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D. Toniolo, Zürich

Schadenhöhenverteilungen der einzelnen Segmente

versus Schadenhöhenverteilung des ganzen Portefeuilles

1 Motivation und Einführung

In der Praxis ist es oft üblich, Schadenhöhenverteilungen mit Gamma-Verteilungen
zu modellieren. In der Tat liefern Gamma-Verteilungen, deren Parameter beispiels-
weise mittels eines Likelihoodschätzers ermittelt wurden, oft gute Anpassungen
an die empirische Schadenhöhenverteilung, solange wir nur kleinere und mitt-
lere Schäden in Betracht ziehen. Zur Modellierung von Grossschäden sind sie
aber in tier Regel nicht mehr geeignet, da sie einen zu schmalen Schwanz besit-
zen. Allfällige Grossschäden zerstören die Information, welche die kleinen und
mittleren Schäden einbringen, die ganze Gamma-Verteilung wird in Richtung der
Grossschäden „gezerrt".
Man würde in diesem Fall sagen, dass das ausgewählte Modell nicht genügend
robust sei. Um das Modell robuster zu machen könnten Grossschäden aus den
Daten entfernt oder durch eine Transformationsfunktion geändert werden (zum
Beispiel durch eine Cut-Funktion, mit welcher der über einer Schranke liegende
Teil eines Grossschadens abgeschnitten wird). Dabei stellen sich weitere Fragen:
Welche Transformationsfunktion soll gewählt werden (ab welcher Höhe sollen
Grossschäden gestutzt werden), wie soll der fehlende Teil der Schadenlast wieder
in die Prämien integriert werden?
Mit dem im Folgenden präsentierten Vorgehen versucht man diese Fragen anzu-
gehen. Der Grundgedanke ist dabei, die Risikoprämien der einzelnen Segmente
eines Portefeuilles aus den Daten herzuleiten, unter der Annahme, dass die Scha-

denhöhenverteilungen in diesen Segmenten stetig sind und dass sie sich vonein-
ander nur um einen Massstabparameter unterscheiden.
Weiter setzen wir voraus, dass sich die folgenden Daten mit absoluter Genauigkeit
bestimmen lassen:

- die gesamte Schadenlast

die Schadenhöhenverteilung des gesamten Portefeuilles im Bereich der
kleinen und mittleren Schäden (diese Verteilung darf im Bereich der
Grossschäden unbekannt bleiben)

die Schadenfrequenz pro Segment
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die Werte, welche die Schadenhöhenverteilungen der einzelnen Segmente
in einem bestimmten Punkt annehmen

Diese letzte Annahme benötigt eine Erläuterung: Wir definieren eine Grenze und

teilen die Schäden in zwei Klassen, nämlich in Schäden unterhalb oder gleich der

Grenze, und in Schäden über der Grenze. Wenn die Schäden in den beiden Klassen

für die verschiedenen Segmente vernünftig verteilt sind, können wir für jedes
Segment mit einer guten Genauigkeit die Wahrscheinlichkeit schätzen, dass ein
Schaden unter diese Grenze fallen wird (z.B. durch eine logistische Regression).
In diesem Artikel untersuchen wir Bedingungen, unter welchen die oben erwähn-
ten Informationen genügen, um die Risikoprämien der einzelnen Segmente zu
bestimmen. In diesen Fällen haben die einzelnen Grossschäden keinen direkten
Einfluss auf die Schätzung der Prämien; nur in der aggregierten Form der

gesamten Schadenlast wird die Information der Grossschäden berücksichtigt.

2 Darstellung des Problems

2. / De/ùt/f/onen

Sei /V := die endliche Anzahl Versicherte im Portefeuille.

• Vi 1,... ,W sei A, := die Schadenfrequenz des i-ten Versicherten.

• Vi l,..., (V sei G; := die Schadenhöhenverteilung des i-ten Versicher-

ten:

• Vx < 0: G'j(x) 0, X, « G; unabhängig.

• Sei F := die Schadenhöhenverteilung, die man im ganzen Portefeuille
beobachtet hat.

Bemerkung: Es gilt die folgende Beziehung:

/V /V

F Gj, wobei p* :=<*»/ ^ '

i=l j=l

2.2 Grösse«

Grössen, die man in der realen Welt mit einer „vernünftigen" Genauigkeit
messen oder mit verschiedenen Methoden schätzen kann (also Daten, die uns

zur Verfügung stehen und nicht als stochastische Grössen betrachten werden):
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Die Schadenfrequenzen A; Vi I — X
Die Werte j/j := Gj(w) Vi 1,..., iV, wobei w eine feste (vorgegebene)
Zahl ist.

Die Werte /'(•' ^ [(), A/] wobei M > w.

