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H. CosseTTE, P. GAILLARDETZ and . MARCEAU, Sainte-Foy

Common mixture in the individual risk model

1 Introduction

We consider the classical individual risk model with a portfolio of n individual
risks. In the actuarial literature, attention is devoted to the measurement of the
global risk of an insurance portfolio which is done via the aggregate claim amount
for a given period. Let S denote the aggregate claim amount for a portfolio of n
risks

S'= Xy 4004 X,

where X; (i = 1,... ,n) is the total amount of claims for the i'"" policyholder of
the portfolio. We define the random variable (r.v.) X; by

s Biq[};: l
0,7; =0

A =

)

where 7; is a Bernoulli r.v. with mean ¢; and B; is a positive r.v. with cumulative
distribution function (c.d.f.) F'g,. This construction can be found e.g. in Bowers et
al. (1997), Klugman et al. (1998) and Rolski er al. (1999).

The riskiness of an insurance portfolio has usually been studied under the
assumption that the /;’s as well as the B;’s (i = 1,...,n) are independent.
Recently, dependence between the risks of an insurance portfolio has been
examined in various papers. Among them, Albers (1999) and Cossette et al.
(2002) propose different structures of dependence and evaluate numerically
the impact of such dependence between the risks. Wang (1998) (see also the
discussion by Meyers (1998)) suggests a set of tools for modeling and combining
correlated risks. Also, Wang and Dhaene (1998) and Dhaene and Goovaerts (1997)
find the riskiest stop-loss premium for portfolios of dependent risks. Denuit et
al. (1999) find bounds on the c.d.f. of S when the distribution of the X;’s is
known and when no hypotheses are made on the type of correlation structure of
the risks. Embrechts er al. (1999, 2000, 2001a, 2001b) study the impact and the
nature of the correlation between risks in the context of risk management.

In this paper, we propose a structure of dependence on the occurrence random
variables that can be used in a context where a certain factor, such as the weather
or economic conditions, can have an impact on the whole portfolio. This type
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of construction has first been studied by Marshall and Olkin (1988) and in an
insurance setting by Wang and Dhaene (1998), Wang (1998) and, Béuerle and
Miiller (1998). The structure discussed in this paper can be applied, for example,
in crop insurance where the weather greatly affects the harvest of the farmers and
in a financial context in the analysis of a portfolio of credit risks. The common
mixture model proposed here includes a parameter or a vector of parameters which
allows us to quantify the impact on the claim occurrence and on the default of
credit risks over a given period.

2 Proposed Structure

We propose here a structure allowing dependence among risks of an insurance
portfolio. In many situations, those risks are correlated. They are influenced by
common economic situations, geographic locations and other external factors.
One way to introduce this kind of dependence is through an external mechanism
which shall influence the entire insurance portfolio. The external mechanism can
be viewed as a realization of a positive r.v. ©® with c.d.f. denoted by Gg. A
realization 6 of the r.v. © represents the influence from external factors and gives
the risk level of a given year for a portfolio. In other words, the individual risk
model assumes that the occurrence of claims for each policy is function of a r.v.
0. Both a discrete and continuous distribution can be considered for ©.

We define

Pr(l; =1|©=0)=1-7% and Pr([; =00 =0)=r?, (1)

where (I; | © =0) (i =1,...,n) are Bernoulli r.v. and 7; is the basic parameter
of the conditional distribution of (/; | © = #). Each rv. I; (i = 1,...,n) is
influenced by the possible values of the r.v. ©. For a fixed r;, the conditional
probability of no occurrence given © = ¢ is a decreasing function of . We also
assume that (I, | © = 8),...,([,, | ® = @) are independent r.v. For a given
distribution G'g of the r.v. © and fixed marginals for I, ..., [,, we have

-
Ty = 81\"[(—) ('PE)‘



since

Pr(l; =0)=1—-¢q; =p;

_ / 0 dGe(0)
0
= Po(r:)
= A’[(»-)(l[l(‘l'i)) y
where Po(t), Mo(t) are respectively the p.g.f. and the m.g.f. of ©. We assume

that Mg (t) exists for some ¢ # 0. With the proposed structure, a dependence
relation is introduced between the components [ = (I},...,[,) and the joint

c.d.t. of [ is
P1[,‘__' T (f| S ” / H () 0 (l(r()(()) (2)

.d.f. of I; given that © = 0.

