Zeitschrift: Mitteilungen / Schweizerische Aktuarvereinigung = Bulletin / Association
Suisse des Actuaires = Bulletin / Swiss Association of Actuaries

Herausgeber: Schweizerische Aktuarvereinigung

Band: - (2002)

Heft: 2

Artikel: Measuring the longevity risk in mortality projections
Autor: Brouhns, N. / Denuit, M. / Vermunt, J.K.

DOl: https://doi.org/10.5169/seals-551186

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-551186
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

105

B.  Wissenschaftliche Mitteilungen
N. BRounns, M. DeNuit, J. K. VERMUNT, Louvain-la-Neuve, Tilburg
Measuring the Longevity Risk in Mortality Projections

1 Introduction and Motivation

As demonstrated in BENJAMIN & SOLIMAN (1993), McDONALD (1997) and
McDONALD BT AL. (1998), mortality at adult and old ages reveal decreasing
annual death probabilities. These changes clearly affect pricing and reserving for
life annuities, as stressed e.g. by MArRoCCO & Prracco (1998) and OLIVIERI
(2001). The calculation of expected present values requires thus an appropriate
mortality projection to avoid underestimation of future costs.

Projections are extensions of recent trends as far as they can be perceived
from mortality statistics. LEE & CARTER (1992) proposed a simple model for
describing the secular change in mortality as a function of a single time index. The
method describes the log of a time series of age-specific death rates as the sum of
an age-specific component that is independent of time and another component that
is the product of a time-varying parameter reflecting the general level of mortality,
and an age-specific component that represents how rapidly or slowly mortality
at each age varies when the general level of mortality changes. This model is
fit to historical data. The resulting estimate of the time-varying parameter is
then modeled and forecast as a stochastic time series using standard Box-Jenkins
methods. From this forecast of the general level of mortality, the actual age-
Specific rates are derived using the estimated age effects. Recently, BROUHNNS,
DENUIT & VERMUNT (2002) resorted to a Poisson log-bilinear regression model
to build projected lifetables. Their approach, inspired from a comment made by
ALHO (2000) on LEE (2000), purposed to avoid some drawbacks inherent to the
LEE & CARTER (1992) original methodology.

The main statistical tool of LEE & CARTER (1992) is least-squares estimation
via singular value decomposition of the matrix of the log age-specific observed
forces of mortality. This implicitly means that the errors are assumed to be
homoskedastic, which is quite unrealistic: the logarithm of the observed force
of mortality is much more variable at older ages than at younger ages because of
the much smaller absolute number of deaths at older ages. Moreover, the required
data have to fill a rectangular matrix because of singular value decomposition; this
may pose a problem when the format of the available data has been modified in
the past (the actuary has then first to complete the data using different techniques
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which may bias the results). As we will see in Section 3, the method used by
BROUHNS ET AL. (2002) avoid these drawbacks.

Of course, the projection of the mortality itself is affected by uncertainty. The
effects of uncertainty coming from projections, in terms of the risk borne by
the insurer, are investigated. Such an analysis is particularly important to decide
upon the reinsurance needed. In BROUHNS ET AL. (2002), confidence intervals
(for ‘annuities and life expectancies) were obtained by ignoring all the errors
except those in forecasting the mortality index. According to Appendix B of
LEE & CARTER (1992), these errors dominate the others for annuities and
expected remaining lifetimes. Because of the importance of appropriate measures
of uncertainty in an actuarial context, the present paper aims to derive confidence
intervals taking into account all the sources of variability. The nonlinear nature
of the quantities of interest makes an analytical approach not tractable and we
therefore resort to Monte-Carlo simulation (or parametric bootstrap).

