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D. ToNIOLO, Ziirich

Schadenhohenverteilungen der einzelnen Segmente
versus Schadenhdhenverteilung des ganzen Portefeuilles

1 Motivation und Einfithrung

[n der Praxis ist es oft tiblich, Schadenhdhenverteilungen mit Gamma-Verteilungen
zu modellieren. In der Tat liefern Gamma-Verteilungen, deren Parameter beispiels-
weise mittels eines Likelihoodschitzers ermittelt wurden, oft gute Anpassungen
an die empirische Schadenhohenverteilung, solange wir nur kleinere und mitt-
lere Schiiden in Betracht zichen. Zur Modellierung von Grossschiiden sind sie
aber in der Regel nicht mehr geeignet, da sie einen zu schmalen Schwanz besit-
zen. Allfillige Grossschiden zerstoren die Information, welche die kleinen und
mittleren Schiden einbringen, die ganze Gamma-Verteilung wird in Richtung der
Grossschiiden ,,gezerrt”.

Man wiirde in diesem Fall sagen, dass das ausgewiihlte Modell nicht geniigend
robust sei. Um das Modell robuster zu machen konnten Grossschiiden aus den
Daten entfernt oder durch eine Transformationsfunktion geindert werden (zum
Beispiel durch eine Cut-Funktion, mit welcher der iiber einer Schranke liegende
Teil eines Grossschadens abgeschnitten wird). Dabei stellen sich weitere Fragen:
Welche Transformationsfunktion soll gewiihlt werden (ab welcher Héhe sollen
Grossschiiden gestutzt werden), wie soll der fehlende Teil der Schadenlast wieder
in die Primien integriert werden?

Mit dem im Folgenden prisentierten Vorgehen versucht man diese Fragen anzu-
gehen. Der Grundgedanke ist dabei, die Risikoprimien der einzelnen Segmente
eines Portefeuilles aus den Daten herzuleiten, unter der Annahme, dass die Scha-
denhohenverteilungen in diesen Segmenten stetig sind und dass sie sich vonein-
ander nur um einen Massstabparameter unterscheiden.

Weiter setzen wir voraus, dass sich die folgenden Daten mit absoluter Genauigkeit
bestimmen lassen:

- die gesamte Schadenlast

- die Schadenhohenverteilung des gesamten Portefeuilles im Bereich der
kleinen und mittleren Schiiden (diese Verteilung darf im Bereich der
Grossschiden unbekannt bletben)

= die Schadenfrequenz pro Segment
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- die Werte, welche die Schadenhéhenverteilungen der einzelnen Segmente
in einem bestimmten Punkt annehmen

Diese letzte Annahme benotigt eine Erlduterung: Wir definieren eine Grenze und
teilen die Schiiden in zwei Klassen, nimlich in Schiiden unterhalb oder gleich der
Grenze, und in Schiden {iber der Grenze. Wenn die Schiiden in den beiden Klassen
fiir die verschiedenen Segmente verniinftig verteilt sind, konnen wir fiir jedes
Segment mit einer guten Genauigkeit die Wahrscheinlichkeit schiitzen, dass ein
Schaden unter diese Grenze fallen wird (z.B. durch eine logistische Regression).
In diesem Artikel untersuchen wir Bedingungen, unter welchen die oben erwiihn-
ten Informationen geniigen, um die Risikopriimien der einzelnen Segmente zu
bestimmen. In diesen Fillen haben die einzelnen Grossschiden keinen direkten
Einfluss auf die Schitzung der Primien; nur in der aggregierten Form der
gesamten Schadenlast wird die Information der Grossschiiden beriicksichtigt.

2 Darstellung des Problems
2.1 Definitionen

Sei IV := die endliche Anzahl Versicherte im Portefeuille.

° Vi=1,...,N sei \; := die Schadenfrequenz des i-ten Versicherten.
° Vi = 1,...,N sei (¢; := die Schadenh6henverteilung des #-ten Versicher-
ten:

° Ve < 0: Gi(z) =0, X;~ (; unabhiingig.

° Sei I = die Schadenhohenverteilung, die man im ganzen Portefeuille
beobachtet hat.

Bemerkung: Es gilt die folgende Bezichung:

N N
Fi= Z’Pi -Gy, wobei p; = ’\i/Z’\:f'
d=1 J=l1
2.2 Grossen

Grossen, die man in der realen Welt mit einer ,,verniinftigen Genauigkeit
messen oder mit verschiedenen Methoden schiitzen kann (also Daten, die uns
zur Verfiigung stehen und nicht als stochastische Grossen betrachten werden):
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° Die Schadenfrequenzen \; Vi =1,..., V.

o Die Werte y; := G;(w) Vi=1,..., N, wobei w eine feste (vorgegebene)
Zahl ist.

e  Die Werte F'(x) Ya € [0, M] wobei M > w.

