femme),
I"dge du conducteur (trois classes d’age : 18 — 22 ans, 23 — 30 ans et > 30 ans),
la puissance du véhicule (trois classes de puissance : < 66kW, 66 — 110kW et
> 110kW), la taille de la ville de résidence du conducteur (grande, moyenne
ou petite, en fonction du nombre d’habitants) et la couleur du véhicule (rouge
ou autre). Sur 'ensemble du portefeuille la fréquence annuelle moyenne est de
18.4% (ce qui est largement supérieur a la moyenne européenne).

Les Figures 2 2 6 montrent des histogrammes décrivant, pour chaque variable
explicative, la répartition du portefeuille entre les différents niveaux de la variable
et, pour chacun de ces niveaux, la fréquence moyenne (en %) de sinistres.
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Figure 1: Durée d’exposition au risque (en mois)
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Ces histogrammes appellent les quelques commentaires suivants. On constate a
la Figure 2 une légere sous-sinistralité pour les femmes (17.7% contre 18.8%),
qui représentent 36% des assurés du portefeuille. La sur-sinistralité des jeunes
conducteurs ressort clairement de la Figure 3 (mais ils sont sous-représentés
dans le portefeuille). Les fréquences de sinistres semblent décroitre avec 1’age,
passant de 30.8% a 20.8% et enfin a 16.3%. En ce qui concerne la puissance du
véhicule, on constate a la Figure 4 une sous-sinistralité pour les grosses cylindrées.
L’examen de la Figure 5 révele que la fréquence des sinistres est plus élevée
dans les grandes agglomérations. La sinistralité semble décroitre avec la taille de
["agglomération. Enfin, on constate a la Figure 6 que la couleur rouge ne semble
pas &tre un facteur aggravant.

2 Régression de Poisson en supposant ’indépendance temporelle
2.1 Modélisation

En premicre approximation, on supposera les /V;; indépendantes pour différentes
valeurs de ¢ et de ¢. Il s’agit bien entendu d’une hypothese simplificatrice forte
dont nous €valuerons I'impact en comparant les résultats obtenus a ceux fournis
par différentes méthodes permettant de tenir compte de cette dépendance sérielle.
Nous supposons que la loi conditionnelle de V;, sachant x;; est de Poisson et
nous spécifions une moyenne de forme exponentielle linéaire, i.e.

Njt =q Poisson (dgexp(ni)), i=1,2,...,n, t=1,2,...,T;. (1)

La fréquence de sinistre relative a I'individu 4 durant la période ¢ est \;; =
dip exp(mit).

2.2 Estimation par maximum de vraisemblance

Notons 7n;; le nombre de sinistres déclarés par I'assuré 7 durant la période ¢. La
vraisemblance associée a ces observations vaut alors

n T;

paN ' { g}
(@) =] [[expf /\zt}—nit! ,

i=] =1

il s’agit de la probabilité d’obtenir les observations réalisées au sein du portefeuille
dans le modele considéré (notez que £ est une fonction des parametres (3, les
observations étant supposées connues).
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L’estimation de B par la méthode du maximum de vraisemblance consiste 2

déterminer 3 en maximisant £(3) : 3 est donc la valeur du parametre rendant
les observations recueillies par I'actuaire les plus probables. Afin de faciliter
I’obtention du maximum, on passe souvent a la log-vraisemblance, laquelle est

donnée par

n T
L(B) =InL(B) = Z Z { — Inng! + ni(nie +Indy) — /\u} -

i=1 t=I
Comme [, est une fonction concave en le paramétre 3, les conditions du premier
ordre sont nécessaires et suffisantes pour caractériser I'estimateur du maximum de
vraisemblance de 3. Cette concavité rend également plus facile I'application des
procédures numériques d’optimisation de la log-vraisemblance. Les conditions au

premier ordre sont

n T n

¢ T3
¢ LB) =04 > ny = PR (2)

03
e i=] t=] i=1 t=I

et.pout § = 1.2 . Py

) n T,
(—)’[T} (8) =06 3w {nie = Aaf = 0. %

i=1 t=1

Si on définit le résidu-fréquence nres;; relatif a 'individu ¢ et a la période ¢

comme
nresy = Ny — Mg = Niy — E[Nig|@a]

on peut interpréter les équation de vraisemblance (3) comme une relation
d’orthogonalité entre les variables explicatives @;; et les résidus d’estimation
nresi. Cette orthogonalité peut s’interpréter comme une “indépendance” entre
les résidus d’estimation et les variables explicatives, signifiant que les variables
explicatives n’ont aucun pouvoir prédictif des résidus nres;.

2.3 Signification tarifaire des équations de vraisemblance
Comme les variables explicatives sont les indicatrices des niveaux des facteurs

de risque, les équations de vraisemblance (3) ont une signification tarifaire trés
importante. Elles garantissent que pour chaque sous-portefeuille correspondant a



60

un niveau d’un des facteurs de risque, le nombre total des sinistres observés est
égal a son homologue théorique. En effet, supposons par exemple que x;; = |
si I’individu ¢ est un homme, et 0 sinon; (3) garantit alors pour 7 = | que

Z B = Z Ait -

hommes hommes
En supposant les cofits des sinistres constamment égaux a |, ceci garantit donc
que les primes supportées par les hommes compensent exactement les sinistres
causés par ceux-ci. Il n’y a donc pas de transfert de primes entre hommes et
femmes induit par le tarif appliqué par la compagnie.
De plus, en vertu de (2) la somme des primes-fréquence est €gale au nombre
total de sinistres déclarés, puisque

A n T ‘j

n T

IPIETED BT

i=1l t=I i=1 t=1
pour autant qu’un intercept (y soit inclus dans le score 7);; (c’est-a-dire pour
autant que les fréquences soient exprimées par rapport a une fréquence annuelle
de référence exp(/y)). Le modele reconstitue donc sans erreur le nombre total de
sinistres observés.