Let us now describe the content of this paper. Section 2 describes the notation
and assumptions adopted throughout this paper. The data used for the numerical
illustrations are also presented there. Section 3 recalls the basic features of the
projection model proposed by BROUHNS ET AL. (2002). The simulation method
to derive confidence intervals for the quantities of interest is described there.
Section 4 illustrates the approach on the mortality statistics presented in Section 2.
Section 5 examines the distribution of the estimator of the net single life annuity
premium and purposes to determine the safety loading with the help of a quantile
of this distribution. Section 6 aims to evaluate the ruin probability relating to
a portfolio of life annuities. The final Section 7 concludes. Appendices gather
technical aspects.

2 Notation, assumption and data
2.1 Notation

We analyze the changes in mortality as a function of both age x and time .
Although age and time are theoretically free to vary in the half-positive real
line, we work here with integer = and ¢. Henceforth, 1, (¢) will denote the force
of mortality at age = during calendar year ¢. Similarly, ¢.(t) is the one-year
death probability at age x in year ¢ and the corresponding survival probability is
pe(t) = | — q.(t). We denote as D,; the number of deaths recorded at age w
during year ¢, from an exposure-to-risk ET R, (that is, E'T'R,; is the number
of person years from which D,; occurred).
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2.2 Piecewise constant forces of mortality

[n this paper, we assume that the age-specific mortality rates are constant within
bands of time and age, but allowed to vary from one band to the next. Specifically,
given any integer age  and calendar year ¢, it is supposed that

Mrte(t+7) = pg(t) forany 0 <& 7< 1. (2.1)
This is best illustrated with the aid of a coordinate system that has calendar time
as abscissa and age as coordinate. Such a representation is called a Lexis diagram
after the German demographer who introduced it. Both time scales are divided
into yearly bands, which partition the Lexis plane into square segments. Model
(2.1) assumes that the mortality rate is constant within each square, but allows it
to vary between squares.

2.3 Data

The model presented in this paper is fitted to the matrix of Dutch death rates,
from year 1950 to 2000 and for ages 60 to 98. The data relate to the entire Dutch
population and have been gathered by the Centraal Bureau voor de Statistiek
(CBS). They are available from the CBS StatLine system (http://statline.cbs.nl).
The observed number of deaths d,;, is given by age and year, where age is year
of death minus year of birth.

The raw estimate fi.(t) of the force of mortality 1i,(t) is given by the ratio of
the observed number of deaths ., for age x and year ¢ to the “central exposed
to risk”(henceforth denoted as £7'R,,), that is

d, . log + lor1,e41
= mt_._: where 17 R;“:’ ! 5 :

gt
The one-year death probabilities are then estimated under (2.1) as

Gu(t) = 1 — pu(t) = | —exp{—f(t) }.

2.4 Quantities of interest

Life expectancies are often used by demographers to measure the evolution of
Mmortality. Specifically, e,.(¢) is the average number of years an z-aged individual
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in year ¢ will survive. We thus expect that this person will die in year ¢ + e, ()
at age x + e, (t). The formula giving e, (t) under (2.1) is

1
sl = fé exp ( — o ()€)d

=()

% Z{ﬁ exp ( — fztj(t + j))}

k>1 N =0

ot |
- / exp ( — Jrask(t + k)(E — k))de

E=k
_ L—exp (— pa(t))
.qu(t)

k—1
o Z{ H exp ( - ,f.-":lr»l—j(t f J))}
k>1 % =0
1 —exp (= patn(t +£))
,U‘:z,'—lw's:(t + k’.)

(2.2)

The actual computation of e, (¢) requires the knowledge of jug(7) for £ ranging
from 2 until the ultimate age (w, say) and for 7 ranging from ¢ to ¢t +w — . Of
course, these mortality rates cannot be estimated at time ¢ (since we do not have
data at our disposal) and thus must be extrapolated from the past. We describe
in Section 3 how this can be done in practice.

As actuaries, we are more interested in the price of an immediate life annuity
sold to an individual aged x in year ¢, given by

k
G lt) = Z{ leurj(t + j)}v“' (2.3)

k>0 Nj=0

where v is the yearly discount factor. We will see that mortality projections are
particularly important to compute the premiums relating to such a contract.