Die gesamte Schadenlast S' := £
/v

E X x
i=l

Bemerkung: Pro Versicherten i möchten wir die Risikoprämie Pj := A, • P [X]
bestimmen. Dafür genügen die Verhältnisse

:= P[Xj] /PLXjJ >

da A,; bekannt ist und

iV

P[X] 5/^A,-^.
7=1

2.J ModeZ/anna/ime

Es gibt eine stetige Verteilung G und positive Werte cvj, so dass: Gj(a;) G(ai-x)
V.t, Vi, d.h. alle Verteilungen G, haben die gleiche Form. Sie unterscheiden sich
voneinander nur durch /V Massstabparameter rv i...., a,v-
Das ist keine willkürliche Annahme: wenn zum Beispiel unsere Versicherten
verschiedenen geographischen Einheiten in einem Land entsprechen, dann kann

man die Werte ai,...,ttjv als „Lebenshaltungskoeffizienten" interpretieren, die
den „relativen Werf'der Geldwährung im Land beschreiben.

2.4 ßernerkung

OO CXD

P [X] y (1 - G;(:r) d.T y (l - G(öj • x)) dar

o 0

OO

»1/ I — ô(y)) rfy,

0
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d.h.

ßi, F[X,;] /F[X,J «j/rvi.

Andererseits ist

//, G(rv.j • w) <S=> oy G~'(j/j)/ai,

und deswegen:

ß,,=G-'(ß,)/G-'fe).

Wenn also die Verteilung G im Intervall [0, max, (G~'(//,)) | bekannt wäre, hätten

wir unser Ziel erreicht.

2.5 Dy/imt/wi r/er .vc/ivvt/c/ier; G/e/c/tung

Gesucht werden stetige Verteilungen G, so dass:

;V

F(a:) £ ft G (a; • G"' '
(y, )/w) Va: 6 [0, M]

i u

Bemerkung: Die Lösungen dieser Gleichung sind nur bis auf Multiplikation mit
einem Massstabparameter bestimmt (d.h.: ist G eine Lösung und /I > 0 =>

F(:r) := G(/5 • ist auch eine Lösung), was der Eindeutigkeit der gesuchten

Werte py G'"'(//>)/G"'(.t/j) nicht widerspricht.

Da die Werte der Verteilung F nur im Intervall [0, M] bekannt sind, sind die

Werte der Verteilung G ab der Grenze M-maxj(G~'(y,))/u; frei, d.h. die frühere

Gleichung ist äquivalent zu:

iV

F(.r) ^jyG(.c-G-'(y,)/ia) Vs[0,M]
i= l

wobei F := F/ [0, M] der Einschränkung von F auf [0, M] und

G := G/[0, M • max(G~' (y,))/w] der Einschränkung von

G auf [0, M-maxj(G~'(j/j))/cc;] entsprechen. Diese Gleichung wird als „schwache

Gleichung" bezeichnet, oder mit dem Symbol |G1|.
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2.6 De/îmV/oH c/er vmtfl'rten G/c/c/tnng

Da die schwache Gleichung schwierig zu behandeln ist, betrachten wir zuerst die

folgende Gleichung:

AT

F(.r) ^p,-G(a;-.r) Vre [0, M]
1=1

wobei jetzt die n, feste streng positive Zahlen sind (unabhängig von G). Diese

Gleichung nennen wir „verstärkte Gleichung".
Mit |G21 werden wir die verstärke Gleichung bezeichnen, falls die Lösungen G
stetige Funktionen auf [0, M • max;(a;)] sein dürfen.

Mit |G31 werden wir die verstärke Gleichung bezeichnen, falls nur stetige
Funktionen erlaubt sind, die sich zu einer Verteilung erweitern lassen.

Ohne Beschränkung der Allgemeinheit:

max(cvi,..., er/v) 1 und c*; ^ (V 7^ j)
1

(wenn uuix(cvi,..., a/v 7^ I dann dividieren wir die et; durch inax(fV|,... ,<»,v)
i i

und setzen

G"®"(;r) := G""(max(ai,.... rv,v) z) :

i

wenn et; c*j, dann eliminieren wir und setzen p" := p?" + Pj

3 Existenz von Lösungen der verstärkten Gleichung

J. / Ä//Z

Es gelte die Bedingung pi > GL- Dann konvergiert die Reihe }„ //,(./)
gegen eine Lösung von [G2], wobei:

' 77i2 4 fm/v=7n ^ j=2 ^

/ tV / m; \

'(nU) ^[0,M]
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und

m!

^77J2, -I / 717.2 ^3 -TOiV~|! (•/» - «/> - ' ' ' - TO/V-l)!

der multinomiale Koeffizient ist.