2.4 Variance asymptotique des estimateurs

[.a matrice variance-covariance 2 de 'estimateur du maximum de vraisemblance
3 du parametre 3 est 'inverse de la matrice d’information de Fisher Z. Elle peut
étre estimée par

n T, -1
—~ t ——
D = { E E mi,tmi{,/\it} .

i=1 t=I

En vertu de la théorie asymptotique de la méthode du maximum de vraisemblance,
/@ est approximativement de loi normale de moyenne la vraie valeur du paramétre
et de matrice variance-covariance 3. Ceci permet d’obtenir des intervalles et des
zones de confiance pour les parametres.

2.5 Meéthodes de sélection des variables explicatives

Trois approches existent dans la plupart des logiciels : forward, backward et step-
wise. La procédure forward part d’un modele sans variables explicatives (compor-
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tant uniquement un intercept (%, donc supposant les observations identiquement
distribuées) et incorpore un a un les facteurs de risque jugés les plus pertinents
sur base de la comparaison des log-vraisemblances. Aucune variable n’est plus
introduite lorsque la prise en compte de celles-ci ne rend pas le modele significa-
tivement meilleur. Cette premiére approche est donc fort semblable a celle de la
segmentation du portefeuille selon un arbre de classification. Le portefeuille est
éclaté en sous-portefeuilles a mesure que de nouvelles variables sont incorporées
au modele.

La procédure backward quant a elle part du portefeuille le plus segmenté et
regroupe les classes définies a partir des facteurs les moins pertinents. Ainsi, si le
facteur “présence d’airbags” est jugé non pertinent (car son omission ne détériore
pas significativement le modele), on regroupera les classes correspondant aux
différentes modalités de ce facteur.

L’approche stepwise conjugue I'esprit des deux algorithmes précédents (elle peut
se voir comme une procédure forward pour laquelle, apres chaque inclusion de
variable explicative, on se demande si une des variables entrées dans le modele
ne pourrait pas étre supprimée).

La procédure GENMOD de SAS, qui permet d’effectuer la régression de Poisson,
n’offre pas les procédures décrites ci-dessus (au contraire de LOGISTIC et GLM,
par exemple), mais bien des analyses de types | et 3. L'analyse de type |1
introduit une 4 une les variables dans le modele, dans I'ordre dans lequel elles
ont été spécifiées dans MODEL. Les résultats de cette analyse dépendent donc
de cet ordre, somme toute arbitraire. Un test du rapport de vraisemblance est
effectué entre deux modeles successifs emboités; cela permet de se faire une
idée de la pertinence de la dernieére variable introduite, compte tenu de celles
déja incorporées au modele. L analyse de type | différe de la procédure forward
en ce que les variables sont introduites dans I'ordre dans lequel elles ont été
spécifiées par I'utilisateur, et pas en fonction de leur pouvoir prédictif.

On préférera donc Ianalyse de type 3 a son homologue de type 1. Cette
analyse comparera le modéle complet (¢’est-a-dire comprenant toutes les variables
spécifiées dans MODEL) avec les différents modeles obtenus en supprimant une
des variables. Ceci permet de tester la pertinence de chacune des variables
explicatives, compte tenu des autres. Il s’agit donc de I'optique backward de
sélection des variables tarifaires : & chaque étape, on exclura la variable possédant
la p-valeur la plus élevée, jusqu’a ce qu’aucune variable ne puisse plus étre exclue
(i.e. jusqu'a ce que toutes les p-valeurs soient inférieures a un seuil choisi par
[utilisateur, en général 5%). Il convient ici d’insister sur le fait que I'analyse de
type 3 travaille avec les variables, et pas avec les différents niveaux de celles-
ci. Ainsi, une variable jugée pertinente a l'issue de I'analyse de type 3 pourrait
comporter certains niveaux non-significatifs.
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2.6 Qualité de 'ajustement

Une fois le modele ajusté (i.e. les variables explicatives pertinentes sélectionnées
et ’estimation du maximum de vraisemblance ,@ de 3 obtenue), il est primordial
d’en évaluer la qualité, c’est-a-dire son habileté a décrire le nombre des sinistres
touchant les différents assurés du portefeuille. Cette évaluation peut se faire a
I'aide de la statistique de déviance mesurant la qualité de I'ajustement global
fourni par le modele.

-~

Notons L(j\) la log-vraisemblance du modele ajusté, ot A = (XII,X|2,...,

;\\\nf['”). La log-vraisemblance maximale qu’il est possible d’obtenir dans le modele
spécifiant que les /V;; sont des variables indépendantes de loi de Poisson s obtient
lorsqu’il y a autant de parameétres que d’observations; notons L(n) la log-
vraisemblance de ce modele (qui prédira n;; pour la ieéme observation au cours
de I'année t). La déviance est alors définie comme

D(n,A) = 2{L(n) - L(X)},

soit comme deux fois la différence entre la log-vraisemblance maximale et celle
du modele considéré. Dans notre cas,

n T; Ty ~ b 2
D(n’ {HH(‘XD ’I’I f' } {HH(‘([) A/\ 7\?)“‘ }

i=1t=1 i=1t=|

n T}
n; ~
w'ZZZ{H ; Bt — (njy ~/\-;:n)}

=1 t=I

ot I'on a posé ylny = 0 lorsque y = 0. Puisque 'inclusion d’un intercept 3y

garantit que (2) est valable, la déviance s’écrit dans ce cas

n T
D(n, ) :ZZZH, ¢ In %Lt ;
j=1 t= b

[’analyse des résidus permet de détecter les observations pour lesquelles le
modele ne fournit pas une prédiction satisfaisante, i.e. celles pour lesquelles la
valeur observée n;; de N;; et sa valeur prédite X-@c different trop. L’analyse des
résidus permet aussi de détecter les défauts du modele et suggere souvent la facon
d’y remédier. Dans le cadre de la régression de Poisson, les résidus se définissent
a partir de la contribution de chaque observation a la statistique de déviance D).
Plus précisément, le résidu associ€¢ a 1I’observation 7 durant I’année ¢ est donné



par

rl) = signe(n;, — Xﬁr) 2{11,;, In it — (nie — X,-,_)}
Ait

avec la méme convention que ci-dessus, a savoir yIny = 0 lorsque y = 0.