3 Mortality projection method

3.1 Poisson modelling and piecewise constant mortality rates

The assumption (2.1) is compatible with Poisson modelling for death numbers.
Indeed, let us focus on a particular couple age x - year t. We observe D, deaths
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among N, individuals aged = on January I. We assume that the remaining
lifetimes of these individuals are independent and identically distributed.
To each of the N,, individuals, we associate a variable §; indicating whether the

person dies or not, i.e.

- J 1if person ¢ dies at age w
"] 0 otherwise,

i=1,2,..., N,. We also define 7; as the time lived by individual 7. So 7; = 1
if individual ¢ reaches age x + | (and &; = 0) and 7; < 1 if individual i dies at
age x (and d; = 1). We assume that we have at our disposal observations (d;, ;)

tor each of the N,, individuals. o
Under the assumption (2.1), the contribution of individual i to the likelihood

writes

° if he survives
Pa(t) = exp(—pua(t));
° if he dies
P (B) iz gr; (E+ 7)) = exp(—Tifie () ) (t) -

Therefore, the contribution of individual i can be cast into

exp(—~7itty () { i ( }

[nvoking the mutual independence of the remaining lifetimes yields the likelihood

N‘l!f

L(pz(t)) = HexD ~ Tt (£)) {112 (£} (3.1)

i=l]

= exp(— e (£)70) {11 ()}

where

N.L‘t N,!'t
Te = ZT,; and 0, = Z(L-.

i=1 i=1
Clearly, 4, is the total number of deaths recorded for age = during year ¢, i.e.
de = D,,, and T, is the total exposure-to-risk (in person-years), i.e. 7, = ETR,;.
The likelihood (3.1) is proportional to the Poisson likelihood, i.e. the one obtained
under the assumption D, ~ Poisson(ETR s, (t)). Therefore, provided we resort
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to the maximum likelihood estimation procedure, it is equivalent to work on
the basis of the “true” likelihood (3.1) or on the Poisson likelihood, once the
assumption (2.1) has been made.

BRILLINGER (1986) showed that under reasonable assumptions about the proces-
ses governing births and deaths, the Poisson distribution is a good candidate to
model the numbers of deaths at different ages.

3.2 Poisson log-bilinear model

Under the assumption (2.1), we have seen in the latter subsection that the Poisson
assumption appears to be plausible. Following BROUHNS ET AL. (2002), we thus
consider that

Dyt ~ Poisson(ETRw,g ,L:L.(t)) with o (t) = exp (e + Bokie)  (3.2)

where the parameters v, 3, and ¢ are constrained by
Y k=0 and Y B, =1 (3.3)
t ]

ensuring model identification.

The force of mortality is thus assumed to have the log-bilinear form In (1) =
o, + (3.k¢. Moreover, the expected number of deaths is given by Fy, =
ET Ry exp(a, + Byke). The meaning of the o, (;, and k; parameters is
essentially the same as in the classical Lee-Carter model, that is,

expa,: is the general shape across age of the mortality schedule or, more
precisely, the geometric mean of i, (t) in the observation period;

Kt represents the time trend,

fid indicates the sensitivity of the logarithm of the force of mortality at age
x to variations in the parameter ;. The shape of the 3, profile tells
which rates decline rapidly and which slowly over time in response of
change in &;.
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3.3 Estimation of the parameters

We estimate the parameters o, (3, and s, by maximizing the log-likelihood
based on model (3.2), which is given by

L(a1 )6’ h’) - Z {Dwt ((-Y;c s /ja,ht) - E/‘f[’R;,;,q Cxp((]{.‘lr + /));L'H't)} + const.

;L‘,t

Because of the presence of the bilinear term 3,5, it is not possible to estimate
the proposed model with commercial statistical packages that implement Poisson
regression. However, the LEM program (VERMUNT, 1997a, 1997b) can be used
for this purpose. In Appendix A, we give the quite simple LEM input files that
Wwe used for our analyses.