ßevve/.v (Um die Notation nicht zu erschweren, nehmen wir an iV 3): Setze

m

"*C(;r) :=£&(*)
i=0

Zuerst zeigen wir, dass die Funktionenfolge ('"'G)m=o i gteichmässig konver-

giert (bezüglich der oo-Norm):

||.(/m||oo( — Slip (<7m(*E))
œe[0,Aâf]

(-1)'
/fi i=0

X] 7 (P2/Pl)*(P3/Pl)''

*-£(?) (P2/P.)^/P.r-^mioo
P' ^ V'/

E (7) WPOWpi)'^
n N /pi

1

pi
: Zu

n

i=0

((P2 +P3)/Pl)

Die Reihe konvergiert gleichmässig. Nach dem Kriterium von Weierstrass

muss die Funktionenfolge ('G),h=o,i,- auch gleichmässig konvergieren.
Setze

OO

V/y,(.r).
i=0

Aus der gleichmässigen Konvergenz folgt die Stetigkeit von G'.
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Zusätzlich gilt:

Pl ' Pm+l + l
'

^(.'0 - (Pi • • x) + P2 • G(<vi • x) + P3 "'G(«3 • x))

<=>: A„,

Beweis (durch Induktion): + ist wahr. Zu beweisen: /1,„ => A„,+ ii

p, • 'C?(rvi x) I pa
* 'G(«2 ' '') + P3 ' "G("3 • x)

pi "'G(oi x) f pi • //„, f i (ou • •'' + P2 • "'G(«2 • x)

+ P2 • ry,„+i((V2 • x') + p3 • "'G'(a.i • x) + p3 • r/m-i i («3 • x)

(F(x) /'| f/m I I («1 ' •'')) + PI • Pro I I («1 • ®)
Induktion \ '

f P2 ' flm+l ('».! ' + + P3 ' Pro H ("3 ' +
F(.r) + P2 ' 9ra+l('l'2 ' '•) "h p3 ' Pm-I I ("1 ' 3') •

P2 ' Pro I I «2 ' •'')

771+ I / I | \
(-1)+' ("\ (P2/Pl)""'(P3/Pl)

" '

' F(('V i/o | )'^ ' (d,/n |

"'+2 / | \
(_!)".+' g (,2/P,)'(p3/P,)-

7=1 ^ '
/'(((o/n i )'(rvi/rvi )'" ' ~ '

• x)

und

P3 ' Pm+1+3 ' -G

m+1m+i / ,\
(_ ,)m+. £ + '

j(p2/p,)'(p3/p.
t=0 ^ '

F((a2/ai)'(«3/«i >771+2 — 7 „
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P2 • ,9-m+l(®2 ' '') + P.I ' Pm+l(«3 • :i')

rn+1 r / v /TO + 1 \ / TO + 1

i f I

Ï — 1 / \ 2

2= I

• F((a2/ai)*(a3/ai)'"+^~®a;)

+ (-ir+'((P2/Pir^((a2/a,r+M
+ (P3/p.r+^((a3/a,r+'))

m+2

(p:/pi )'(p.i/pi)m+2 —i

(_ir+i
2̂=0

to + 2

i
/„. V» 1-2-»(P2/Pl)'(P-l/Pl)

F((a2/a,)'(a3/air+'-*®)
Pi ' Pm+2l '

d.h.

Pi • +'G(a, • ®) +P2 • "*+'G(«2 • •'') + P3 • +'G(o, ' •'')

F(x) - pi • Jm |.;(ai • ®)

also A,„, =4> /l„i+1 (Ende des Induktionsbeweises).

Da

Pi ' ,9m+l("l ' '')

F(a;) - (p, G(a, :r) +P2 G(«2 ®) + P3 • G(aj œ))

und

11^.11=0 <-((P2+P3)/p,r - 0,
Pi m—>oo

folgt:

Pi • G'(o:i • x) + P2 ' G(cv2 ' "f P3 ' G(cy3 • x) -^(x) Vx [0, A/]

Bemerkung: Bei diesem Beweis wäre M oo auch möglich gewesen.
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3.2 .SV//z

Die Konvergenzbedingung des früheren Satzes, dass ein „dominant" sein muss
(P/t > sieht sehr einschränkend aus. Könnte man diese Bedingung nicht
abschwächen? Diese Frage zu beantworten, wird das Thema des nächsten Satzes
sein:

Wenn F beliebig oft differenzierbar ist, dann gibt es eine Lösung G von [G2|
(die auch beliebig oft differenzierbar ist).

/ievvm.vki'zze:

OBdA (nach 2.6): «i > «2, «3. •, a,v, und deswegen existiert eine natürliche
Zahl m mit der Eigenschaft, dass pi • «"* > X^=2P« ' Qf- Nehmen wir an,
tlie gesuchte Lösung G sei auch m-mal differenzierbar. Wenn wir die Gleichung

f(^) SÜiPi G(fVj -x) m-mal differenzieren, bekommen wir:

JV

^ • w"'' 9» Pi «r
i= I

Diese neue Gleichung erfüllt die Konvergenzbedingung, und kann mittels 3.1

gelöst werden. Es ist einfach zu sehen, dass die Lösung dieser neuen Gleichung
der m-ten Ableitung einer Lösung der ursprünglichen Gleichung entspricht.

Bemerkung: wegen der Einschränkung, dass die oo-Norm von F existieren

muss, kann dieses Verfahren auf M 00 nicht erweitert werden.