Dans la plupart des applications actuarielles, I'analyse des résidus individuels r/)
n’apprend pas grand chose quant & la qualité de I’ajustement. En effet, ces résidus
présentent une structure forte induite par le petit nombre de valeurs observées pour
les V;; (rarement plus de 4). Si on veut juger de la qualité¢ du modele, il vaut
micux grouper les assurés en classes et calculer les résidus au niveau des classes
(en remplagant N;; par le nombre de sinistres observés pour la classe et X,;,
par 'anticipation au niveau de la classe dans la formule du résidu de déviance
donnée plus haut). Contrairement au modéle linéaire classique, la loi des résidus
est difficile a appréhender dans la régression de Poisson. On se contente donc
souvent en pratique de vérifier que les résidus ne laissent plus apparaitre de

structure.

2.7 Prédiction des fréquences annuelles de sinistres

Pour I"assuré i et la période ¢, caractérisés par un vecteur de variables explicatives
@, la prime fréquence annuelle prédite est exp(x!,3). Ceci sera aussi le cas pour
les nouveaux assurés présentant les mémes caractéristiques (I’hypothese implicite
étant que les nouvelles polices sont conclues par des individus s’identifiant
parfaitement aux assurés qui sont a la base de la construction du tarif; cela
suppose notamment que la compagnie maitrise parfaitement I'antisélection).

On peut également obtenir un intervalle de confiance pour la prime-fréquence
annuelle. Ceci permettra d’avoir une idée quant a la précision de I'estimation de
celle-ci, et guidera le choix du taux de chargement de sécurité. Partons de la

variance du prédicteur linéaire 7;, = x!,/3, donnée par

Var[n;] = mftfkc,;, ;

Comme I’estimateur du maximum de vraisemblance (3 est approximativement
gaussien en grand échantillon, 7;; I'est également et un intervalle de confiance
approximatif au niveau de confiance | — «v pour la prime-fréquence annuelle est
alors fourni par ‘

[v.xp (:cf,a + 24721 m{,flarn)J
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2.8 llustration numérique
2.8.1 Ajustement du modele
La procédure GENMOD de SAS permet de réaliser la régression de Poisson du

nombre de sinistres sur les 5 variables explicatives présentées a la Section 1.7.
Les résultats sont présentés dans le Tableau 1.

Variable Level Coeff 8 | Std Error | Wald 95% Conf Limit | Chi-Sq | Pr>ChiSq
[ntercept —1.9242 0.0302 | —1.9833 | —1.8650 | 4063.54 <.0001
Sexe Femme —0.0581 0.0265 | —0.1100 | —0.0063 4.82 0.0281
Sexe Homme 0 0 0 0 ' ;
Age 17 -22 0.6651 0.0583 0.5508 0.7793 130.23 < .0001
Age 23 - 30 0.2525 0.0261 0.2015 0.3036 93.87 < .0001
Age > 30 0 0 0 0 i .
Puissance | > [10kW —-0.0116 0.0750 | —0.1586 0.1353 0.02 0.8769
Puissance | 66 — 110kW 0.0563 0.0275 0.0024 0.1102 4.19 0.0406
Puissance | < 66kW 0 0 0 0 ; :
Ville Grande 0.2549 0.0306 0.1949 0.3150 69.27 < .0001
Ville Moyenne 0.0756 0.0311 0.0147 0.1304 5.92 0.0150
Ville Petite 0 0 0 0 . ;
Couleur Rouge —0.0236 0.0416 | —0.1052 0.0580 0.32 0.5710
Couleur Autre 0 0 0 0

Table 1: Résultats de la régression de Poisson pour le modele avec les 5 variables.

Les estimations ponctuelles des (; sont fournies dans la troisiéme colonne
du Tableau [, les deux premieres permettant d’identifier le niveau auquel
le coefficient de régression se rapporte. Les lignes ot apparaissent des 0
correspondent aux niveaux de référence des différentes variables tarifaires. La
colonne “Wald 95% Conf Limit” reprend les bornes inférieure et supérieure des
intervalles de confiance pour les parametres au niveau 95%, calculées a ’aide de
la formule

Coeff 3;4:1.96 Std Error 3; ,

ol 1.96 est le quantile d’ordre 97.5% de la loi normale centrée réduite et Std
Error est la racine du jeéme élément diagonal de 3.

Les colonnes “Chi-Sq” et “Pr>ChiSq”, qui est la p-valeur associée, permettent
de tester si le coefficient [3; correspondant est significativement différent de 0.
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Ce test est effectué grice a la statistique de Wald

(Coeff 3;)*
(Std Error 3;)

qui obéit approximativement & la loi Chi-carrée a 1 degré de liberté. On rejettera
la nullité de 3; lorsque la p-valeur est inférieure & 5%. L’examen de la derniére
colonne du Tableau | indique clairement que certaines variables explicatives
pourraient étre omises sans nuire a la qualité du modele.

~

La valeur de L(3) pour le modele reprenant les 5 variables explicatives est
-19282.6. L'analyse de Type 3 fournit les résultats présentés au Tableau 2.
L’analyse de Type 3 permet d’examiner la contribution de chacune des variables
par rapport 2 un modele ne la contenant pas. Dans la colonne “ChiSquare” est
calculée, pour chaque variable, 2 fois la différence entre la log-vraisemblance
obtenue par le modele contenant toutes les variables et la log-vraisemblance
du modele sans la variable en question. Cette statistique est asymptotiquement
distribuée comme une Chi-carrée avec DF degrés de liberté, oi DF est le nombre
de paramétres associés a la variable explicative examinée. La derni¢re colonne
nous fournit la p-valeur associée au test du rapport de vraisemblance ; cela permet
d’apprécier la contribution de cette variable explicative a la modélisation du

phénomene étudié.