N
Die gesamte Schadenlast S := [J [Z Aq X,;J.

i=1

Bemerkung: Pro Versicherten i mochten wir die Risikopriimie P; := \; - F'[X]
bestimmen. Dafiir geniigen die Verhiltnisse

0 = E[Xi] [E|X;],

da \; bekannt ist und

2.3 Modellannahme

Es gibt eine stetige Verteilung ¢ und positive Werte o, so dass: G () = (U}'((y_,.-,l:)
Va, Vi, d.h, alle Verteilungen (+; haben die gleiche Form. Sie unterscheiden sich
voneinander nur durch N Massstabparameter vy, ..., vy,

Das ist keine willkiirliche Annahme: wenn zum Beispiel unsere Versicherten
verschiedenen geographischen Einheiten in einem Land entsprechen, dann kann
man die Werte «, ...,y als ,Lebenshaltungskoeffizienten” interpretieren, die
den ,relativen Wert“der Geldwiihrung im Land beschreiben.

2.4 Bemerkung

o0 o0

ElX;] = l(l - Gi(x)) dz = / (l — Gloy - ._1:)) dx
0

0. 9]

S /(l — (V;'(y)) dy
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d.h.

0ij = E [Xi] /E[XJJ =05/ .
Andererseits ist

Y = é’((k,‘, W) & o= G’"'(y.i)/w,
und deswegen:

2 | |
01 =G (y;) /G () -
Wenn also die Verteilung 7 im Intervall |0, 111&&,;(5}"‘(;1/.;))] bekannt wiire, hiitten
wir unser Ziel erreicht.
2.5 Definition der schwachen Gleichung

Gesucht werden stetige Verteilungen ¢/, so dass:

N
F(z) = Zpi e (:z: : Cu?"'(y,;)/w) Vo e [0, M] .

=1

Bemerkung: Die Losungen dieser Gleichung sind nur bis auf Multiplikation mit

einem Massstabparameter bestimmt (d.h.: ist & eine Losung und 3 > 0 =
K(x) := G( - x) ist auch eine Losung), was der Eindeutigkeit der gesuchten

Werte 0;; = (1 (y_j)/é“'(y_,-) nicht widerspricht.

Da die Werte der Verteilung F' nur im Intervall [0, M| bekannt sind, sind die
Werte der Verteilung ¢ ab der Grenze M -max; (G '(y;))/w frei, d.h. die friihere
Gleichung ist dquivalent zu:

N
F(z) = Z[),; G(x- G Y y)w)  VYxelo,M],
=1
wobei F:= £'/[0, M] der Einschriinkung von I auf [0, M] und
G = G/0,M - m’z._mx(é_'(;z/.i))/w] der Einschrinkung von

G auf [0, M -max; (G~ (y;))/w| entsprechen. Diese Gleichung wird als ,,schwache
Gleichung® bezeichnet, oder mit dem Symbol [G1].



2.6 Definition der verstirkten Gleichung

Da die schwache Gleichung schwierig zu behandeln ist, betrachten wir zuerst die
folgende Gleichung:

N
P} = Zp,; -G(a; - x) Yz el0,M],

i=1

wobei jetzt die «v; feste streng positive Zahlen sind (unabhiingig von (+). Diese
Gleichung nennen wir ,verstirkte Gleichung®.

Mit [G2] werden wir die verstirke Gleichung bezeichnen, falls die Losungen ¢
stetige Funktionen auf [0, M - max; ()| sein diirfen.

Mit |G3] werden wir die verstirke Gleichung bezeichnen, falls nur stetige
Funktionen erlaubt sind, die sich zu einer Verteilung erweitern lassen.

Ohne Beschriinkung der Allgemeinheit:

max(cv,...,ay) =1 und «; # o (i # Jj)

1l

(wenn max(ay,...,ay) # 1, dann dividieren wir die «; durch mla.x(m‘ ¢ v 3 5OURT)
)

und setzen

G ) i= (}'“"(mglx(rn, L, ON) X))
(3

5 . . . | o, alt
wenn «; = v, dann eliminieren wir «v; und setzen pj™ 1= pi" + p; )

3 Existenz von Loésungen der verstirkten Gleichung

3.1 Satz

Es gelte die Bedingung p; > Y ,-, p;. Dann konvergiert die Reihe > ™ g;(x)
gegen eine Losung von [G2], wobei:
({)-}.) m;
P

o (___ l)m .
,fjm.(~'~) = T Z ma,...,mMy—|

]
P mo+-my=m

N m;
: [f(H (g—:) ..':/(v,l) Va € [0, M]

Jj=2

ﬁ

j=

(3]



und

m o m!
ma,omy—1) " malmal - omy_l(m—my — - —my_y)!
der multinomiale Koeffizient ist.

Beweis (Um die Notation nicht zu erschweren, nehmen wir an N = 3): Setze

m

mG(:L‘) = Z.(}'lé(;l,') .

1=0

Zuerst zeigen wir, dass die Funktionenfolge (")
giert (beziiglich der co-Norm):

”ﬂm“rx: (: sSUup (.(]m("-“)))

;L‘E[U,A’[]
(_1)1’” S m i m—i
=1 D) /20 (03/m1)
=0

B (/o) (s fon)™ - wfa) H

~ gleichmiissig konver-

m=0,1,:

o0

! - el i m—i -
= (i)(pz/”l)’(m/pn) Nl

Prico

< «-l— Z (r:L) (T‘)Z/pl)i(pj/pl)rn_i

P
P

l m
= —((p2 +p3)/m)
D :

) .