4 Eindeutigkeit der Lösungen der verstärkten Gleichung

4. / Fw&ewer/am#

Wir bekommen alle Lösungen von [G2J, wenn wir zu einer gegebenen Lösung
G' die Funktionen // addieren, die die folgende Bedingung erfüllen:

/v

ff(aca:) 0 Vz e [0, Af].
Î=1

Wir können nämlich die Gleichung |G2| so schreiben: F L(G), wobei L
ein Linearoperator im Vektorraum C(o,m] der auf [0, Mj stetigen Funktionen
ist (zur Erinnerung: maxj(ai,... ,ajv) Wegen der Linearität von L
werden alle Lösungen der Gleichung [G2| durch eine einzige Lösung und den

ÄTr(L) {F/ : F(F/) 0} erzeugt.
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4.2 ße/'.vp/W (WoroZ/flc)

Sei «i maxj(oi,.
dann: £er(L) ^ {0}

/V

ajv 1 und es gebe ein p,, / p,, so dass p/, > E p,.

ßeuaVv (um die Notation nicht zu erschweren, sei ZV 3):

Sei /?(:/) 0 Va; G [0, M], 4? stetig und beschränkt auf der ganzen reellen
Achse. Gesucht wird eine stetige Funktion F7, so dass:

Sei nun P3 > pi +P2. Mittels 3.1 können wir eine Lösung konstruieren, nämlich:

Sei nun ap G (0,M] fest. Da «1/03 > I werden einige Werte

(ai/03)'(f*2/«3)-"' • ap/'V : Ï 0, ,m

beliebig gross, wenn m —> od. Also wird 77(a:o) auch von den Werten

fi(:r) : :r > M abhängig sein, die beliebig sind > Im allgemeinen wird
L/(.r,)) 7 0 sein.

4.3 ßeApie/

Die durchaus plausible Vermutung, dass im Fall M 00 der /Cer(L) gleich Null
sein muss, ist falsch, wie das folgende Beispiel von Bruno Gustavs und David

Pilowsky zeigt:

Seien p, r/ zwei ungerade Zahlen, a eine reelle Zahl mit 0 < « < I. Sei zusätzlich

pi < P2 + P3• Die Gleichung

/?(.r) pif/(a| :r) + p2-f/(na ,c) + P3F/(03 ;c) Va; G [0, M]

(also F/ G ÄVr(L))

OO / \ m / \

"(•') E E (pi/a0'(/'2/P.O
771=0 7=0

• 7?.((a,A«3)'(tt2/a3r~' -xA».0

p,/-/(.r) + p2ff(a^ • :c) + /p#("" -O 0 Va: g R

besitzt eine explizite Lösung ():

_ / •''" • ' 'oga('i')) für .r > 0,
I 0 sonst,
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wobei (T die (positive) Lösung der Gleichung pi p2-n'"^+Rv"'' ^ ist. (Beweis:
explizite Berechnung)

Beispiel einer möglichen Funktion A/:

7.7 Z.c/u/w/

Das frühere Beispiel lässt uns vermuten, dass die Elemente des Äer(L) bei der
Null „schwingen" müssen. Diese Intuition lässt sich durch den folgenden Satz

formell ausdrücken:

Sei 0 ^ Z7 6 /fe/'(L), dann existiert eine positive Nullfolge (£„) (d.h. > 0 Vn
und 2„ -> 0) und eine positive reelle Zahl /t > 0, so dass:

#(2,,) > A' ' -2« für « gerade und

< -//, • für //. ungerade,

wobei

-0.5

0 5

0

C

-1

£> := - log / log("2)
i>2

angenommen dass I «i > «2 max(a.;)
i>2
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ßevvm (um die Notation nicht zu erschweren, sei wie früher (V 3)

Pi77(;r) + P2#(a2 '') + P3#(c*3 • x) 0 Vx g [0, M]

//( /' : + ft/io, x) + i;//(r>3 • x) 0 Vx [0, M]

wobei ft := pftpi

0 ^ 77 G ^er(L) => 3a'o G (0, M] : 77(xo) > 0

(sonst 3j/ 6 (0, M] : 77(y) < 0, da 77/0 und 77(0) 0.
Wegen max(ai,.... oft 1 und 77(x) < 0 V;r g (0, M/;|, folgt:

Z

iV

7; /G: 77 (o; • //) < 0. Also kann 77 nicht im TxftZ) liegen).
i= 1

Es gilt:

77(xo) -ft • iî(«2 ' •'()) - /?3 • #(<*3 •'•<>)

iî(«2 • a-'o) -ft • 77(o^ -To) - ft #(«2 • «3 • Xo)

ff(a3 • a-'o) -ft • 77(o2 • 03 • Xo) - ft • 77(of • xo)

(da 02,03 < 1, sind wir immer noch im Definitionsbereich von TT) =>

77(xo) ft 77(o* xo) + 2ft • ft • 77(o2 • 03 x„) + ft' • 77(«^ x„).