Source DF ChiSquare Pr > ChiSq
Sexe | 4.85 0.0276
Age 2 173.56 < .0001
Puissance 2 4.38 0.1120
Ville 2 74.10 < .0001
Couleur | 0.32 0.5698

Table 2: Résultats de I'analyse de Type 3 pour le modele avec les 5 variables.

’

['examen des résultats des Tableaux | et 2 nous permet de diminuer le nombre
de variables explicatives. Nous constatons en effet que la variable “couleur du
véhicule™ n’est pas significative. Son omission n’affecte pas le modele, comme
en témoigne la p-valeur de 56.98% du Tableau 2. Nous I’éliminons donc du
modele. Nous résumons ci-apres les conclusions obtenues en poursuivant I'analyse
statistique (sans fournir les résultats numériques). Dans une deuxi¢me étape nous
regroupons les niveaux de puissance “66 — I 1OKW™ et “> 110kW” en une seule
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classe étant donné que le niveau “> 1 1OkW” n’est pas significatif. A chaque fois,
ces modifications n’affectent pas la qualité du modele. Nous en arrivons alors au
modele retenu, lequel est décrit au Tableau 3.

Variable Level Coeff 8 | Std Error | Wald 95% Conf Limit Chi-Sq | Pr>ChiSq
Intercept —1.9277 0.0299 | —1.9862 —1.8692 | 4165.69 < .0001
Sexe Femme —0.0575 0.0265 [ —0.1093 —0.0056 4.72 0.0299
Sexe Homme 0 0 0 0 : :
Age 17 —22 0.6668 0.0582 0.5526 0.7809 131.02 < .0001
Age 23 - 30 0.2547 0.0260 0.2038 0.3056 96.09 < .0001
Age > 30 0 0 0 0 : :
Puissance | > 66kW 0.0508 0.0269 | —0.0019 0.1034 3.57 0.0587
Puissance | < 66kW 0 0 0 0 ’ ;
Ville Grande 0.2545 0.0306 0.1944 0.3145 69.03 < .0001
Ville Moyenne 0.0757 0.0311 0.0148 0.1365 5.93 0.0148
Ville Petite 0 0 0 0

Table 3: Résultats de la régression de Poisson pour le modele final.

La log-vraisemblance vaut -19 283.2 et ’analyse de Type 3 fournit les résultats
présentés au Tableau 4. A I’exception de la variable puissance, toutes les variables
sont statistiquement significatives et I'omission d’une quelconque d’entre elles
détériore significativement le modele (au seuil de 5%). Nous décidons cependant
de garder la variable puissance en raison de son importance dans les tarifs
pratiqués par les compagnies d’assurances et du faible dépassement du seuil
(0.93%, seulement). La log-vraisemblance du modele final est a peine moins
bonne que celle du modele non contraint (a savoir, -19 282.6).

Source DF ChiSquare Pr > ChiSq
Sexe 1 4.74 0.0294
Age ) 176.07 < .0001
Puissance 1 3.56 0.0593
Ville 2 73.82 < .0001

Table 4: Résultats de I'analyse de Type 3 pour le modele final.
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2.8.2 Qualité de I’ajustement

La Figure 7 décrit les résidus de déviance individuels. On peut y constater la
structure reflétant les quelques valeurs observées pour les /V;;. On ne peut donc
juger de la qualité du modele sur base de la Figure 7. Si on recalcule les résidus
par classes, on obtient la Figure 8. On n’y constate aucune structure particuliére,
mais des valeurs assez élevées de certains résidus, qui mettent en question la

justesse du modele.
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Figure 7: Graphe des résidus individuels en fonction des valeurs prédites
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Figure 8: Graphe des résidus par classe en fonction des valeurs prédites

2.8.3 Surdispersion

Le modele de Poisson impose des contraintes assez fortes sur les deux premiers
moments de la variable de comptage N;; compte tenu des facteurs de risque ax;;,
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puisque
E[Nig,w',‘,d = VEII'[NL'”SEM] o /\i,g 5 (4)

Ceci revient donc 2 supposer I’égalité entre le nombre moyen de sinistre et la
variabilit¢ de ce nombre au sein de chaque classe de risque. L’équidispersion (4)
est rarement satisfaite en pratique, ce qui met en doute le modéle de Poisson
En pratique, afin de vérifier la validité de (4), on calcule pour chaque classe de
risque la moyenne et la variance empirique des nombres des sinistres, 7y, et o7,
disons, et on porte le nuage de points {(Mg,0}), k=1,2,.. .} en graphique.
Ceci permet de voir comment la variance évolue en fonction de la moyenne,
Lorsque les points sont autour de la premiére bissectrice du quadrillage, on peut
considérer que les deux premiers moments conditionnels sont €gaux, ce qui valide
(4) et conforte le modele de Poisson. Dans le cas contraire, on observe souvent
un phénomene de surdispersion, c’est-a-dire des classes pour lesquelles &7 > 7.
Ce phénomene est dii la plupart du temps a des variables omises.

Variances empirigues

B AAAALAAAL AL LALLALAAAS LLRsA aas \AAALAASSS Laanatiaer e
0.0 0.1 0.2 03 0.4 05 0.6

Moy ennes empiriques

Figure 9: Vérification de la validité de (4) sur les données

On peut en effet donner une interprétation simple de la surdispersion. Pour ce
faire, considérons deux classes de risque C) et €5 sans effet de surdispersion
(G7 = iy et 35 = M,), mais que Ion aurait omis de séparer. Dans la classe
C1 U C, la moyenne vaut m = pimy + pamay ol py et py désignent les poids
relatifs de C'y et C3, respectivement. La variance quant 2 elle passe a

~ ~

~2 ~ ~\2 ~ -~ 2
G° = p\at + paos + pu(my —m)” + pa(my —m)?.