The random vector X = (X,,...,X,) has dependent components due to the
dependence of the 7;’s. In order to obtain the m.g.f. of S, we examine the p.g.f.
of I = (I,,...,1I,) since it can be easily (given the assumptions) written in the

where (.[f"g (i;))? is the conditional ¢

following form

Prlt) = /H(?f’ (1 —r])t;) dGe(h).

Following Cossette et al. (2002), we obtain

Mx(t) =

/H(r (1 — I 1"/[[} (t ))dC()(B)

Oil

which can be written as

[e @]

Mx(t) = / My |o-o(t) dGe(0) . (3)

0
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[t follows from (3) that the m.g.f. of the aggregate claim amount S is

Ms(t) = Mx(t,... ,t)

o.0]

::/Uwimzaa.”,deQW)
0 4)

o0
N

= /MS|(-):0(t) dGe(0),

0

where (S| © = #) is the sum of the independent random variables (X; | © = 0)
(i =1,...,n). It is clear that

/Fsm 0(s) dGe(0). (5)
0

In the case of a continuous distribution for ©, we discretize (Gg and use the
usual numerical methods such as Depril’s algorithm and the compound Poisson
approximation to compute Fgg=g(s). The application of the compound Poisson
approximation will be discussed in the following section.

A measure of the global risk of an insurance portfolio which is often used is the
stop-loss premium defined by

rs(d) = E((S — d)4] |

where d is the retention level. In our context, the stop-loss premium for a fixed
retention level d is the mixture

7T5'(d) = fﬂ'g|@):()(d) (lG(-)(()) ;
0

Now let us look at the expectation and the variance of S in the context just
presented. The expectation of S is given by

E[S] = ZE i)

—ZF (1= Po(r:)).



As for the variance of S, we have

n—I n

Var[S] = ZVdI [Xi] FZZ Z Cov[Xi, X;]

=1 g=i+l

. Z (E[BYqi — E*(Bil¢})

n—1 n o0
+2) 3. E[Ba]E[Bj](/(l — (r)")(1 = (r))?) dGe (0) _Q'iqj)
i=1 j=i+1 0 °
n—1 n
= Z E[BYq; — E*(Bilq}) + 22 Z B;|E(B;](Pe(rir;) — pip;) -
i=1 j=i+l

Certain choices of distribution for © give interesting results. A discrete distribu-
tion for © leads to the following c.d.f. for S

’m
= Z Pr(0 = ) Fgjo-0,(5) ,
k=1
where m is a strictly positive integer. When m = 1, we have a degenerate
distribution for © which corresponds to the case of independent risks. Also,

if we make the assumption that both the r.v. ; (i = 1,...,n) and the rv. B;

(i =1,...,n) are identically distributed then an explicit expression can be found

for F'5(s). Let us suppose that [; (i = 1,... ,n) have a common c.d.f. #; which

is a Bernoulli distribution with parameter p. The conditional r.v. / | © = 0 is also
a Bernoulli r.v. but with parameter 7.
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Also, suppose that B; (i = 1,...,n) have a common c.d.f. Fg. Under these
assumptions, the explicit form of the c.d.f. of the r.v. S is as follows
_Fs(S) = /Fs|@:g(8) (iG(-)(H)

0

k=1 J=0
:/{(’o)n+i(2)i(j) _1) ( n R+J)F)F|*k( )}(lC()(U)
0 k=1 F=0

= Me(nln(r)) + ZZ(”) ( ) 1) Me((n — k + §) In(r)) F¥(s),

k=1 j=0

where F};"" is the k-fold convolution of F'g.

As an illustration, we examine the graphs of the quantile functions and the stop-
loss premiums 7g(d) for 3 portfolios of 10 identically distributed risks. The
interest in the quantile function lies, notably, in the evaluation of the Value-at-
risk in a risk management context (see e.g. Embrechts er al. 1999, 2000, 2001a,

2001b).
[n a first example, the following properties hold for the three portfolios:

l. the claim amount random variables B, ... , By are exponentially distribu-
ted with mean 1;

2. the occurrence r.v. [; have a Bernoulli distribution with parameter ¢; = 0.1
for 3= 1; 0. ; 105

3. the r.v. ©® has a logarithmic distribution with mass probability function and
probability generating function

,Yk
Pr(@=k)= ——F——— k=12...
r{ ) —kln(l — )’ ’
and
In(1 — ~¢
Po(t) = D=8

In(1 — )
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For each portfolio we have chosen the values 0.5, 0.95, or 0.999999 for the
parameter 7.