The algorithm implemented in LEM to solve the likelihood equations is a uni-
dimensional or elementary Newton method. GOODMAN (1979) was the first who

Proposed this iterative method for estimating log-linear models with bilinear
terms. In iteration step v + 1, a single set of parameters is updated fixing the
other parameters at their current estimates using the following updating scheme

g(uH) E(U) 05(")/0‘5
PLW) [5¢2

where 1,(¥) — = L(¢ (")) [n our application, there are three sets of parameters; that
is, the v, the (3., and the x; terms.

The updating scheme is as follows: starting with al =o, ﬁ
(random values can also be used)

O =1, and 8" =0

St _ ~(w) L (d” B F(U)) Bt =B,
(YL.UW — a_," = ) s ~(v
: a 5 F(y) NEUH) - nf ,

Z (dug -_ F(u+l )B§:u+l) a;(vu+2) _ (’i(ru+l)1
s B (ﬁ(um)z AEHD = gt
- x - at T ;

Zt (d.xt —F (U+7)) ~(vr+2) a(y—m) s (fic(ul/-i-2)‘

EEV‘IHQ) R\(V*H)

L

[}g_uﬁ) _ §£V~F2) , "
M o s ) ( (u+2))2 R = EE +2)
t
Where P = ETR,; gxp(m (v) /)’ (”)) is the estimated number of deaths

after lterdtlon step v. The criterion used to stop the procedure is a very small
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increase of the log-likelihood function (the default value of LEM is 1079, but it
can be recommended to set the criterion a little bit sharper, so to 10717),

After updating the x; parameters, we have to impose a location constraint. LEM
uses the centering constraint Z.: Kkt = 0, which is the same constraint as in (3.3).
This constraint is specified with a design matrix, namely the spe(...) statement
in the code given in Appendix A. After updating the (3, parameters, a scaling
constraint has to be imposed. The scaling constraint used by LEM is ﬁl = L,
which is different from (3.3). In order to obtain the parameterization in which
L By = 1, one has to divide the LEM estimates for 3, by Fh 3, and multiply
the LEM estimates for x; by the same number.

3.4  Modelling the time-factor

As in the Lee-Carter methodology the time factor w; is intrinsically viewed as
a stochastic process. Box-Jenkins techniques are therefore used to estimate and
forecast x; within an ARIMA(p, d, ¢) times series model, which takes the general
form

(")( (B)E,g
| — B)kp = po+ ———
(1= B) e =n+ 3 5]
where
B is the delay operator, B(r¢) = ki1, B*(ki) = kp—2y 0.5

| — B is the difference operator, (1 — B)r; = Ky — iy, (I — B)*ky =
Kt — 26— + Ke—2y -+ -5

©,(B) is the Moving Average polynomial, with coefficients 8 = (6,6, ...60,);

®,(B) is the Autoregressive polynomial, with coefficients ¢ = (¢, ¢ ... dp):

€ is white noise with variance o2.

The parameters of the models are p, 0, ¢ and .. The method we use to obtain
estimates for the ARIMA parameters is conditional least squares. Forecasted
values of time parameters will be denoted by s} .

As is discussed in the next sections, the parameter estimates of the Poisson model
and the forecasts x; can be used to obtain projected age-specific mortality rates,
life expectancies, and annuities single premiums. We also present a simulation-
based method that can be used to take the various error sources into account.
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3.5 Confidence intervals Jor the parameters

[n forecasting, it is important to provide information on the uncertainty of
the forecasted quantities. In that respect, confidence intervals are particularly
useful. However, in the current application it is impossible to derive the relevant
confidence intervals analytically. The reason for this is that two very different
sources of uncertainty have to be combined: sampling errors in the parameters
of the Poisson model and forecast errors in the projected ARIMA parameters.
An additional complication is that the measures of interest — mortality rates,
life expectancies, and annuities single premiums — are complicated non-linear
functions of the Poisson parameters v, (3., and x; and the ARIMA parameters
1, 0, ¢, and o..