Allgemeiner gilt:

77(xo) - (-1)" V (") ft • ft'"' • 77(ft or ' so)
4=0 ^ '

Sei n gerade. 3io:

77(03' ' «3 ' ®o) > 77(xo)/(ft + ft)"
(sonst wäre

#(*<>) E (") • ft • ft""' • #(«2 • so)

i=0 ^ '
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=> 3z„ (0, x<> • «2 ] :

#(**)> ff(*o)/(&+ /%)"•

Setze a;,, := xo • a". Da «2 ^ 1, gilt: n (log(x„) - log(xo))/log(a2).

Wenn wir diesen Ausdruck in die vorherige Ungleichung einfügen, erhalten wir:

Also g (0, x„] mit x„ -» 0, so dass J7(z„) > // • x£.

Da /? > 0 (sonst wäre // unstetig in der Null, also // ^ Âxz(L)), erhalten wir:

tf(-Zn) > /« • ^n-

Analog für n ungerade.

9.5 Sa/z

Dass die Elemente von AVr(Z,)/{0} schwingen müssen, hat schwere Konsequen-
zen auf die Differenzierbarkeit dieser Funktionen. Es ist einfach zu zeigen, dass

solche Funktionen höchstens £ Mal in Null differenzierbar sein können, wobei

p die grösste natürliche Zahl kleiner als p ist (ß wie in 4.4).

ßewm: Vorbemerkung: Sei //" die n-te Ableitung der Funktion //, dann gilt:
F/"(0) 0.

• //(a; • x) 0 Vx G [0, M] =>

^ ' 2=1

iV

£Pi-a? •//"(«<-x)=0 Vx G [0, M] =>

iV

5] • <*? ^"(o) h»(o) • < o =»

i=l
//"(())=()
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Nehmen wir an, class die n-te Ableitug F/ exitiert. Nach dem Restsatz für
Taylorentwicklungen: 3$ (0, I :

^ (n + 1
'

Kann nun die (n h l)-te Ableitung existieren?

e->o e

^ ^ (n+l)!(tf(c7tf)/(,-Ai)»)
£->() £

- lirr, ("+
11 III

m—>co ^
wobei die Folge (z,„) wie in 4.4 definiert ist, es folgt (nach 4.4)

(n + 1)! (F/(c,) /i-(" + l)! i, I

3 1 ^ ^ > - 7; " ' für «gerade und
V • 'i?

(n+ l)i W*„)/C) < _
> ' ("+ I)'

„ungerade.
1/ ' Z777, 1/

Daraus folgt, class FF'+' bei Null nur dann existieren kann, wenn ß > n + I

4.6 AforoZ/rzr Venvfà'rte GZem/um# /G2/J

Der Linearoperator F, eingeschränkt auf dem Vektorraum Cj^j der beliebig oft
differenzierbaren Funktionen, ist bijektiv. Anders ausgedrückt: wenn F beliebig
oft differenzierbar ist, dann gibt es genau eine Lösung von [G2|, che auch heliebig
oft (in der Null) differenzierbar ist. (Beweis: 3.2 und 4.5)

4.7 Safe (Vm'für/cCe G/eic/rnng /G3/)

Jetzt stellt sich die Frage: was passiert, wenn die gesuchten Funktionen G auch

Verteilungen sein müssen? Nochmals scheint das „Schwingen" dieser Funktionen
ein sehr nützliches Element zu sein: wenn die ursprüngliche Verteilung F „sehr
flach" bei Null ist, sieht es plausibel aus, class auch mindestens eine Lösung G
sehr flach sein wird. Andererseits, wenn wir zu einer sehr flachen Funktion eine
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schwingende Funktion addieren, dann wird die Summe auch schwingen, so dass

diese Summe nicht mehr monoton steigend sein kann. Formell:
Sei F beliebig oft differenzierbar in einer Umgebung der Null und F(0) 0

V// < ,<> | 1, wobei F" die n-te Ableitung von F ist (p wie in 4.4), dann gilt:

Fis gibt höchstens eine Verteilung G, die Lösung von [G3] ist. Diese Lösung ist

dann die einzige Lösung der verstärkten Gleichung [G2|, die beliebig oft (in Null)
differenzierbar ist.

ßewm: Sei F beliebig oft differenzierbar im Intervall [0,e], M > £ > 0. Nun

betrachten wir die Gleichung F Z(G), wobei F := F/[0,e] die Einschränkung

der Verteilung F auf dem Intervall [0, ] ist, G eine reelle Funktion mit

Definitionsbereich [0,e] und Z := £/C[o,£] der Einschränkung des Linearoperators
L auf dem Vektorraum G[o^] entspricht.