In a second example, the portfolios have the same properties except for the r.v. ©
which in this case has an extended truncated negative binomial distribution with

p.g.f.

(1-p8t)" -1
Po(t) = ‘ ; 0=l =1l<r<h
olt) = =gy =1 / ’
We choose r = —0.5 for the three portfolios and let the parameter /3 take the

values 0.5, 0.95, and 0.9999. Note that the p.g.f. of the logarithmic distribution can
be obtained from the p.g.f. of the extended truncated negative binomial distribution
by taking the limit as » — 0 (see e.g. Panjer and Willmot (1992) or Klugman et
al. (1998)).

[t is clear from the figures below that the dangerousness of the r.v. © has a
significant impact on both the quantile function and 7g(d). Observe that the stop-
loss premium is monotone increasing with the parameters v and [3 of respectively
the logarithmic and the extended truncated negative binomial distributions. This
observation has yet to be proven formally. This is not observed for the quantile
function. However, it seems that for values greater than a given point, the quantile
function increases as the degree of dependence increases. Let us also mention that
the values used in the figures are exact and that no simulation methods have been
used.
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Figure 1. Stop-loss premiums for the logarithmic model with v equal to
0.9999 (continuous line), 0.95 (dotted line) and 0.5 (dashed line).
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Figure 2. Stop-loss premiums for the extended negative binomial model with ~y
equal to 0.9999 (continuous line), 0.95 (dotted line) and 0.5 (dashed line).
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Figure

Figure 4. Quantiles for the extended negative binomial model with v equal to
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Figure 5. Stop-loss premiums for the logarithmic model (continuous line) and
the extended negative binomial model (dashed line).

3 The Compound Poisson Approximation

The computation of the distribution of the total amount of claims in the individual
model with independent risks is generally difficult in the case of a large portfolio.
[t has been shown that one way to overcome this problem is to use the
compound Poisson approximation. The main idea is to approximate each r.v.

X;in § = ZXi by a compound Poisson r.v. that we denote by Y;. This
i=1

allows the use of Panjer’s algorithm (see Rolski ef al. (1999), Klugman et al.
(1998)) to compute the approximated distribution of S. The compound Poisson
approximation has usually been applied in the past in cases where the ;’s and the
I;’s are independent, see Rolski et al. (1999), Klugman et al. (1998) or Bowers et
al. (1997) for actuarial applications and Barbour et al. (1999) for a general survey
in applied probability.

[n this section, we use the compound Poisson approximation to evaluate Flg
but, contrary to the case of independent risks, we do not apply it directly on
the dependent rv. X; (i = [,... ,n). We first assume as being known the
correlation structure previously presented and then apply theapproximation to the
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independent conditional random variables representing the total amount of claims
given the risk parameter . This approach is similar to the one used in Genest et
al. (2000). The compound Poisson approximation with correlated risks has also
been studied, in an actuarial context, by Goovaerts and Dhaene (1996). Their
results are based on Chen (1975), and Arratia et al. (1990) which have studied
the Poisson approximation in a general setting (see also Barbour (1992)). Their
approach differs in the fact that they approximate a sum of dependent Bernoulli
r.v. with a Poisson distribution. In our approach, we approximate the distribution

of S by a mixture of compound Poisson distributions due to the dependence
structure proposed in this paper.
Suppose first that O is discrete i.e. © € {#,...,0,,} with

Pri€ =8} =y, k=l

In the case of a continuous distribution for ©, one can discretize the distribution
and pursue as follows. Discretization methods are discussed in Panjer and Willmot

(1992) or Klugman et al. (1998).

Let Fp denote the c.d.f. of 7" which approximates Fs and let the conditional r.v.

(7|0 =28)= Z(Y, | © = 0)) be a compound Poisson r.v. with parameters
Ni|©=0;

Ay and Fz, , where (Y; | © = 6;) = Z B; ; is a compound Poisson r.v.

i=I

i=l
with parameters ), ;, and Fp . The random variables B;; (¢ = I,... njj =
l,...,N; | © = 6;) are independent and identically distributed random variables
with common c.d.f. F5,. The r.v. N; | © = 0, is a Poisson distributed r.v. such

that

E[N; | © =06 = A =1 - ()%,

in order for the mean number of claims to be identical in the individual model
and its compound Poisson approximation. We will also present below another
compound Poisson approximation in which the probability of no claim is identical
in the individual model and its approximation. It is easy to show that the
parameters of the conditional compound Poisson r.v. (T | © = #}.) are respectively

n

M= Aik

i=1

= Z(l — (r;)%)

=1
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and

Fal) =Y =0 o).