Die Reihe Y. k; konvergiert gleichmissig. Nach dem Kriterium von Weierstrass
muss die Funktionenfolge (" (),,—0.1.... auch gleichmiissig konvergieren.
Setze
oo
Glz) = Z gi(x) .

i=0

Aus der gleichmissigen Konvergenz folgt die Stetigkeit von (.



Zusitzlich gilt:

PLe G (g )

u

= F(x) — (p1 - "Gl -2) +p2 - "Glaz @) +p3- " G(az - @)

=N
Beweis (durch Induktion): Ay ist wahr. Zu beweisen: A, = A, :

P ”"'HG’((y, x)+p2- mHGlog @) + ps - "t G (on - 2)
=p1 - "Gy - &)+ p1 - Gmpr (o - x) +p2- "G - )
Fp2gmpr (@) +py - "Glosw) +p3 g (g - )

— (f\'l’(l) — DI '.Urw}-l(“’-l ‘LIT)) + i '.‘/erl(”l ':!T)

Induktion

+p2 .(]m.—}-l((VE : ;1.7) + D3 I+ (”3 ' -U)

- F(-”") + P2 g1 (z - @) +p3 - Gt (o).

D2 G+ (”?_ )
m-1

= (-1t Y ( : ‘) (02/p)™ (03 )

i=0

. [7'((”,2/(“)i }»I(m/m yml=i )

m+2
m+ | i m-+2—i
et Y () s

t=|

. [:‘(((Vl/ﬂ’l)'i(”}/(H )m+24--£ ) ;[:)
und

Py G (s - x)
m-+1

— (_I)m+l Z (’NL;F 1) (‘[)2/'[’1)i(pﬁ/l”])””rzmi

1=0
. F'((wz/(yl)i(n{v‘/(h)msz—i . .’If)
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P2 Y| ((\52 ' :“) Sk p3 .,q'rrz-l-l(a3 ' -'I-")

- *f ED () e
= 7 osen i D2/ ) \P3/ P

CE(( c,yg/(:vl) (a3 o)™ )
e (_ l)m-l—l ((pz/pl)m-ﬂp((az/al)m-{-2:lr)
2 (pg/pl)m+2f;”w((a3/ai)m+2))

m-+2

= (-1 Y Km N 2)] (p2/p1)" (p3/p1)™ 7

i=0
F (o) (s o)™ )
= =P+ Gm2(y - 2)
d.h.
p - "M G(ey - 2) +pr - "G x) +py - " G - )
== F(z) — Pt G2y - ),

also A, = A, (Ende des Induktionsbeweises).

Da
Pl Imt1 ((h . .’L')
= F(x) = (pr - "Gl - x) +p2 - "Glon @) +py - "G(ea - w))
und
l T
”.(]rn“rx; S f((pz -+ 1)3)/7”) n | s 0’
D m— oo
folgt:

pr-Glag-x) +pr- Gloag ) +p3- Glag - x) = F(x) Va € [0, M]

Bemerkung: Bei diesem Beweis wiire M = co auch moglich gewesen.
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3.2 Satz

Die Konvergenzbedingung des fritheren Satzes, dass ein p, ,dominant” sein muss
(pn > 32,4, pi), sieht sehr einschriinkend aus. Konnte man diese Bedingung nicht
abschwiichen? Diese Frage zu beantworten, wird das Thema des niichsten Satzes
sein:

Wenn [ beliebig oft differenzierbar ist, dann gibt es eine Losung ¢ von [G2]
(die auch beliebig oft differenzierbar ist).

Beweisskizze:
OBdA (nach 2.6): o) > v, o,...,ay, und deswegen existiert eine natiirliche
. . . . N .
Zahl mn mit der Eigenschaft, dass p; - a" > > ", pi-«a;". Nehmen wir an,
die gesuchte Losung (& sei auch m-mal differenzierbar. Wenn wir die Gleichung
Flz) = Zf\il pi - G(cv; - @) m-mal differenzieren, bekommen wir:
N
Y 1 R 2
F™(z) = S qi - G™ (o - ), wobei g == p; -
=1
Diese neue Gleichung erfiillt die Konvergenzbedingung, und kann mittels 3.1
gelost werden. Es ist einfach zu sehen, dass die Losung dieser neuen Gleichung
der m-ten Ableitung einer Losung der urspriinglichen Gleichung entspricht.