On constate donc une surdispersion dans C',UC, puisque a2 > 7, I'égalité n’étant
possible que si 7 = ;. On comprend donc aisément que I'oubli de variables
explicatives importantes puisse conduire A une surdispersion des observations au
sein des classes de risque.
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La Figure 9 montre les points (77;,k,3f,) correspondant aux classes de risque du
modele final décrit au Tableau 3. On y constate une forte surdispersion et ce
pour toutes les catégories d’assurés. Les points (1, 3,%.) sont en effet situés au-
dessus de la premiere bissectrice du quadrillage. Ceci nous conduit également
a considérer que le modele de Poisson avec indépendance temporelle n’est pas

adapté.

[l est possible de tenir compte de la surdispersion constatée dans les données,
sans reconnaitre 1’éventuelle dépendance sérielle. A cette fin, on recourt soit a
un modele de Poisson mélange, soit a une approche de quasi-vraisemblance en

spécifiant

Vill'[lviffl‘,jt] = (bIE[IVMICBu] = (/)/\»Ijt §

Afin d’éprouver graphiquement la validité de cette derniere relation, nous avons
ajusté le nuage de points de la Figure 9 a I'aide d’une droite passant par I'origine
(donc d’équation y = ¢a). Ceci donne un parametre de dispersion ¢ estimé
a 1.9122 et un coefficient de détermination R* = 86.17% (ce qui signifie que
la droite explique plus de 86% de la variabilité¢ du nuage de points). A titre
de comparaison, si nous avions tenté un ajustement a I'aide d’une courbe du

a2, caractéristique du lien moyenne-variance

second degré (du type y = = + 7
dans un modele de Poisson mélange), on aurait obtenu y = & + 2.95452% avec
R* = 90.90%. Un mélange de Poisson (la loi binomiale négative, par exemple)
aurait donc pu également étre considéré. Nous privilégions cependant dzmi et
article une approche de quasi-vraisemblance. Cela consiste a déterminer 3 en
résolvant le systeme (2)-(3). Ensuite, fB est obtenu en divisant soit la déviance,
soit la statistique de Pearson par le nombre de degrés de liberté. La valeur estimée
de ¢ sur nos données est 1.35, ce qui traduit bien la surdispersion des données.

)

L’introduction du parameétre de surdispersion ¢ gorlﬂe les variances et les
covariances des Q, (lesquelles sont multipliées par ¢). Ceci a pour effet de
réduire la valeur des statistiques de test utilisées pour éprouver la nullité des
3; ou la pertinence de I'inclusion de certaines variables dans le modele. La
prise en compte de la surdispersion peut donc mener a I'exclusion de variables
tarifaires qui auraient été conservées dans le modele de Poisson pur. On observe
un phénoméne de ce type sur notre jeu de données, la p-valeur de la variable
puissance dans I'analyse de type 3 passant a 10.44%.
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3 Prise en compte de la dépendance temporelle
3.1 Détection de l'aspect sériel

Afin d’avoir une premiere idée du type de dépendance existant entre les Ny,
on peut par exemple considérer les observations Ny, t = 2,...,7;, i =
l,...,n, et effectuer une régression de celles-ci sur les variables explicatives
x;; correspondantes ainsi que le nombre N; ;| de sinistres observés au cours de
la période de couverture précédente. Ceci permettra également de voir I'effet de
I’inclusion de valeurs passées de la variable d’intérét sur les variables explicatives.
Afin de mettre cette dépendance en €vidence, nous travaillons avec les obser-
vations des deux dernieres années a notre disposition. Nous considérons donc
les observations Ny, t = 2,3, 1 = 1,...,n, et nous effectuons une régression
de celles-ci sur les variables explicatives x;; correspondantes auxquelles nous
ajoutons la variable NV;;_|, i.e. le nombre de sinistres observés au cours de la
période précédente. Nous partons d’un modele contenant les 5 variables explica-
tives déja présentées et nous l’affinons, comme précédemment, par €tapes suc-
cessives, grace a I’analyse de Type 3. Nous commengons par éliminer la variable
“couleur du véhicule” qui a une p-valeur de de 27.37% et dans une deuxie¢me
étape nous éliminons la variable “sexe du conducteur” dont la p-valeur est deve-
nue 21.10%. Nous obtenons alors le modele dont les résultats sont présentés dans
les Tableaux 5 et 6. Le coefficient de régression obtenu pour le nombre passé de
sinistres est hautement significatif, ce qui indique une dépendance sérielle.

Variable Level Coeff 8 | Std Error | Wald 95% Conf Limit | Chi-Sq | Pr>ChiSq
Intercept —2.0405 0.0370 | —2.1131 —1.9680 | 3041.80 < .0001
Age 17 - 22 0.5841 0.0983 0.3914 0.7767 35.31 < .0001
Age 23 — 30 0.1822 0.0348 0.1140 0.2503 27.41 < .0001
Age > 30 0. 0 0 0 . .
Puissance | > 110kW —0.0745 0.1035 | —2.2773 0.1283 0.52 0.4716
Puissance | 66 — | 10kW 0.0933 0.0357 0.0233 0.1633 6.83 0.0090
Puissance | < 66kW 0 0 0 0 ; q
Ville Grande 0.2201 0.0412 0.1394 0.3009 28.54 < .0001
Ville Moyenne 0.1050 0.0413 0.0242 0.1859 6.48 0.0109
Ville Petite 0 0 0 0 . .
Ny 0.3113 0.0371 0.2387 0.3839 70.59 < .0001

Table 5: Résultats de la régression pour le modele tenant compte de la sinistralité
passée.
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Source DF | ChiSquare Pr > ChiSq
Age 2 50.58 < .0001
Puissance 2 7.94 0.0188
Ville 2 28.68 < .0001
Ne—) I 63.38 < .0001

Table 6: Résultats de I'analyse de Type 3 pour le modele tenant compte de la
sinistralité passée.

Dans une deuxieme approche nous repartons de la fréquence obtenue sous
I"hypotheése d’indépendance et sans ajout du nombre de sinistres de I'année
précédente comme variable explicative. Cette prime est alors corrigée par un
facteur multiplicatif, obtenu par une régression de Poisson sur la seule variable
“nombre de sinistres de I'année précédente” (en mettant la prime fréquence
obtenue sous I'hypothése d’indépendance en offset). Les résultats de cette
régression se trouvent dans les Tableaux 7 et 8.