Because of the problems associated with analytic methods, we propose estimating
confidence intervals by Monte-Carlo simulation. Our simulation procedure yields
M samples of «,, (., and r; parameters and future values of the time parameters,
denoted by x;. Let the mth simulated set of these basic parameters be denoted by
§" and the measures of interest by p. Since the %) parameters are (non-linear)
functions J(&) of the basic parameters &, the mth set of 1) parameter can be
obtained by ™ = S(€™). In other words, our procedure yields M samples of
% parameters which can be used to compute their confidence intervals.

The two sources of uncertainty that have to be combined are the sampling
fluctuation in the ov,, f3,, and #, parameters and the forecast error in the x}
parameters. Since we resorted to maximum likelihood to estimate the parameters
of the Poisson model, we know that (a,ﬁ, k) is asymptotically multivariate
normally (MVN) distributed, with mean (e, 3, &) and covariance matrix given by
the inverse of the Fisher information matrix Z, whose elements equal minus the
Expected value of the second derivatives of the log-likelihood with respect to the
Parameters of interest. Appendix B shows how to obtain the information matrix
and how to sample values from the MVN distribution of interest. The second
source of uncertainty is captured by the gstimated ARIMA standard error &..
Once we estimated the parameters «,, (3, and s of the Poisson model (3.2)
as described in Section 3.2 as well as their variance-covariance matrix 7' as
described in Appendix B, the mth sample in the Monte Carlo simulation is

obtained by the following 4 steps:
L, Generate o', 37, and x{" from the appropriate MVN distribution (see
Appendix B for details).

2, Estimate the ARIMA model using the ;" as data points. This yields a new
set 11", 0™, @™, and ¢ of the parameters p, €, ¢, and o..

£
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3. Generate a projection of ;"™ using the ARIMA parameters. The future
errors £, are sampled from a univariate normal distribution with a mean

of 0 and a standard deviation of o".
4. Compute the measures of interest )",

The first step is meant to take into account the insecurity about the Poisson
parameters. The second step deals with the fact that the insecurity about the
ARIMA parameters depends on the insecurity about the Poisson parameters. The
third makes that the insecurity about the forecasted x; not only depends on the
ARIMA standard error, but also on the insecurity of the ARIMA parameters
themselves. Finally, in the computation of the relevant measures in step four, all
sources of insecurity are taken into account.

4 An application to Dutch population mortality statistics
4.1 Estimation of the parameters

We apply the Poisson modelling to the Dutch data presented in the introductory
section. The Poisson parameters «v,., 3, and s, involved in (3.2) are estimated by
the procedure described in Section 3.2. Figure 4.1 plots the estimated cv,, 3, and
k. We can see that the &v,’s represent the average mortality across time: the ., ’s
clearly increase in x, reflecting higher mortality at older ages, as expected. The
B:s decrease with age but remain positive. The &;’s for women exhibit regular
behavior decreasing from 10 to -10. This reveals the improvements of mortality
at ages 60 to 98 for Dutch women during the observation period. The &;’s for
men behave quite irregularly, beginning to decrease only in the seventies.

4.2 Modelling the time factor

Following the early work of LEE & CARTER (1992), we use the Box-Jenkins
methodology (identification - estimation - diagnosis) to generate the appropriate
ARIMA time series model for the male and female mortality indexes.

A good model for the women is ARIMA(0,1,0), which is a random walk with
drift:

(1= B)kt =kt — kg = b+ €4 . 4.1)

For the men, the situation is a bit more complicated. Looking at the data (see
Figure 4.1) gives the feeling that there is a break in the series: data before year
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Figure 4.1: Estimations of ., B, and k; for women (left panels) and men

(right panels).
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1970 behave differently from data after 1970. We thus split the series into two
parts, each having its own stochastic behaviour. In the following we will use
data from 1970 for projecting the x, for the male population. Moreover, the
ARIMA(0,1,0) model (4.1) appears to be a good choice in this case as well,
bringing us close to the work of LEE & CARTER (1992).