Nach 3.2 wissen wir bereits: es gibt genau eine Lösung G der Gleichung

F F(G), die auch beliebig oft (in der Null) differenzierbar ist.

yv

F,; V/,, .G(o,-.r) Vre [().,) =>

2=1

F (0) G (0) =»

2=1

G"(0) 0 Vn < £> + 1

also ist G auch „flach" bei der Null. Wie flach? Vom Restsatz für Taylorentwick-
hingen bekommen wir:

~ e + '

Id G (0, I : G(.r) ,• + 1.

(<? + 2)

Sei nun 0/ ffe Fer(Z). Nach dem Lemma 4.4: Es gibt eine positive Nullfolge

:„) und eine positive reelle Zahl /r, so dass < —/r-2.® für alle ungeraden
Zahlen n

„ ö +1

=> (G + F)(^2m+l) < — ' (*2r» I I
'' ~ F " ->m+l )"

(g + 2)!
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für alle m.

^ 4m+l

—/x für p < ß + 1

^7+ 1

^—— — rx für ß o + I

(e+2)!

(G + if)(z2m+l) /lim ö - -/<

(da G (0) 0, aus G (0) 0 Vn < « + I

Also muss (G+ ff)(z2m+i) für „grosse" m (d.h. „kleine" Z2m+i) negative Werte

annehmen und deswegen kann (G + ff) keine Verteilung sein.

Gezeigt haben wir:

TV

T>, • G(Qj • x') Vx G [0, e]

2=1

und G entspricht einer Verteilung auf dem Intervall [0, e) =>• G(x) ist eindeutig
bestimmt Vx G [0, e].

Sei nun G eine Lösung der verstärkten Gleichung [G3|, d.h.

At

F(®) ^ p« • G(a, • x) Vx G [0, M]
2=1

und G entspricht einer Verteilung im Intervall [0, M],

/v

=> F(x) • G(oj • x) Vx G [0, e]

2= 1

und G entspricht einer Verteilung im Intervall [0, e]

=» G(x) G(x) Vx G [0,e].

d.h. G muss eine Erweiterung von G sein.
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Es bleibt noch zu zeigen: Es gibt nur eine Erweiterung von G auf dem ganzen
Intervall [0, M], die auch Lösung der verstärkten Gleichung |G3] sein kann.

Seien G und A" zwei Lösungen der verstärkten Gleichung [G3] mit G(x)

A"(x) G(x) Vx G [0, e], dann gilt:

0=^ft '(G- A')(a, -x) VxG[0,M],
Z=1

d.h. (G - AT) G Aer(A).
Aus 4.4 wissen wir: die Funktion (G-A") schwingt bei Null oder sie ist konstant

gleich Null. Da (G-A')(x) 0 Vx G [0,e] kann die Funktion (G-AT) bei Null
nicht schwingen und muss deswegen auf dem ganzen Intervall [0, M] gleich Null
sein, also müssen die zwei Erweiterungen G und A übereinstimmen.

4.5 A"ora//ar

Sei F(x) 0 Vx G [0, er], dann gibt es höchstens eine Verteilung G, die Lösung
von |G31 ist. Sie ist dann die einzige Lösung der verstärkten Gleichung [G2], die

beliebig oft in der Null differenzierbar ist. (Beweis: 4.7)

5 Die schwache Gleichung |GI|

5. / Vto/Aewrcr&Krtg

Bei der schwachen Gleichung sind die Werte a, nicht vorgegeben, sondern selbst
wieder von G abhängig: a» G~'(;t/i)/w, wobei jetzt die ;(/, bekannt sind.

Das ist im Prinzip ein anderes Problem, das anscheinend wenig mit der verstärkten

Gleichung zu tun hat. Trotzdem kann man einige Eigenschaften der verstärkten

Gleichung benutzen, um weitere Aussagen über die möglichen Lösungen der
schwachen Gleichung zu machen, wie die folgenden zwei Beispiele zeigen:

5.2 ßmpiW

Sei jV 3 (d.h. wir haben nur drei Gruppen von Versicherten). Die Schäden
seien anzahlmässig so verteilt: pi 20%, p2 30% und P3 50%.
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Die Wahrscheinlichkeiten, class die Schäden eines Versicherten unter der Grenze

üj 1.5 bleiben, seien, in Abhängigkeit der Gruppe, y/ =45%, y/? 50'% und

X/3 60%).