Variable Coeff 3 Std Error Wald 95% Conf Limit Chi-Sq Pr>ChiSq
Intercept —~0.1147 0.0180 —0.1500 —0.0793 40.42 < .0001
N 0.3040 0.0370 0.2316 0.3765 67.65 < .0001

Table 7: Résultats de la régression pour le modele tenant compte de la sinistralité
passée en figeant I'influence des variables explicatives.

Source DF ChiSquare Pr > ChiSq

Ny | 60.84 < .0001

Table 8: Résultats de I'analyse de Type 3 pour le modele tenant compte de la
sinistralité passée en figeant I'influence des variables explicatives.

[l est intéressant de noter au passage que cette manicre de procéder fournit
immédiatement des coefficients bonus-malus “a la frangaise”. En effet, le Tableau
7 nous apprend que les assurés qui n’ont déclaré aucun sinistre sur I"année verront

leur prime multipliée par

exp(—0.1147) = 0.8916
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alors que ceux ayant déclaré £ sinistres subiront une majoration de prime valant

exp(—0.1147 + k x 0.3040) = 0.8916 x (1.3553)" .

Il est toujours intéressant de comparer ces coefficients a ceux produits par un
modele plus orthodoxe formulé en termes de variables latentes.

Les données suggerent donc une dépendance sérielle. Cela invalide les résultats
obtenus & la section précédente, lesquels se fondent notamment sur 1’hypothese
que les N;; sont indépendantes pour différentes valeurs de ¢ et de ¢. Théorique-
ment, on peut cependant montrer que l’estimateur du maximum de vraisem-

blance B calculé sous I"hypothése d’indépendance sériclle (donc avec erreur de
spécification) est convergent. Si la taille du portefeuille est suffisamment grande,
on s’attend donc a peu d’impact sur les estimations ponctuelles des différents (3;.

Par contre, la variance de (3 ne peut plus étre calculée comme décrit plus haut,
et est quant a elle affectée par la dépendance sérielle.

3.2 Estimation des parameétres a l'aide de la technique GEE

En présence de dépendance sérielle, on pourrait songer a garder 1’estimateur
du maximum de vraisemblance dans le modele de Poisson avec indépendance
temporelle (donc solution de (2)-(3)), choix qui se justifie par le caractere
convergent de celui-ci. Comme I'ont montré LIANG & ZEGER (1986), il est
possible d’améliorer cette approche (i.e. d’obtenir des estimateurs dont la variance
asymptotique sera plus faible que celle de ceux que nous venons de décrire). Il
s’agit de la méthode des GEE (pour I’anglais “Generalized Estimating Equation™)
proposée par LIANG & ZEGER (1986). Les estimateurs fournis par cette méthode
sont convergents; on espere .donc que les estimations ainsi obtenues seront
de bonne qualité vu le grand nombre d’observations dont dispose en général
["actuaire.

[’idée est simple : retenir I’estimateur du maximum de vraisemblance fi solution
de (2)-(3) pour estimer 3 dans le modele avec effet aléatoire n’est certainement
pas optimal puisqu’on ne tient pas compte de la structure de corrélation des V.
Réécrivons le systeme (2)-(3) sous forme vectorielle :

> Xi(ni —E[Ni]) =0o0b X; = (za, ..., zim,)". (5)

1=1
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La matrice de covariance des N;; dans le modele de Poisson avec indépendance

sérielle est

ha O e D

B Jgese 0
A=

0 O e R

Cette matrice ne rend donc compte ni de la surdispersion, ni de la dépendance
sérielle présente dans les données. Si on fait apparaitre explicitement la matrice
A, dans (5), on obtient

Z< 9 BN, ]) “(n; — E[Ny]) =0 (©6)

puisque

0

S E[NV;] = A X,

B
Le principe des GEE consiste a substituer a A; dans (6) un cun(h(.lat.plus
raisonnable pour la matrice variance-covariance de N, plus raisonnable mgqnﬁant
ici rendant compte de la surdispersion et de la corrélation temporelle. Specnhon-s
a présent une forme plausible pour la matrice de covariance de NN, : on pourrait
penser a

V= r/)A:/zRi(a)A:/Z

ol la matrice de corrélation R;(cx) rend compte de la dépendance sérielle existant
entre les composantes de IN; et dépend d’un certain nombre de parametres c. La
matrice R; est une sous-matrice carrée de dimension 7 x 7} d’une matrice R de
dimension 7}, X Thax dont les éléments ne dépendent pas des czu‘actérist.lques
x;; de Uindividu i. La surdispersion est quant a elle prise en compte p‘msque
Var[N;;] = ¢A;,. Notez que la matrice V/; ainsi définie n’est la matrice de
covariance de IN; que si R; est la matrice de corrélation de N;, ce qui n’est pas
nécessairement le cas.

Comme annoncé ci-dessus, 1'idée consiste alors a substituer la matrice V'; a A;
dans (6), et de retenir comme estimation de 3 la solution de

Z (()‘; E[N; ]) V;'(n, —E[Nj]) =0 7)

1=
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Cette derniére relation exprime également une orthogonalité entre les résidus
de régression et les variables explicatives. Les estimateurs ainsi obtenus sont
convergents quel que soit le choix de la matrice R;(«). On sent évidemment
bien qu’ils seront d’autant plus précis que R;(c) est proche de la véritable
matrice de corrélation de INV;.

3.3 Modélisation de la dépendance a 'aide de la “working correlation
matrix”

Comme nous "avons compris & la lecture de ce qui précede, c’est la matrice de
corrélation R; qui tient compte de la dépendance entre les observations relatives
a un méme assuré. Cette matrice de dimension 7; x T; est appelée “working
correlation matrix”. Il s’agit d’une matrice de corrélation de forme spécifiée
dépendant d’un certain nombre de parametres repris dans le vecteur o.