; A
=1

Finally, the c.d.f. of the (unconditional) aggregate claim amount 1" for the whole
portfolio is clearly the following mixture

m

Fr(s) = Z ok Fprje=o,(s), s>0, (6)
k=1

where

Frio—o,(s) = Pr(M =0]© =6) + > Pr(My, =j| O =6,)F} (s),
j=1

and (M, | © = 0;) ~ Poisson(\;) and FZ is the j* convolution of Zj.

In most cases, there is no explicit form for Fp. We can either apply Panjer’s
algorithm or the Fast Fourier transform (see Rolski er al. (1999) or Klugman et
al. (1998) for details on these two approaches) to compute Frpjo—g, for each
k=12,...,m. Then, we apply (6) to obtain F7.

Since (1| © = 6) ~ compound Poisson(Ag, £z, ), the m.g.f. of (1| © = )
is

Mpio=0, (t) = Py jo=6,(Mz,(t))
= exp(Me(Mz (t) — 1)),
which leads to the m.g.f. of T’

m

Mr(t) = o Mpjo—p, (t).
k=1

The expectation and variance of 1" are respectively

E[T] = chk Z (L= r)™) E[B]

- E[S’] )
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and

V:’II.[Y‘] - E[Tz] . [’Jz[r[’]

= i%{i(l - ('f'a)”"')E[B-fl}
k=1 i=1
+ Z{ (Z( - ()" E[B]), Zu - () B(B

2

(o s,

We are also interested in evaluating the quality of the approximation of the c.d.f.
of the total amount of claims S of the individual model by the c.d.f. of the total
amount of claims 7. We use two measures to evaluate the distance between S
and 7 they are the total variation distance and the stop-loss distance. In Rolski ez
al. (1999), these two distances are respectively defined as follows:

and

drv(S,T) = sup |Pr(8 € B) —Pr(T € B)|,
BeB(R)

ds1(8,T) = supl E[(S - d)+] - BT - ).
d>0

Proposition 1 With the structure proposed in section 2, one obtains

and

m

(L’[v 9, 1 <Z(ykz ()"

m

ds.(5,T) Z”"ZE’ [Bi](1 = (r:)%)>.

k=1 =1
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Proof We first compare the distribution of X; and Y; where Y; is as previously
defined. For each B € B(R),

.

Pr(X; € B) — Pr(Y, € B) = ak{( )% 10,00y (B) + (1 = (r3)%) Fs, (B)}

Een

- ak{e_/\i’k 1j0,00) (B) + Aige ™% Fig, (B)
|

+ (1 o (‘I‘i)gk — /\i’k(i_'\i‘k)_FBi(B)} .

Since (7, )9’” < e ik we obtain
Pl‘(X?" € B) - P[‘(}/'i L= B) S (.Yk;(l ] ('{'_i)()k)z_
k=1

The second inequality is obtained in a similar way

m /\J

E[(Y; —d)4+] — E[(X; —d)4+] = Z”"‘Z

% / (:z;wd)ng{(;z:)

k=1
m %) /\7 0o
<Y ) et [T )
b=l j=2 J: Jd
m oo /\J
<>y ,".'," e i+ jE(B]
k=1 =2 J:
m
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[

[t is shown in Rolski er al. (1999) that drpvy(T,5) < Z(ZH( Y;, X;) and

" i=1
ds(7,8) < Zrls|,(Y,;, X;). Therefore,
i=1
m
(lf]\/ T y < Z(U\ Z l—“
k=1 i=1
and
dsi (T, S) < Z”’”ZL[B 1) %)%, E
d=

Another way to approximate the individual risk model by the collective risk
model is to use the compound Poisson approximation such that the probability
of no claim is identical. For this second approximation, we denote the random
variables and the Poisson parameters with a “/”. In this approximation, the r.v.
(N!| © = 0,) is a Poisson distributed r.v. such that

PI(N;’ =0 f 8= ()A) = (3_’\:.1:
=Pr(l; =0]|0=06k) = (r)°,

n and k = 1,2,...,m. In the proposed structure, we must

for ; = [ —
= 0;) be equal

let the parameter A, of the Poisson distribution of (M | ©

T

n n
to /\:;L = Z/\g,-‘v’ —_ Z—*l“‘(( )UA) instead of /\;‘; _ Z(] - (,’.i)(h\,) of the

first compound Poisson approximation given. The following proposition gives the

. v 4
bounds on the two distances between S and 7"
Proposition 2 For the second compound Poisson approximation, one has