The estimated parameters for the ARIMA(0,1,0) models (4.1) are given in
Table 4.1 for men and women. The sex-specific estimated values of s, together
with the projected x; are shown with their 95% interval forecasts in Figure 4.2.

Sex [t a:
Women —0.4293 0.8698
Men —0.2503 0.3749

Table 4.1: Estimation of the parameters p and o,
of the ARIMA(0,1,0) models.

ARIMA Wome) || " Projection ARIMA hommes
e e e —
W N
10 “"”»,. : \'.//\A“L
\' \,'.(/-{. g \/\‘\'QI "\A’\ \
0 NI ——
g e N
-10 = \ e,
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| =—I¢ ic - —Ic —1IC
_504v T T T T T ey 40 T T T T T T T rrevreereep
| 1940 1960 1980 2000 2020 2040 2060 [ 1970 1980 1990 2000 2010 2020 2030 2040 2050

Figure 4.2: Estimated and projected values of «; for males and females.

4.3 Confidence intervals

A Monte Carlo simulation is then used to generate 10,000 samples of the original
parameters v, 3, and ;. On the basis of each of these 10,000 realizations, we
estimated the ARIMA(0,1,0) parameters ;¢ and o.. The simulation thus also gives
a sample of size 10,000 of the ARIMA parameters, whose significant percentile
values are given in Table 4.2. The interval [qo.05,0.05] is best regarded as an
approximate 90% confidence interval for the quantities of interest.
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Women — -0.4286 -0.4374 04200 0.8995 0.8371  0.9631
Men  -0.2501 -02611 -02391 03947 03506 0.4398

Table 4.2: Simulation outcomes for the parameters of the ARIMA(0,1,0)
models: 7 is the average over the 10,000 samples of the
estimations for 1, and @, is the analogue for o.. These values are
supplemented with the 5% and 95% percentiles of the outcomes.

The last step is then to compute values for the quantities of interest. As explamed
in Section 3.4, each set alt, 4 k)" and k™ of simulated Oy, B, ke and k] gives

a realization of this quantity, so that the procedure also provides the actuary with
a sample of size 10,000 on the basis of which standard errors and quantiles can
be estimated. If we consider for example the evolution of the mortality rates at
age 65 through years, we obtain 10,000 realizations from

165 (t) = exp(afs + Biaki™)
for ¢ < 2,000 and

."Lgil(f) _ (XI)((Y;’; l_ﬁrrsl *rn)

for t+ > 2 001. This is represented on Figure 4.3. Similarly, the evolution of the
mortdhty rates in 2005 through ages from 60 is depicted in Figure 4.4. For each
situation, the point estimates (given by the average over the 10,000 samples) are

Supplemented with 90% confidence bands [q0.05, 40.95)-
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Figure 4.3: Mortality rates p65(t), t > 1950, with 90% confidence intervals,
for women (left) and for men (right).
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Figure 4.4: Mortality rates i, (2005), @ > 60, with 90% confidence intervals,
for women (left) and for men (right).

5 Distribution of the estimator of the life annuity net single premium

Using the projected lifetables generated in the preceding section, we deduce
confidence intervals on life expectancies e, (¢) and on the net present values a, ().
These quantities indeed depend on the future evolution of mortality. Specifically,
having generated mortality rates p!*(¢t), m = 1,...,10,000, we get one-year
survival probabilities p(¢) and we can thus compute e!'(t) and a}'(t) according

to formulas (2.2) and (2.3). Figure 5.5 displays an estimation J(’)f the density
function of 86;(/2660) and czﬁmﬂ) for women and Figure 5.6 is the analogue
for men, with v = 1.04~". e

Once the estimation of the density of «es(2000) is available, the actuary can
decide about the height of the safety loading. Indeed, the company could charge

——

the 90 or 95th percentile of ags5(2000). This approach has the advantage to offer
a clear understanding of the way the safety margin is computed.