Bemerkung: wegen der Einschrinkung, dass die co-Norm von F'" existieren
muss, kann dieses Verfahren auf M = oo nicht erweitert werden,

4 Eindeutigkeit der Losungen der verstiirkten Gleichung

4.1 Vorbemerkung

Wir bekommen alle Liésungen von [G2], wenn wir zu einer gegebenen Losung
(+ die Funktionen F addieren, die die folgende Bedingung erfiillen:

N

Zp,; “H(oy-x) =0 Vael0,M].

i=1
Wir konnen ndmlich die Gleichung [G2] so schreiben: [ = L((), wobei L,
ein Linearoperator im Vektorraum Cfo a7 der auf [0, M| stetigen Funktionen
ist (zur Erinnerung: max;(cv,...,an) = 1). Wegen der Linearitit von [
werden alle Losungen der Gleichung [G2] durch eine einzige Losung und den
Ker(L) = {H: L(H) = 0} erzeugt.
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4.2 Beispiel (Korollar)

N
Sei cvp = max; (v, ...,ay) (= 1) und es gebe ein py, # py, so dass p;, > Z'p,- .
dann: Ker(L) # {0} i#h

Beweis (um die Notation nicht zu erschweren, sei N = 3):

Sei R(z) = 0 Va € [0,M], R stetig und beschriinkt auf der ganzen reellen
Achse. Gesucht wird eine stetige Funktion H, so dass:

R(z) =p H(e, - @) +prH(ap - @) + p3H (o3 - x) Yo e [0, M]
(also H € Ker(L))
Set nun p3 > p; + py. Mittels 3.1 konnen wir eine Losung konstruieren, ndmlich:

te) = 30 S5 (1) o

)
m=0 P 0

R (/o) (on/a3)™ " /o)
Sei nun xp € (0, M] fest. Da o /a3 > | werden einige Werte
(o /3) (2 /e3)™ v wg/ay i =0,...,m

belicbig gross, wenn m — oo. Also wird f(x) auch von den Werten
R(x): x> M abhingig sein, die beliebig sind = Im allgemeinen wird
f’[(.’l’f()) 7é 0 sein.

4.3 Beispiel

Die durchaus plausible Vermutung, dass im Fall M = oo der Ker(L) gleich Null
sein muss, ist falsch, wie das folgende Beispiel von Bruno Gustavs und David
Pilowsky zeigt:

Seien p, ¢ zwei ungerade Zahlen, a eine reelle Zahl mit O < a < 1. Sei zusiitzlich
p1 < p2 + p3. Die Gleichung

prH(x) +ppH(ab -2) +p3H(a? -2) =0 VzeR
besitzt eine explizite Losung # O:

H(x) @7 - sin(w - log, (x))  firxz >0,
xTr) =
0 sonst ,
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wobei o die (positive) Losung der Gleichung p; = pa-a” 7 +py-a®? ist. (Beweis:
explizite Berechnung)

Beispiel einer moglichen Funktion /1:

4.4  Lemma

Das friihere Beispiel lisst uns vermuten, dass die Elemente des Ker(L) bei der
Null ,,schwingen* miissen. Diese Intuition lisst sich durch den folgenden Satz
formell ausdriicken:

Sei 0 # H ¢ Ker(L), dann existiert eine positive Nullfolge (z,,) (d.h. z, >0 vn
und z,, — 0) und eine positive reelle Zahl g > 0, so dass:

H(z,) > p~22 fiir n gerade und

)

H(z,) < —p-2z2  fiir n ungerade,

n

wobel

0:= —log (Zp,;/pl) / log(cv) ,

i>2

angenommen dass | =« > vy = uggx(w»,:)
122
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Beweis (um die Notation nicht zu erschweren, sei wie friiher NV = 3)

piH(z) +ppH(on - x) +p3sH(az - 2) =0 Va € [0, M]

H(x)+ hH(ar )+ B33H(y-x) =0 Vo e [0,M],
wobei 3; 1= p;/p

0#HeKer(L) = dxge (0,M]: H(zp) >0
(sonst dy € (0, M]: H(y) <0, da H # 0 und H(0) =0.
Wegen max((,n‘ .,ay)=1lund H(z) <0 Ve (0,Mt], folgt:

Zp, H(ey - y) < 0. Also kann H nicht im Ker(L) liegen).

Es gilt:

1;.[(.’1,'()) = ~[)72 Hr((kz ’I’()) A ﬁ'; A I’I((h <X )
H(oy - wp) = =B H(03 - o) — B3 H(a - a3 - o)
,H((,Yj 3 ) = —wﬁg ((Yg ¥y -+ J,()) ﬁj [‘I((h £To )

(da v, a3 < 1, sind wir immer noch im Definitionsbereich von H) =
H{zg) = [33 . H(a% o) + 20 B3 H(on - a3 - o) + ﬁ% . H((y% <) .

Allgemeiner gilt:

Tn

H(zo) = (-1)" () Bi. AR H(oh - a2 - mp) .

=0
Sei n gerade. Jig:
H(o - o} ™" - o) > H(x0)/ (B2 + B3)"

(sonst wire

]

Hzp) = Z (n) By B H(od o Lzp)
i=0

n n i e i H(:U()) I
<§(l)ﬁ2 3 .m—f[(d’o))



39

= dz, € (0,20 - &}]:
H(z,) > H(xo) /(B2 + 33)"
Setze @, :=x - ol Da oy # 1, gilt: n = (log(x,,) — log(xo))/ log(az).
Wenn wir diesen Ausdruck in die vorherige Ungleichung einfiigen, erhalten wir:

H(z,) > H(xg )/(H7 e ) (log(an ) —log(zp))/ log(cx)
— H(20) - (1 0) o8+ o)

=pu-x2, wobei p:= H(.’L‘())/.’Ifg :

Also 3z, € (0,x,] mit z, — 0, so dass H(z,) > p - x8.
Da o > 0 (sonst wiire / unstetig in der Null, also H ¢ Ker(L)), erhalten wir:

H(z,) > 128,

Analog fiir n ungerade.