'

m

drv(T’, S) <Z(uz (1 — (r;)%)

1=1

and

m

dsr,( T, S) <Z(U,ZE[B] l—

i=|
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Proof We first compare the distribution of X; and Y;. For each B € B(IR)

m

Pr(X; € B) = Pr(Y{ € B) = Z“’“{( D Lo (B) + (1 = (1)) Fi (B)}
k=1

- Z (Ek{ Nk L ) (B) + N e Fig, (B)

o0 " g '
SEORED
g N O

<Y ol = (1) = N pe ) F, (B)

Since 1 — (r;)% < A} k» We obtain
Pr(X; € B) - Pr(Y/ € B) < Zak L — (r;)%*)?
=1

The result follows from the inequalities given above from Rolski et al. (1999).
The second inequality is obtained as in proposition . |
The two approximation methods produce very similar results, particularly when
«¢; 1s small.

If © is a degenerated r.v., then the [;’s are independent and the bound becomes

m

flIV I‘.S <Z(¥AZ 1——
= ZU —2p; +1})
i=1
ziqf,
1=1

which is the bound obtained by Gerber (1984).
[f the B;’s are identically distributed, then

m Ay T

drv(T,8) <) o . > (1= (rs)®)2

| —e

An application of the compound Poisson approximation and its quality is
examined in the next section.



147

4 Numerical [lustration

We consider the individual risk model in a credit risk context where a financial
institution holds a portfolio of credit risks X,!”J‘- (k=1,...,n45;i=1,...,a; j=
[,...,b) classified according to b (j = 1,...,b) different risk classes and with

possible loss amount at default B; (i = 1,... ,a) in units, say, of 100000$. We

denote by ¢; (j = 1,...,b) the probability of default of a credit risk in class J
and by n;; the number of credit risks in the jth class with loss unit B; in case

a b

of default. The total number of credit risks in the portfolio is m = ZZ"U
i=1 j=I
a b
and the maximum number of loss units for the portfolio is ZZ”UBi' The
i=1 j=I

characteristics of such a portfolio can be displayed as in the Table 1.

Loss unit/Risk class | ¢ - qj b
B, 7| nij o
B; il —_ i Nib
B, Tial e Naj e Tab

Table 1. Characteristics of the portfolio

[n the present section, we are interested in the comparison of the riskiness
of different credit portfolios with the characteristics described above. For that
purpose, we use the stop-loss premium as a risk measure. It has been discussed
in different papers (e.g. Biuerle and Miiller (1998), Dhaene et al. (2000)) that

. . . % . | MNab : : inalc
in the class of all multivariate risks (X,..., X *) with given marginals, the

a b
maximal stop-loss premium of .5 = E E E X is obtained when the risks
Xf} are mutually comonotonic. i=1 j=1 k=1
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Definition 3 The risks Y|, Y5, ..., Y, are said to be mutually comonotonic if any
of the following equivalent conditions hold

i The c.df Fy, . vy, of (Y1,...,Yy) satisfies

Fy, .. v.(¥,. .., yn) = min(Fy, (y1), ... , Fy, (yn))
Jor il &i540 By = O

2. There exists a random variable 7 and non-decreasing functions gy, ... ,gn
on R such that (Y\,...,Y,) is equal in distribution to (¢\(Z), ..., gn(Z))

3. For any uniformly distributed random variable U on [0, 1], we have that
(Y1,...,Y,) is equal in distribution to (F;I'(U), L ESN ).

n

Based on Dhaene et al. (2000), the maximal stop-loss premium for the portfolio
just described is

(b a

Z(b‘ ZnijB.i = (l(“ y if 0 S d S i:n“Bi
j=1 =l i=1
b a t a
Z qj Z“‘U B; — (ci —Z Z m-jB.,-)qb-H .
j=t+4+l i=l Jfl E(Tl 1 o
E[(S - (J)-}.] = { if Z Z Tvij B; S d g Z Z ”ijB-i ;
j=1 i=1 j=1 i=I
a b mij
EED I INT
i=1 j=1 k=I
b a
(), if d 2 Z Z nijB,- ,
| j=1i=I

Let us now numerically compare the behavior of the stop-loss premium for a credit
portfolio with a common mixture correlation structure as described in section 2.
[n the example that follows, we suppose