6 Projecting cash flows of a life annuity portfolio

Let us consider a portfolio of n immediate life annuities (n = 10,000 in all the
numerical illustrations), sold to 65-year-old individuals at January | of year 2000
and providing them with a unit capital at the end of each year provided they are
still alive. The random number of contracts at time ¢ (calendar year 2000 + ¢) is
Ni. Having generated a sequence of pg5, ,(2000+) as explained in the preceding
sections we compute sequences of

Des.4.¢(2000 + 1) = exp{—jtg54.,(2000 + ¢)}
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Figure 5.5: Life expectancies (165’@)—60) (top) and annuities ags(2000) (bottom)
distributions for women.
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distributions for men.



121

and
Q6544 (2000 + t) = | — exp{—pge,,(2000 + ¢)}, m =1,...,10,000.
There are different ways to simulate the number of survivors at the different ages:

L. A first possibility consists in generating at once all the’ Years.(‘)t.deathft‘or
the 10,000 annuitants. Denoting as 7s(2000) the remaining lltc.etlme of an
insured aged 65 in year 2000, the associated survival function is

exp ( — p65(2000)) if £ <1
Pr(T55(2000) > &) = { exp(— (& — [€])tes-+(¢) (2000 + [£]))
Hf] 01 exp ( — pes+x(2000 + k)) if £ > 1
where [¢] is the integer part of the positive real number &, Tg sin'wlatfz a
realization of 7Ty5(2000), it then suffices to invert the latter survival function

A, . ecisely, havin
and to evaluate it in a random unit uniform number. MO{'@ p;cti:lzlg; g s‘ucﬁ
simulated « from the unit uniform distribution, we look for the g

that »
_ P
J »
H exp (— pes4x (2000 + k) > u > H exp ( — ftes+x(2000 + £)).
k=0
k=0

The annuitant then dies at age 65 + j + 1. If

u > exp ( — J1e5(2000))

then the annuitant dies at age 65 and the insurer does not have to pay

anything.
: : “deaths from
2. A second approach consists in generating the annual nunlg(c):(r)(())f_Fdf;thS fro
the binomial distribution with parameters Ny and ges.++( 22
: s ation i ial
3. A third possibility is to resort to the Poisson approximation for the binom
distribution.

In practice, these three approaches provide very similar results. Here, wehco?“ttlrl:
with the Poisson modelling and proceed as follows. We smluld;e [t cdkllllhte
evolution of this portfolio as follows. Starting from Ny = n, we first calcul:

the exposure as

463(2000)

BT Res 2000 = —N‘)fﬁm ‘
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Then we simulate the number of deaths at age 65 in year 2000 as
Dgs(2000) ~ Poisson( ET Res 20004465 (2000))
and the number of remaining policies in year 2001 as
- Ny = Ny — Dss5(2000)

The company pays an amount N, and gets returns on the reserve.
Proceeding iteratively for ¢ = 1,2,..., we simulate until the cohort totally
vanished according to the following equations:

‘ 6544 (2000 + t)
ET Resyt2000+¢ = —N,
65,2000+ ¢ "I pes4: (2000 + t)

D(,j-H(ZOOO + IL) ~ POiSSOﬂ(ETR(J‘SAFﬁ|2()()()_|.,5,{665_|,_¢(20()0 -+ f))

and
Nip1 = Ny = Dgs44(2000 + ).

is the amount to be paid by the company at the end of year 2000 + ¢.

[t is worth mentioning that the simulating procedure does not guarantee that
the number of deaths Dgs. (2000 + ¢) is smaller than the number of remaining
policies N;.