Si R;(ax) = Identité, (7) donne exactement les équations de vraisemblance (5)
sous I’hypotheése d’indépendance.

En général, on spécifie dans le cadre de la tarification a priori une matrice R;(cx)
traduisant une structure de type autorégressive. Ainsi, les éléments diagonaux de
R; valent | et hors diagonale, I'élément jk vaut ;g pour |j — k| < m et 0
pour |j — k| > m. On prendra m = Ty,,x — |. Les composantes du vecteur c
paramétrant la matrice R;(c«v) décrivant le type de dépendance entre les données
sont a estimer sur base des observations.

3.4  Obtention des estimations

L’équation (7) est généralement résolue a I’aide d’une méthode du score de Fisher
modifiée pour 3 et une estimation des moments pour « (nous renvoyons le
lecteur a LIANG & ZEGER (1986) pour une description complete de la méthode).

. st , o ~(0) . .
Spécifiquement, partant d’une valeur initiale 3~ solution du systeme (2)-(3),
nous calculons

a(j+l) 1 ,a(j) n ZDﬁ(ﬁ(j))V{'(ﬁm,a(ﬁ(j)))D-;(ﬁ(j))
=1
S DA Wi BY @) 5B

=1
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ou D;(3) = ()ﬁ[E,[N] et S;(8) = N, — E[N;]. A chaque étape, ¢ et a sont

réestimés a partir des résidus de Pearson

I]I.[) - Nit — /\it

= T
VAir

grace aux formules

. 1
- ST —p ZZ{’

i=1 t=I

Y

et

fI‘a -

—~ l P [)
Qr = — Z TitTit4r -
)ﬂv)

¢ (Zil'l'.,>r(Ti e i Ti>r t=1

3.5 Hlustration numérique

La dépendance sérielle des N;; i 7 fixé ayant clairement été mise en €vidence a
la Section 3.1, il importe de mesurer I'impact de I'hypothese d’indépendance sur
I’estimation des fréquences. L approche GEE peut étre réalisée par la procédure
GENMOD de SAS. Une sélection des variables, basée comme précédemment
sur I"analyse de Type 3, nous conduit i retenir les mémes variables que pour
le modele o I'on supposait I'indépendance. Les résultats se trouvent dans les
Tableaux 9 et 10. L'estimation de la “working correlation matrix” de structure

autorégressive d’ordre 2 (i.e. d’ordre Tiax — 1) donne
| 0.0493 0.0462
0.0493 | 0.0493
0.0462 0.0493 |
et ¢ = 1.3437. :

Si on compare les /3; des Tableaux 3 (sous I’hypothese d indépendance) et 9
(reconnaissant la dépendance sérielle), on constate des différences modestes. Les
erreurs-standards sont systématiquement plus élevées dans I'approche GEE (la

dépendance sérielle augmentant la surdispersion).
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Variable Level Coeff 3 | Std Error 95% Conf Limit Z | Pr>|Z|
[ntercept —1.9233 0.0319 —1.9858 —1.8608 —00.32 < .0001
Sexe Femme —0.0581 0.0289 —0.1148 —0.0014 —2.01 0.0446
Sexe Homme 0 0 0 0 ; ;
Age 17 —22 0.6586 0.0617 0.5376 0.7797 10.67 < .0001
Age 23 — 30 0.2557 0.0281 0.20006 0.3107 9.10 < .0001
Age > 30 0 0 0 0 ‘ .
Puissance > 60kW 0.0532 0.0292 —0.0041 0.1105 1.82 0.0686
Puissance < 66kW 0 0 0 0 ; ;
Ville Grande 0.2542 0.0332 0.1892 0.3192 7.67 < .0001
Ville Moyenne 0.0719 0.0336 0.0060 0.1379 2.14 0.0326
Ville Petite 0 0 0 0

Table 9: Résultats de la régression de Poisson avec approche GEE.

Source DF ChiSquare Pr > ChiSq
Sexe | 4.09 0.0431
Age 2 128.79 < .0001
Puissance | 3.28 0.0701
Ville 2 60.71 < .0001

Table 10: Résultats de "analyse de Type 3 pour le modele avec approche GEE.

3.6 Impact sur les [fréquences

Pour terminer, comparons les fréquences obtenues en supposant I’indépendance
sérielle ou en reconnaissant explicitement la dépendance temporelle; celles-ci
sont fournies aux Tableaux 11 et 12. On constate des différences au niveau des
estimations des fréquences annuelles de sinistre associées aux classes de risque,
mais ces différences restent limitées (elles seront néanmoins exacerbées par la
multiplication par le colit moyen d’un sinistre et par les chargements de sécurité
et commerciaux). La prise en considération de la dépendance sérielle a également
un impact sur les intervalles de confiance pour les fréquences, lesquels sont plus
larges dans I"approche GEE.
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Classes de risque Fréquences
Sexe Age Puissance Ville Inf Prime Sup
Homme 17-22 < 66 Petite 0.25251 0.28339  0.31084
Moyenne 0.27221 0.30566 0.34322
Grande 0.32535 0.3655 0.41061
> 66 Petite 0.26395 0.29815  0.33678