Pr(lj =1]0=0)=1-(r;)? and Pr([;=0|0=0)=(r;)",

where the risk parameter © follows a logarithmic distribution with parameter
v € (0,1) and © € {1,2,...}. Given that

Pr(l; =1) =1 — Po(r;),
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we have
=
and
po= L (=77
v

The credit portfolio has 4 risk classes with probability of default ¢, = 2.5%,
@ = 5%, q3 = 7.5%, and q4 = 10%. Each risk class contains n;; = 25 credit
risks with 10 possible loss unit in case of default B; = 1, B, =2,..., Bjg = 10.
The maximal total amount of loss S equals 5500 and E[S| = 343.75. In
Table 2, we compare the stop-loss premium for a retention level of 0 to
4000 for independent risks, dependent risks with parameter v = 0.5,0.9 and
comonotonic risks. We also compare each one of these cases with its compound
Poisson approximation, where the Poisson parameter is chosen such that A; = ¢,

(¢=1,2,...,a).

The above results show that, for an heterogeneous portfolio, the stop-loss
premium increases uniformly with the degree of dependence between the credit
risks’ default occurrences and that for credit portfolios with correlated default
occurrences, the Poisson approximation is good for every retention level as in the

independence case.
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Indep. | Indep. | vy=05]|v=05|~v=09 |~+=0.9 | Comon

d exact CP ap. | Exact CP ap. | Exact CP ap. —_
0 | 343.750 | 343.750 | 343.750 | 343.750 | 343.750 | 343.750 | 343.750

200 | 143.755 | 143.758 | 145.504 | 145.656 | 187.914 | 187.975 | 323.750
400 2.943 3.369 56.189 | 56.266 | 114.729 | 114.818 | 303.750
600 0.000 0.000 | 22.644 | 22.713 | 72461 | 72.567 | 283.750
800 0.000 0.000 9.266 9.336 | 46.259 | 46.371 | 263.750
1000 0.000 0.000 3.775 3.827 29.535 | 29.644 | 243.750
1200 0.000 0.000 1.507 1.540 18.734 18.835 | 223.750
1400 0.000 0.000 0.583 0.602 11.746 11.835 | 204.375
1600 0.000 0.000 0.217 0.227 7.249 7.325 | 189.375
1800 0.000 0.000 0.077 0.082 4.385 4.447 | 174.375
2000 0.000 0.000 0.026 0.028 2.589 2.638 | 159.375
2200 0.000 0.000 0.008 0.009 1.484 1.523 | 144.375
2400 0.000 0.000 0.002 0.003 0.822 0.851 | 129.375
2600 0.000 0.000 0.001 0.001 0.438 0.458 | 114.375
2800 0.000 0.000 0.000 0.000 0.222 0.235 | 100.625
3000 0.000 0.000 0.000 0.000 0.106 D.L1S 90.625
3200 0.000 0.000 0.000 0.000 0.047 0.053 80.625
3400 0.000 0.000 0.000 0.000 0.019 0.023 70.625
3600 0.000 0.000 [ 0.000 0.000 0.007 0.009 60.625
3800 0.000 0.000 0.000 0.000 0.002 0.003 50.625
4000 0.000 0.000 0.000 0.000 0.001 0.001 40.625

Table 2. Stop-loss premiums

5 Dependence structure with Archimedean Copulas

In the present section, we show that the model proposed in section 2 corresponds
to the individual risk model with a dependence structure defined via an Archi-
medean copula or an approximation of an Archimedean copula. We first begin
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by giving basic elements on copulas. The reader may refer to Joe (1997), Nelsen
(1999) and Genest and Mackay (1986) for a general introduction, and to Wang
(1998), Frees and Valdez (1998), Embrechts et al. (1999, 2000, 2001a, 2001b),
Cossette et al. (2002), and Bouye et al. (2000) for applications in actuarial science

and risk management.
Suppose that Y, ... Y, are r.v. with marginal distributions. Then, for any mul-

gaea

Fy....¥ (’-’/I o si‘/n) == C”(FYI ('.Ul)a T (?/n)) : (7)

For continuous r.v. Y|,...,Y,, the representation (7) is unique.
A copula C' is the distribution function of a random vector with Uniform-|0, 1]
marginals. The advantage of (7) is that it separately defines the dependence

structure which is made through the copula C' and the marginals Fy (i =
I,...,n). Numerous copulas can be found in the literature (see e.g. Joe (1997),
Nelsen (1999), and references therein). The simplest one is the independence
copula C'(uy,... ,up) = ..., Uy. An important class of copulas is the
Archimedean family of copulas which has been originally considered by Genest
and MacKay (1986). An example of a copula from this family is the Cook-
Johnson copula which is written as

n —1/a
Oltgss o 3 Un) = ((Z 'u[") —(n - l)) , a>0.