4.5 Satz

Dass die Elemente von Ker(1)/{0} schwingen miissen, hat schwere Konsequen-
zen auf die Differenzierbarkeit dieser Funktionen. Es ist einfach zu zeigen, dass
solche Funktionen hichstens o Mal in Null differenzierbar sein knnen, wobei
o die grosste natiirliche Zahl kleiner als p ist (o wie in 4.4).

Beweis: Vorbemerkung: Sei H" die n-te Ableitung der Funktion H, dann gilt:
H™{(0) = 0.

Zpi ‘H(a;-2)=0 Ve e [O,M] =

n N
(/) Zpe H(oy -x) =0 Vae[0,M] =
alr

Zpi L HY i 2) =0 Ve e[0,M] =

N
Zm af - HM0) = H"(0)- Y _pi-of =0 =
=1

H”(()) =0
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Nehmen wir an, dass die n-te Ableitug H™ exitiert. Nach dem Restsatz fiir
Taylorentwicklungen: 3¢ € (0, 1):

H" (¥ - x)
.F[(.’L') = m ¥

R

Kann nun die (n + 1)-te Ableitung existieren?

HH(0) = Tim 2 *(e) - #(0)

£—() £

o (o DU (/D) (/0)")

e—0 £
‘ ! (A iy
= Tim (n+ D! (H(zm)/2m)

m— oo - Dy

)

wobei die Folge (z,,) wie in 4.4 definiert ist, es folgt (nach 4.4)

(n+ DL (H () /7)ot DL

&

fiir ngerade und

) R - . m

n+ D (H(z,)/ 2" (n+1)! .

(n+ D! (H(zm)/ %) < S W i+ 1) -zfi;”"' fiir nungerade .
9 2 0,

Daraus folgt, dass H™*! bei Null nur dann existieren kann, wenn o>n-+1.

4.6 Korollar (Verstirkte Gleichung [G2])

Der Linearoperator L, eingeschriinkt auf dem Vektorraum C[((",?M] der beliebig oft
differenzierbaren Funktionen, ist bijektiv. Anders ausgedriickt: wenn #' beliebig
oft differenzierbar ist, dann gibt es genau eine Losung von [G2], die auch beliebig
oft (in der Null) differenzierbar ist. (Beweis: 3.2 und 4.5)

4.7  Satz (Verstirkte Gleichung [G3])

Jetzt stellt sich die Frage: was passiert, wenn die gesuchten Funktionen ¢ auch
Verteilungen sein miissen? Nochmals scheint das ,,Schwingen® dieser Funktionen
ein sehr niitzliches Element zu sein: wenn die urspriingliche Verteilung ', sehr
flach™ bei Null ist, sieht es plausibel aus, dass auch mindestens eine Losung ¢
sehr flach sein wird. Andererseits, wenn wir zu einer sehr flachen Funktion eine
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schwingende Funktion addieren, dann wird die Summe auch schwingen, so dass
diese Summe nicht mehr monoton steigend sein kann. Formell:

Sei I beliebig oft differenzierbar in einer Umgebung der Null und £7(0) = 0
Vn < o+ 1, wobei F" die n-te Ableitung von /' ist (¢ wie in 4.4), dann gilt:

Es gibt hichstens eine Verteilung ¢, die Losung von [G3] ist. Diese Losung ist
dann die einzige Losung der verstirkten Gleichung [G2], die beliebig oft (in Null)
differenzierbar ist.

Beweis: Sei I beliebig oft differenzierbar im Intervall [0, el, M > & > 0. Nun
betrachten wir die Gleichung F = [(G’) wobei F' = F'/10, ¢] die Einschrinkung
der Verteilung /' auf dem Intervall [(), | ist, & eine reelle Funktion mit
Definitionsbereich [0, ] und L= L/Clp,e) der Einschrinkung des Linearoperators
L auf dem Vektorraum Cp ) entspricht.

Nach 3.2 wissen wir bereits: es gibt genau eine Losung G der Gleichung

F= [;(("}'), die auch beliebig oft (in der Null) differenzierbar ist.

N
F(i“) = Z’p,: -Cj(n',-, .2) Vrel0e] =
i=1

n [

F o)=Y piaf G0 =

n

G (0)=0 Vn<p+1,

also ist ¢ auch Lfach bei der Null. Wie flach? Vom Restsatz fiir Taylorentwick-

lungen bekommen wir:

30 e (0,1): G(x) = - n g€ 4.