Moyenne 0.284064 0.32158 0.36332
Grande 0.34027  0.38454 0.43457

23-30 < 66 Petite 0.17708 0.18768 0.19892
Moyenne 0.19135 0.20243 0.21416

Grande 0.22878  0.24206 0.25612

> 00 Petite 0.1848 0.19746  0.21099

Moyenne 0.19976 0.21298 0.22707

Grande (0.23893 0.25467 0.27146

> 30 < 60 Petite 0.13721 0.14548 0.15425

Moyenne 0.1483 0.15692 0.16604

Grande 0.17754 0.18764 0.19831

> 66 Petite 0.14413 0.15306 0.16254

Moyenne 0.15588 0.16509 0.17485

Grande 0.18668 0.19741 0.20876

Femme 17-22 < 66 Petite 0.23779 026756 0.301006
Moyenne 0.25631 0.28859 0.32494

Grande 0.30646  0.34509 0.38859

> 0606 Petite 0.24766 0.2815 0.31996

Moyenne 0.26704 0.30362 0.34523

Grande 0.31935 0.36307 0.41277

23-30 < 60 Petite 0.16643 0.1772 0.18867

Moyenne 0.17975 0.19113 0.20322

Grande 0.21509  0.22855 (.24285

> 066 Petite 0.17265 0.18643 0.20131

Moyenne 0.18652 0.20108 0.21679

Grande 0.22322 0.24045 0.25901

0.12906  0.13736 0.14619

> 30 < 66 Petite
Moyenne 0.13942 0.14816 0.15743
Grande 0.16703 0.17716 0.1879
> 60 Petite 0.13462 0.14451 0.15513

Moyenne 0.14549 0.15587 0.1670

Grande 0.17431 0.18639 0.1993

Table I1: Estimations des fréquences des différentes classes de risque sous

I"hypothese d’indépendance.
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Classes de risque Fréquences
Sexe Age Puissance Ville Inf Prime Sup
Homme 17-22 < 66 Petite 0.24954 0.28233 0.31942
Moyenne 0.26804  0.30348  (0.34338
Grande 0.32137  0.36405 0.41240
> 66 Petite 0.26135 029776 0.33924

Moyenne 0.28104 0.31996 0.36428

Grande 0.33671 0.38395 0.43781

23-30 < 66 Petite 0.17725 0.18869  0.20086
Moyenne 0.19059 0.20276 0.21571

Grande 0.22865 0.24331 0.25890

> 66 Petite 0.18531 0.19899 0.21369

Moyenne 0.19965 0.21384 0.22904

Grande 0.23918 0.25660  0.27529

> 30 < 66 Petite 0.13727 0.14612  0.15554
Moyenne 0.14759 0.15701 0.16704

Grande 0.17748 0.18842 0.20003

> 66 Petite 0.14455 0.15410 0.16429

Moyenne 0.15578 0.16560 0.17603

Grande 0.18701 0.19871 021114

Femme 17-22 < 66 Petite 0.23532 0.26634 0.30156

Moyenne 0.25294 0.28625 0.32396

Grande 0.30359 0.34350  0.38865

> 66 Petite 0.24518 0.28095 0.32193

Moyenne 0.26381 0.30190 0.34550

Grande 0.31640 0.36227 0.41479

23-30 < 66 Petite 0.16643 0.17804 0.19045
Moyenne 0.17918 0.19131 0.20427

Grande 0.21541 0.22957 0.24466

> 66 Petite 0.17254  0.18776  0.20427

Moyenne 0.18606  0.20177  0.21880

Grande 0.22333 0.24210  0.26248

> 30 < 66 Petite 0.12867 0.13787 0.14773
Moyenne 0.13851 0.14815 0.15847

Grande 0.16687 0.17778 0.18940

> 66 Petite 0.13426  0.14540  0.15747

Moyenne 0.14477 0.15625 0.16864

Grande 0.17409 0.18750 0.20193

Table 12: Estimations des fréquences des différentes classes de risque dans
I’approche GEE.
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4 En guise de conclusion...

[enseignement principal qui nous semble devoir étre tiré de la présente étude est
que I'impact de I’hypothése d’indépendance des données individuelles relative§ a
différentes périodes d’observation, communément utilisée au sein des compagnies
d’assurance lorsqu’il s’agit de construire une tarification a priori en s’appuyant
sur plusieurs années d’observation, ne semble pas avoir d’impact conséquent sur
I"estimation des fréquences de sinistres. Théoriquement, cela s’explique par le ca-
ractére convergent des estimateurs obtenus sous cette hypothése d’indépendance,
et par la taille souvent considérable des portefeuilles d’assurance automobile. Ce-
pendant, la reconnaissance de I’aspect sériel des données augmente la variance des
estimateurs, et, partant, la largeur des intervalles de confiance sur les fréquence.
Ceci doit étre pris en considération lors de la fixation de la hauteur du charge-
ment de sécurité. Dans des cas extrémes, la prise en compte de la dépendance
temporelle peut méme conduire a 'exclusion de certaines variables tarifaires.
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Résumé

Souvent, les actuaires utilisent plusieurs années d’observation de leur portefeuille automobile afin de
personnaliser les fréquences de sinistres. Ils négligent cependant la plupart du temps la dépendance
sérielle existant entre les données relatives 2 un méme individu. Cet article examine précisément a
I"aide des “Generalized Estimating Equations” (GEE) I'impact de cette approche sur les estimations
des fréquences de sinistres. Une illustration est proposée a I'aide du logiciel SAS sur base d'un
portefeuille d’assurance automobile belge observé au cours de trois années.

Summary

In third party liability automobile insurance, actuaries often pool several observation periods to
determine the price list. The serial dependence arising from the fact that the same individuals are
followed and produce correlated claim numbers is nevertheless almost always neglected in practice.
This paper examines with the help of the Generalized Estimating Equations (GEE) technique the
impact of this approach on the estimation of claim frequencies. A numerical illustration on a
Belgian portfolio observed during three years is performed with the statistical software SAS.

Zusammenfassung

Oft verwenden die Aktuare mehrere Beobachtungsjahre ihres Autohaftpflicht-Portefeuilles um
Schadenfrequenzen zu bestimmen. Meistens wird jedoch die serielle Abhiingigkeit ZWiSChcn. (Ien
Daten des gleichen Individuums vernachliissigt. Mit Hilfe von “Generalized Estimating Ell““l""f"-_"
(GEE) wird im Artikel die Auswirkung dieses Vorgehens auf die Schadenfrequenzen un[crsucht: Ein
numerisches Beispiel, basierend auf einem belgischen Portefeuille, welches drei Beobachtungsjahre
umfasst, verdeutlicht diesen Zugang. Dabei wurde die Statistiksoftware SAS eingesetzt.
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