=1

This copula, together with the Frank copula and the Gumbel-Hougaard copula
from this family, have been used in actuarial applications (see e.g. Frees and
Valdez (1998)). All the copulas from this family can be expressed as

Cluy, ... ) =¢ (dlu) + ...+ duy)),

where ¢: (0, 1] — [0,00) such that ¢(1) = 0 and

(—=1)*— ¢(z) > 0, 1<k<n. (8)

If (8) is verified for all integers n =1, then ¢ is completely monotone and its
inverse ¢! is the Laplace transform of a distribution K" whose support is [0, 00).
Following Marshall and Olkin (1988) (see also Joe (1997)), Fy, . v, may be
viewed as a mixture of powers i.e. it can be written in the form

Fy, . vi(yi, - yn) = / H(F%(!/J‘))”fch-)(H), 9)

J=l
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where F{)f’ (z) = exp(—@(Fy,(x))). If, for instance, G is a gamma distribution

: l _ ;
with parameter — and 1, and ¢(x) = ™ — I for &« > 0, then we have a
o
Cook-Johnson copula.,

[n our case, the relation of dependence is introduced with an Archimedean copula
through the random vector (1, ..., [,) with joint c.d.f.

Bt ok B o0 g8) = CUFr 08 )sn o s 3. 7L, 000 ))

- [ [T{FL )} dGe(), (10)
g Ze

where F?j(:b‘) = exp(—@(#,(x))). For every Bernoulli r.v. [;, there exists a r.v.
I with c.d.f. (F?j(:z:))g. This r.v. is still a Bernoulli r.v. and with expectation
g = | — (exp(—¢(p;)))? for j = 1,...,n. Under this representation, the
Bernoulli r.v. I g, ..., I, are mutually independent for a given realization  of
the r.v. ©.

Note that (10) corresponds to (2) when exp(—¢(p;)) = r; for j = 1,... n.
We have thus written the dependence structure proposed in section 2 with
an Archimedean copula through a common mixture. When Gg is discrete, an
example of copula is the Frank copula and when Ge is continuous, (10) does
not have an explicit form. In that case, one can use discretization methods (see
Panjer and Willmot (1992) or Klugman et al. (1998)) to make Geo a discrete
distribution.

Again, we are interested in finding the c.d.f. of the total amount of claims of
a portfolio. Given that Fg rarely has an explicit form when the multivariate
distribution of I = (I,...,1,) is defined via copulas, we will, as in section 2,
first determine M g(t) which will allow us to obtain Fg(s) by the Fast Fourier
Transform inversion method. The m.g.f. of S in the case of a dependence structure
defined with copulas as a common mixture is

f‘l/[s(t) o E[el‘.S]
= E[etXitt+Xn))
= E[E[e!IiBi+-+1Bu) | @] N
= E[E[eP | 0] x ... x E[E[""P" | O]]

= /1‘\/[5'”(]'5) (lG(-),
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where
Mg, (t) = [[(Pr, ,(Mp, (1)), (12)

=1
and

Py, ,(t) = (1 —gj,) +tgj,0 -

Given that the dependence structure obtained with an Archimedean copula
corresponds to the previous proposed structure, the m.g.f. of S in the case of
a continuous distribution Gy can be approximated as follows by discretization

Ms(t) = & HP,,, (Mp, (£))Pr(© = 0), (13)

OLeA j=I

where © is the discrete approximation of the r.v. © and (12) is obtained by
numerical evaluation. To discretize G, we find 6; (> 0) and v an integer of the
set A= {05,605 +h,05+2h,...,0;+vh} such that, for a given ¢ (ex: ¢ = 1079),
Go(0y) = ¢ and Geo(0y + vh) = | — . The parameter h is set according to the
number v + | of desired discretization points.

In this section, we have demonstrated that if the dependence structure is defined
via an Archimedean copula, then it can be written as the dependence structure

presented in section 2. Consequently, another way to determine Fy is to use, as
in section 3, the compound Poisson approximation on Fj.