Sei nun 0 # He Ker(L). Nach dem Lemma 4.4: Es gibt eine positive Nullfolge
(2,) und eine positive reelle Zahl g, so dass H(z,) < —p - z¢ fiir alle ungeraden
Zahlen n

o+l
('r (ﬂ ? 32m+~|)

)g—{-l
(o +2)!

- (zlm H)U

= (G' 3 f[)(z?.mfl—l) S ! (-zlm--f-l
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fiir alle m.

(@' ﬁ)(%;;;ﬂ) & = fire<o+!

lim ~Cha
- Q — 2. ) . =
m—co 2m+l 657([) — M fiir Q=0 i |
(o +2)!
. é + ﬁ 22m1
= lim ( ,,)( 1) < —p
=400 2am+1
o+l —~n

(daG  (0)=0,aus G (0)=0Vn<po+1)

Also muss (G + H)(z2,,41) fir ,grosse” m (d.h. ,kleine™ 2;,,) negative Werte

annehmen und deswegen kann (@ + I;T) keine Verteilung sein.

Gezeigt haben wir:
Zp, (- w) Vo €0, ¢]

und (7 entspricht einer Verteilung auf dem Intervall [0,¢] = G/(x) ist eindeutig
bestimmt Yz € [0, &].

Sei nun (¢ eine Losung der verstirkten Gleichung [G3], d.h.

N
Fiz) = Zp.i ~Glay - x) Yo e [0, M)

1=1

und (' entspricht einer Verteilung im Intervall [0, M].

= F(g) = Zp,; -G(ay - x) Yz € [0,¢]
und G entspricht einer Verteilung im Intervall [0, €]
= G(z) = G(z) Yz € [0,¢],

d.h. G muss eine Erweiterung von G sein.
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Es bleibt noch zu zeigen: Es gibt nur eine Erweiterung von (' auf dem ganzen
[ntervall [0, M|, die auch Losung der verstirkten Gleichung [G3] sein kann.
Seien ¢ und K zwei Losungen der verstirkten Gleichung [G3] mit G'(x) =

K(xz) = G(x) Vz € [0,¢], dann gilt:

N
0 - ZM (G — K)(oy - x) Yo e[0,M],

1=

d.h. (G — K) € Ker(L).

Aus 4.4 wissen wir: die Funktion (G — K') schwingt bei Null oder sie ist konstant
gleich Null. Da (G — K)(x) = 0 Va € [0,¢] kann die Funktion (G — K) bei Null
nicht schwingen und muss deswegen auf dem ganzen Intervall [0, M] gleich Null
sein, also miissen die zwei Erweiterungen ¢ und K iibereinstimmen.

4.8  Korollar

Sei F(x) =0 Va € [0,£], dann gibt es hichstens eine Verteilung (7, die Losung
von [G3] ist. Sie ist dann die einzige Losung der verstirkten Gleichung [G2], die
beliebig oft in der Null differenzierbar ist. (Beweis: 4.7)

5 Die schwache Gleichung [G1]

5.1 Vorbemerkung

Bei der schwachen Gleichung sind die Werte «v; nicht vorgegeben, sondern selbst
wieder von (¢ abhiingig: «v; = G~ '(;)/w, wobei jetzt die y; bekannt sind.
Das ist im Prinzip ein anderes Problem, das anscheinend wenig mit der verstiirkten
Gleichung zu tun hat. Trotzdem kann man einige Eigenschaften der verstirkten
Gleichung benutzen, um weitere Aussagen iiber die moglichen Losungen der
schwachen Gleichung zu machen, wie die folgenden zwei Beispiele zeigen:

5.2 Beispiel

Sei N = 3 (d.h. wir haben nur drei Gruppen von Versicherten). Die Schiden
seien anzahlmiissig so verteilt: p; = 20%, p» = 30% und p3 = 50 %.
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Die Wahrscheinlichkeiten, dass die Schiden eines Versicherten unter der Grenze
w = 1.5 bleiben, seien, in Abhiingigkeit der Gruppe, y; = 45 %, y» = 50 % und
13 = 60 %.

Uber die Schadenhéheverteilung des ganzes Portefeuilles verfiigen wir iiber
folgende Information: F(x) = 0.5 - a — 0.093 - 2> Va € [0,1.9] (Notation:
0.093 = 0.093333 - - ).

Bemerkung: Um konsistent zu bleiben, miissen F'(w) und p, G (w) + prGa(w) +
p3Ga(w) (= p1 -y +p2-y2 +ps-y3) libereinstimmen, was in unserem Fall erfiillt
ist (beide sind 54%).

Bemerkung: Wenn die Verteilung (¢ auch ein Polynom ist, dann muss sie von
der folgenden Form sein:

0.5
Gla) = -1
(x) 0% o +30% o +50% -3
0.093

™~

T 20% a2 +30% a2 +50% ad

Beweis: Seien

m

q
Flp) = Zaj 2 und G(x) = Z by - .
h=0

=0

Wenn wir diese Polynome in der Gleichung
N
Flp) = Z'p.,; -Glay - ) Vo e [0, M]
i=1

einsetzen, bekommen wir:

m

N q
Z - o = i:pz- - (Zlbh (e -:L‘)h>

j=0 §=1 h=0
q N
- th : (bh ' Z'pi - (m)”) Vo € [0, M],
h=0 i=1

was zu N
by, = r_t,;,,/ sz- (o))" Vh
=1

dquivalent ist.
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Nehmen wir an, sei ¢ ein Polynom. Es muss gelten: y; = Gi(w) Vi, d.h.:

0.5
45 (y\ — - 15 i
= T a7 30% w1 50% )
0.093

T 20% ()2 +30% - (a2)? +50% - (v3)

(1.50)?