Über die Schadenhöheverteilung des ganzes Portefeuilles verfügen wir über

folgende Information: /'(./) 0.5 :c - 0.093 • :% Va; e [0, 1.9] (Notation:
0.093 0.093333 • •

Bemerkung: (Jm konsistent zu bleiben, müssen %'(üj) und piG| (tu) +p2<%2(cu) +
PjG'ji(u') pi - y/1 +P2 -2/2 +P3 • ;r/3) übereinstimmen, was in unserem Fall erfüllt
ist (beide sind 54%)

Bemerkung: Wenn die Verteilung G auch ein Polynom ist, dann muss sie von
der folgenden Form sein:

G(.r)
0.5

20%-cti + 30 % • r.V2 + 50 % 0:3

0.093
%

20 % + 30 % • + 50%-r^ '''

ßewm: Seien

%(•'-') ^ «j • und G(.r) -= ^ 6/j • &''

Wenn wir diese Polynome in der Gleichung

iV

F(a:) -G(a, -a:) Va; e [0. ,\/]

einsetzen, bekommen wir:

was zu

fr/i --0/,^/^Pi • (ai)* V/t

äquivalent ist.
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Nehmen wir an, sei G ein Polynom. Es muss gelten: //; Gj(u>) Vi, d.h.:

^ " 20%-«, +30%-«2+50%-«3
'

0.093
(I -5tV|

20'X • (fV|)- + 30% • (m)2 + 50% • (a,)2

^ ^
20 % • o, + 30% • «2 + 50% • a,

' ^

— I.5O2)'
20% (n:i )" + 30%; (02)2 + 50%: • (0:3)2

^ ^
20 % rv, + 30 % • a, + 50 % • «3

^

0.093 2
X 1.50:3)-

20% • (fï,)2 + 30%. • (M_>)2 + 50%. -(03)2

Die gesuchten Werte an, «2 und «3 sind bis auf Multiplikation eines Massstab-
parameters bestimmt, d.h.: oBdA. rv, I.

Also haben wir 3 Gleichungen für nur 2 Unbekannte, was normalerweise unlösbar
ist. Aber die Bedingung F(o>) piGi(w) + p2%2%') + p.ifj3(w) sagt uns genau,
dass die drei Gleichungen linear abhängig sind, und deswegen können wir, zum
Beispiel, die dritte Gleichung auslassen.

^ 20 % « 1 + 3t) % -a2+50 % - 03
' ^ '

'

0^3
20%• (a,)2 +30%-(02)2+ 50%-(03)2

^

^ ^
20 % • a 1 + 30 % • tt2 + 50 % • n,

' ^ ^ '

0.093
2

20% • (a,)2 + 30% • (02)^ + 50% • (aj)2
' ^ ^
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Dieses Gleichungssystern besitzt nur eine Lösung: c*i 0,6426... und «2 —

0,7444. Wenn wir diese Werte in den Ausdruck

^ 05^ 20 % cv, + 30 % «2 + 50 % as
' *

0.093
~ 2Ö%~- rv? + 30% o:s + 50% a|

' ®

einsetzen, erhalten wir G(.t) 0,5870 • .k — 0,1246 • ar als einzige polynomiale
Lösung der schwachen Gleichung.

Die Funktion G' ist monoton steigend, positiv und kleiner als 1 auf ihrem
Definitionsbereich [0,1.9], also ist sie eine brauchbare Lösung (da sie sich zu
einer Verteilung erweitern lässt).

Zusätzlich gilt: G' ist die einzige Lösung der schwachen Gleichung, die eine

Verteilung sein kann.

ßewe/.v: Gäbe es eine zweite Lösung AT, dann wäre diese Verteilung auch eine

Lösung einer verstärkten Gleichung:

3

-f'(•'•) • -K"(A ' z) >

i= l

wobei ft := A~'(?/;)/1.5. Diese verstärkte Gleichung besitzt auch eine Lösung
P, die ein Polynom ist:

05^ ~ 20 % ft + 30 % • ft + 50 % • ft
' ®

0.093 2
~

20 % • /i? + 30 % • /5| + 50 % • /3|
' ^

Andererseits, wenn wir die Konstante p dieser verstärkten Gleichung berechnen

(Lemma 4.4), bekommen wir:

ß - log ((pi + P2)/P3) / log(/?2) - log( 1 )/ log(ft) o

unabhängig von ft.
Aus 4.7 und p 0 folgt: P ist die einzige Funktion, die auch eine Verteilung sein

kann. Also ist entweder A" P oder AT ist keine Verteilung. Aber wenn A" P,
dann hätte AT schon als Lösung des früheren Gleichungssystems auftauchen
müssen.
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Fazit: Die erwarteten Schadenaufwände (in den drei Gruppen) für unlimitierte
Schäden sind durch die schwache Gleichung und die gesamte Schadenlast

eindeutig bestimmt und proportional zu: I /rvi 1,5560, 1 /«2 — 1,3433 und

l/«3 1.

5.3 /Je/.syjfW

Sei iV 3. Die Schäden seien anzahlmässig so verteilt: pi 20%, P2 25%
und p3 55 %.

Die Wahrscheinlichkeiten, dass die Schäden eines Versicherten unter der Grenze

cc 1.5 bleiben, seien, in Abhängigkeit der Gruppe, 2/1 45%, 3/2 50%, und

2/3 60%.
Sei nun

[0.545(3--0.5) Va; 6 (0.5.2]

Die Konsistenzbedingung F(u>) =piî/i + P2V2 + 2A2/3 ist erfüllt.