6 Extension

We have considered in this paper the case where only one risk factor © affects
the possible occurrence of losses. One tay wish to apply the proposed structure
in section 2 in a context where different sources of risk affect the occurrence of
losses. In crop insurance for instance, not only the weather may be considered in
the evaluation of the probability of a bad harvest for a given year.

Let © = (0,,0,,...,0,) be a vector of p risk parameters and let ¢: RP —,
(0,00) be a function combining the different factors which have an impact on
the occurrence of a loss. The conditional probabilities of the occurrence random
variables (1; | © = 0) (i = 1,... ,n) defined previously become in such a context

Pr(l;=1]10=8)=1-r® and Pr(f;=0]0 =) = r#0)
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where (/; | © = 0) (i = 1,...,n) are Bernoulli random variables and r; is
the basic parameter of the conditional distribution of (/; | © = #). For a given
multivariate distribution G'g of the random vector ©, we have

Pr(I; =0) = f r?® 4G (0)
Rr
= P@(T'i)
= Mg(lnr;),
where Po(t) and Mg (t) are respectively the multivariate p.g.f. and the m.g.f. of

©. With steps similar to the ones used in section 2, we obtain the following c.d.f.
for S and the stop-loss premium 7g(d) for the extension just exposed

Fs(s) = /Fls‘!g—g:g(-‘ﬂ‘)d@@(ﬂ),
R?

and

Trg((i) = / 7T5'|Q:Q(d) (IG@_(Q)
Rr

Note that other types of common mixture models than the one discussed in this
paper can be found in Joe (1997).
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Abstract

We propose a dependence structure based on common mixture models to allow a possible correlation
between risks in the individual risk model. This model can be applied in an insurance context or
in a credit risk context where one or more factors have an impact on the experience of the whole
portfolio. We measure the global risk of a portfolio via the aggregate claim amount distribution. The
evaluation of such a quantity can become cumbersome in cases of large portfolios. To overcome
this problem, we use the compound Poisson approximation within the proposed common mixture
model and then evaluate the quality of this approximation. We also give numerical examples in
which we examine the riskiness of portfolios under the correlation structure proposed in this paper
and apply the compound Poisson approximation. Finally, we establish the link between the common
mixture model proposed and the family of Archimedean copulas.

Zusammenfassung

Wir schlagen eine Abhinigkeitsstruktur vor, die auf Mischungsmodellen basiert, um Korellationen
zwischen den Risiken im individuellen Risikomodell zu ermdéglichen. Dieses Modell kann im
Zusammenhang mit Versicherungs- oder mit Kreditrisiken angewendet werden, wo eine oder
mehrere Faktoren den Verlauf des gesamten Portefeuilles beeinflussen. Wir messen das globale
Risiko eines Portefeuilles via aggregierte Schadenhdhenverteilung. Die Bestimmung einer solchen
Grosse kann im Fall grosser Portefeuilles mithsam werden. Um dieses Problem in den Griff zy
bekommen, verwenden wir die Poisson Gesamtschadenapproximation innerhalb des vorgeschlagenen
Mischungsmodells. Anschliessend bestimmen wir die Qualitit dieser Approximation, Anhand
numerischer Beispiele wird das Risiko eines Portefeuilles unter der im Artikel vorgeschlagenen
Korrelationsstruktur untersucht und die Poisson Gesamtschadenapproximation angewendet. Schljess-
lich zeigen wir den Zusammmenhang zwischen dem vorgeschlagenen Mischungsmodell und der

Familie der Archimedischen Kopulas auf.

Résumé

Nous proposons une structure de dépendance basée sur des modeles de mélange, afin de permettre
des corrélations entre les risques dans le modéle de risque individuel. Ce modele peut étre
appliqué dans le contexte des assurance ou dans celui du risque de crédite, oit un ou plusieurs
facteurs influencent I’expérience de I'ensemble du portefueille. Nous mesurons le risque global d’un
portefeuille avec la distribution du montant total des sinistre. L'évaluation d’une telle valeur peut
se révéler difficile dans le cas de grands portefeuilles. Pour surmonter ce probléme, nous utilisons
I'approximation de Poisson du montant total des sinistres a I'aide du modele de mélange proposé.
Nous évaluons ensuite la qualité de cette approximation. Nous proposons également un example
numérique dans lequel nous examinons le risque d’un portefeuille sous la structure de corrélation
proposée dans cet article et appliquons I'approximation de Poisson du montant total des sinistres.
Finalement nous établissons le lien entre le modele de mélange proposé et la famille des copules

archimédiennes.
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