2

0.5
50% = A8
T % - cp +30% - g + 50 % - sy (1.50)
0.093

R (1.50,)>
20 (%] . ((yl)z + 30 (%) : (”2)2 450 %1 . (”3)2 ( (Pz)

0.5
(0 (y'\ = - ) IS
0= 0% o ¥ 30% ca F 0% s )
093
0.09 P

S 20% - ()2 +30% - ()2 + 50% - (cv3)?

Die gesuchten Werte vy, oy und «vy sind bis auf Multiplikation eines Massstab-
parameters bestimmt, d.h.: oBdA: 3 = 1.

Also haben wir 3 Gleichungen fiir nur 2 Unbekannte, was normalerweise unlisbar
ist. Aber die Bedingung F'(w) = p G (w) + paGa(w) + p3Gi(w) sagt uns genau,
dass die drei Gleichungen linear abhiingig sind, und deswegen kénnen wir, zum
Beispiel, die dritte Gleichung auslassen.

0.5

45 % = (1.5

T 20% o, +30% - az + S0% - a3 (1.5
0.093 )
B 0 5 0 5 0 5 " (I'S(Yl)h

20% - ()2 +30% - (v2)?> + 50 % - (v3)?

0.5
50 % = (1.5
T 20% -y +30% - + 50% - s (1503

0.093

- B ~ - (1.50)?
20% - () +30% - ()2 +50% - (a3)? (1.50)
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Dieses Gleichungssystem besitzt nur eine Losung: o = 0,6426... und oy =
0,7444. Wenn wir diese Werte in den Ausdruck

Gla) = 0.5 »
20% -y +30% - s +50% - vy

0.093 |

T20% -3 +30% a3 +50% - ad

e

einsetzen, erhalten wir G'(z) =2 0,5870 - x — 0,1246 - x* als einzige polynomiale
Losung der schwachen Gleichung.

Die Funktion G ist monoton steigend, positiv und kleiner als 1 auf ihrem
Definitionsbereich [0, 1.9], also ist sie eine brauchbare Losung (da sie sich zu
einer Verteilung erweitern lisst).

Zusitzlich gilt: ¢ ist die einzige Losung der schwachen Gleichung, die eine
Verteilung sein kann.

Beweis: Giibe es eine zweite Losung K, dann wire diese Verteilung auch eine
Losung einer verstirkten Gleichung:

3
F(z) = Z pi - K(Bi-x),
i=1

wobei 3; := K ~'(y;)/1.5. Diese verstirkte Gleichung besitzt auch eine Losung
P, die ein Polynom ist:

Al 0.5

€Tr) = - - it 40

= 0% - 8, +30% - s + 50% - By
0.093 r

T 20% B +30% B+50%-F#

Andererseits, wenn wir die Konstante o dieser verstirkten Gleichung berechnen
(Lemma 4.4), bekommen wir:

0= —log ((p1 +p2)/p3) [ log(B2) = —log(1)/ log(B2) =0,

unabhiingig von 3.

Aus 4.7 und p = 0 folgt: P ist die einzige Funktion, die auch eine Verteilung sein
kann. Also ist entweder K = P oder K ist keine Verteilung. Aber wenn K = P,
dann hitte /K schon als Losung des friiheren Gleichungssystems auftauchen
miissen.
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Fazit: Die erwarteten Schadenaufwiinde (in den drei Gruppen) fiir unlimitierte
Schiden sind durch die schwache Gleichung und die gesamte Schadenlast
eindeutig bestimmt und proportional zu: 1/c; =2 1,5560, 1/c, = 1,3433 und

l/(h =1,

5.3 Beispiel

Sei N = 3. Die Schiden seien anzahlmiissig so verteilt: p; = 20%, p, = 25%
und p3 = 55 %.

Die Wahrscheinlichkeiten, dass die Schiiden eines Versicherten unter der Grenze
w = 1.5 bleiben, seien, in Abhiingigkeit der Gruppe, y; = 45 %, y2 = 50% und
Y3 = 60 %.

Sei nun

\ 0 3<% 0.5
Fla) =
0.545(x — 0.5)  Va € (0.5, 2]

Die Konsistenzbedingung F'(w) = piy + pay2 + pays ist erfillt.
Da p3 > p; + pa, konnen wir 3.1 anwenden (0BdA: a3 = 1):
00 m i ™m—1i
- (*l)m m 0.2 0.25 F Poom—1
) = _ g buiind CFlajay' ™ a).
Ga) =) 055 EE: i ) \0.55/) \0.55 S )
m=~0 =0
Wenn wir das Gleichungssystem

G(1.5 ) =45%
G(1.5 o) = 50%

numerisch nach cvjund v, 16sen, erhalten wir als einzige Losung:
) 20,8296 und on =2 0,8862.