Da p3 > pi + P2» können wir 3.1 anwenden (oBdA: «3 I):

m=0 i=0 \ ^ ^

Wenn wir das Gleichungssystem

G( 1.5 • a, 45 %,

G( 1.5 «2) 50%

numerisch nach 03 und «2 lösen, erhalten wir als einzige Lösung:

ai 0,8296 und «2 0,8862.

Wenn wir diese Werte in den früheren Ausdruck einsetzen, erhalten wir eine

Funktion G, die monoton steigend, positiv und kleiner als 1 im Definitionsbereich
ist.

Zeige: G ist die einzige Verteilung, die Lösung der schwachen Gleichung ist.
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ßewm: Gäbe es eine zweite Lösung A, dann wäre diese Verteilung auch eine

Lösung einer verstärkten Gleichung:

3

A(;/;) /), • A'(A • 3'). wobei A := A" "' (;%)/1.5
i= I

Anderseits ist eine Lösung der verstärkten Gleichung die Folgende:

771=0 2=0 \ \ \ /
•^((/^/A)'(A/A)"^' -37A)

A := A'~'(//,-)/1.5, x/3 > t/2,7/1 und Â" ist eine Verteilung => Ai > /'AA =>•

^((AM)'(A/A)"^'-AA) 0 v.r < 0.5 Ai.
Vm 0, 1,2,... Vz 0.1,... ,m

und deswegen

D(.r) := 0 V.r < 0.5 • A

Insbesondere ist £> beliebig oft in Null differenzierbar. Aus 4.8: D ist die einzige

Lösung der verstärkten Gleichung, die eine Verteilung sein kann.

=> A D und deswegen stimmt A mit G' (bis auf den Massstabparameter /A
überein.
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Zusammenfassung

Man untersucht das folgende Problem: gegeben sei ein segmentiertes Portefeuille, mit bekannter

Schadenerfahrung in jedem Segment. Man bestimme für jedes Segment die Risikoprämie.
Die Schadenhöhenverteilung des gesamten Portefeuilles erfüllt die funktionale Gleichung F
E j=i jv P» ' Dabei bezeichnen wir mit Gj die Schadenhöhenverteilung im Segment i und

mit pi den Quotienten gebildet aus der Anzahl Schäden im Segment < und der Gesamtanzahl der
Schäden im Portefeuille. Man nimmt an, dass die Verteilung F in einem beschränkten Intervall
gegeben sei, und dass eine Verteilung G und positive Werte <v,; existieren so dass G;(x) G(«j-x)
Vx. Weiter sei für jede Verteilung Gj der Wert an einer festen Stelle tu bekannt.

Sind anstelle dieser letzten Bedingung die Werte a, bekannt und ist die Funktion F unendlich oft
differenzierbar und genügend „dach,, bei Null, so lässt sich die Verteilung G und somit auch die

Risikoprämien eindeutig bestimmen. Dieses Resultat wird verwendet um einige einfache Fälle ties

ursprünglichen Problems, wo die Werte o, nicht bekannt sind, zu lösen.

Résumé

On considère le problème suivant: soit un portefeuille muni d'une segmentation, pour lequel on

connaît le coût des sinistres dans chaque segment, quelles sont les primes de risque des différents

segments?
La distribution du coût des sinistres sur l'ensemble du portefeuille satisfait l'équation fonctionnelle

F I /V Pi ' &';• 'HÏ f'i désigne la distribution des sinistres dans un segment t et le

quotient du nombre de sinistres du segment par le nombre de sinistres du portefeuille. On suppose

que la distribution F est donnée dans un intervalle borné, qu'il existe une distribution G et des

valeurs positives ctj, telles que Gj(x) G(ci; -x) Vx et que la valeur de chacune dos distributions

G, est connue pour une valeur donnée tu. On remplace cette dernière hypothèse par la condition

que les valeurs cv; sont connues.
On démontre que, si la fonction F est indéfiniment différentiable et suffisamment „plate,, près de

zéro, alors la distribution G est déterminée de façon unique. Il s'ensuit que les primes de risque
sont déterminées de façon unique. On utilise ce résultat pour résoudre des cas particuliers du

problème original, où les valeurs <v, ne sont pas connues.

Summary

We examine the functional equation F £F i jv Pi ' Gj, where F is the claims amount
distribution of the whole portfolio, G, the (unknown) claim amount distributions of a given

segment i anil p; the part of the claims related to this segment. Assuming that the distribution
F is known on a limited interval, that the distributions Gj have the same shape (i.e. there are a

distribution G and some positive values a.;, so that G,(x) G(a; x) Vx) and that the values of
these distributions are also known in a given point (i.e. G,(o>) known Vi and for a given value

ui), we try to estimate the risk premium of each segments.
It is proved that the distribution G can be determined, if the value «, are known, if the distribution
F of the whole portfolio is infinitely often differentiable (but not necessarily analytical) and

„enough" Hat in the proximity of zero.
Further we will use this results to solve some particular cases of the original problem, where the

values a» are also unknown.
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