Wenn wir diese Werte in den friiheren Ausdruck einsetzen, erhalten wir eine
Funktion (7, die monoton steigend, positiv und kleiner als 1 im Definitionsbereich

ISL.

Zeige: (i ist die einzige Verteilung, die Losung der schwachen Gleichung ist.
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Beweis: Giibe es eine zweite Losung K, dann wiire diese Verteilung auch eine
Losung einer verstirkten Gleichung:

3
Flu) = Z pi - K(3;-x), wobei 3 := K ' (y;)/1.5

i=l
Anderseits ist eine Losung der verstirkten Gleichung die Folgende:

(=)™ m) £ 02\ 025\
D.f,' = . . o
()= 0.55 Z} i 1055/ \055

m=0 1=(

F ((.[))l /1133)’:(,[7;2/,{‘7)3),”4i : .’L‘//J’}) :

Bi =K " Y(y;)/1.5, y3 > 1o, und K ist eine Verteilung = (33 > [, 3; =
F((51/33)(32/3:)™ " -x/B) =0 Yo <053,
=0 Lidiviw $I=0iLi.sus
und deswegen
Dig)=0 Yz £05:0,.

[nsbesondere ist D beliebig oft in Null differenzierbar. Aus 4.8: D ist die einzige
Losung der verstirkten Gleichung, die eine Verteilung sein kann.

= K = D und deswegen stimmt /K mit & (bis auf den Massstabparameter (4;)
tiberein.,
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Zusammenfassung

Man untersucht das folgende Problem: gegeben sei ein segmentiertes Portefeuille, mit bekannter
Schadenerfahrung in jedem Segment. Man bestimme fiir jedes Segment die Risikopriimie.

Die Schadenhthenverteilung des gesamten Portefeuilles erfiillt die funktionale Gleichung 7 =
> i=1.....n Pi - Gi. Dabei bezeichnen wir mit (7; die Schadenhdhenverteilung im Segment ¢ und
mit p; den Quotienten gebildet aus der Anzahl Schiaden im Segment ¢ und der Gesamtanzahl der
Schidden im Portefeuille. Man nimmt an, dass die Verteilung F' in einem beschriinkten Intervall
gegeben sei, und dass eine Verteilung 7 und positive Werte «v; existicren so dass G () = Gy )
V. Weiter sei flir jede Verteilung (; der Wert an einer festen Stelle w bekannt,

Sind anstelle dieser letzten Bedingung die Werte «v; bekannt und ist die Funktion /' unendlich oft
differenzierbar und geniigend flach,, bei Null, so ldsst sich die Verteilung & und somit auch die
Risikopriimien eindeutig bestimmen. Dieses Resultat wird verwendet um einige cinfache Fille des
urspriinglichen Problems, wo die Werte «; nicht bekannt sind, zu losen.

Résumé

On considere le probléme suivant: soit un portefeuille muni d’une segmentation, pour lequel on
connait le cofit des sinistres dans chaque segment, quelles sont les primes de risque des différents
segments?
La distribution du coiit des sinistres sur I'ensemble du portefeuille satisfait I'équation fonctionnelle
L. NDi Gy, ot (; désigne la distribution des sinistres dans un segment ¢ et p; le
quotient du nombre de sinistres du segment par le nombre de sinistres du portefeuille. On suppose
que la distribution /' est donnée dans un intervalle borné, qu’il existe une distribution ¢ et des
valeurs positives v, telles que &5 (x) = G -a) Va et que la valeur de chacune des distributions
(7; est connue pour une valeur donnée w. On remplace cette derniere hypothese par la condition
que les valeurs cv; sont connues.
On démontre que, si la fonction /' est indéfiniment différentiable et suffisamment ,plate,, pres de
zéro, alors la distribution & est déterminée de fagon unique. Il s’ensuit que les primes de risque
sont déterminées de fagon unique. On utilise ce résultat pour résoudre des cas particuliers du
probléme original, ol les valeurs «v; ne sont pas connues.

Summary

We examine the functional equation F' = 3. | 5 pi- Gy, where [ is the claims amount
distribution of the whole portfolio, ; the (unknown) claim amount distributions of a given
segment ¢ and p; the part of the claims related to this segment. Assuming that the distribution
F is known on a limited interval, that the distributions (; have the same shape (i.e. there are a
distribution (¢ and some positive values cv;, so that (;(z) = G(ey; - @) Ya) and that the values of
these distributions are also known in a given point (i.e. ¢/;(w) known Vi and for a given value
w), we try to estimate the risk premium of each segments.

It is proved that the distribution (& can be determined, if the value «; are known, if the distribution
F of the whole portfolio is infinitely often differentiable (but not necessarily analytical) and
wenough flat in the proximity of zero.

Further we will use this results to solve some particular cases of the original problem, where the
values «; are also unknown.
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