Let us now project the future cash flows corresponding to this portfolio. At
time O the company gets naes(2000). Then we observe the extinction of the
cohort and compute the cashflows and the evolution of the reserves each year.
For the reserves, we have taken the same yearly interest rate as the one used
in the calculation of the annuity, namely i = 4%, which corresponds to a
quite pessimistic view. In Table 6.1, four methods for computing the net single
premiums have been compared, namely

L the transversal vision, based on observed data from 1998 to 2000: in this
case, the mortality rates are estimated on the basis of the statistics related
to the years 1998-2000 and are used directly (without projection) to price
the life annuity contracts;

2 the longitudinal vision, pure premium: the mortality rates are projected
according to the method described in Section 3 but no safety loading is
added to the pure premium so obtained;

3. The longitudinal vision, 90-th percentile value: the mortality rates are
projected and a safety loading is added by charging the 90th percentile

—

of aes5(2000), as discussed in Section 5;
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% The longitudinal vision, 95-th percentile value: the mortality rates are
projected and a safety loading is added by charging the 95th percentile

of a45(2000), as discussed in Section 5.
The different columns of Table 6.1 give the following results:

[ the net single premium of the life annuity, computed according to the 4
strategies described above;

2. the global probability of ruin (in %) at total extinction of the cohort, that
is, the probability that the premium income got in 2000 does not suffice to
fund all the promised payments, if the interest rate obtained on the reserves

is equal to 4% (which is a quite pessimistic scenario);

3. The mean time to ruin (in years), that is, the average number of years
elapsed before ruin, given that ruin occurs;

c The mean severity of ruin (the year the ruin occurs), which is the deficit
the year the company runs out of funds;

3, the mean number of remaining contracts when ruin occurs;

6. the interest rate on the reserves needed to ensure that the global probability

of ruin is below 1%.

Let us comment the results of Table 6.1. First and foremost, they enlighten the
importance of mortality projections: ratemaking on the basis of transversal data
results in negative cashflows in almost 100% of the cases simulated (99.84% for
women and 97.94% for men). Moreover, it appears to be necessary to include a
safety loading since charging the pure premium leads to ruin in about 50% of
the cases (as expected). It is interesting to notice the different results obtained
according to the gender of the policyholders. When the percentile premium
calculation principle is used, the ruin probability is higher for men than for
women, ruin occurs on average more rapidly for men than for women (provided
ruin indeed occurs) but the deficit is much higher for women than for men.
Similarly, the number of pending policies when ruin occurs (that is, the victims
of the bankruptcy) is higher for women. The last column shows that, as it is
well known by practitioners, it is possible to counteract the longevity risk by

sufficiently high financial returns on the reserves.
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Women

Premium Annuity Global ruin Mean time to Mean  severity Mean nb of i (in %)
Principle probability (in %) min (in years) of ruin remaining  contracts
Transv. 11.82 99,84 248 — 194 407 3.2
Long. 12.57 55.58 28.7 -90 190 4.6
Long. 90% 12.85 17.37 30.5 -65 146 4.3
Long. 95% 12.93 11.00 31.3 -62 131 4.3
Men
Premium Annuity Global ruin Mean time to Mean  severity Mean nb of io(in %)
Principle probability (in %) min (in years) of riin remaining - contracts
Transv. 9.97 97.94 220 ~100 214 4.9
Long. 10.30 50.66 258 -50 109 4.5
Long. 90% 10,40 26.90 26.7 ~4l 90 4.4
Long. 95% 10.43 22.12 27.0 -38 85 4.3

Table 6.1: Risk measures for the annuity portfolio.

7 Conclusion

To the knowledge of the authors, the present paper offers the first attempt to
quantify the longevity risk, that is, the variability of the life annuity premiums
computed on the basis of projected mortality rates. Since in the log-bilinear
Poisson regression approach, this amounts to combine different sources of
sampling fluctuations (namely, the variability of the estimations v, f?: and £y
together with the prediction errors of the x;), an analytical approach turns out to
be virtually impossible. Therefore, we have opted for a Monte-Carlo approach.
The simulation strategy adopted in this paper is fully parametric (in the sense that
the confidence intervals are obtained under the hypothesis that the model (3.2) is
correct) and based on large sample properties of the ML estimators. Specifically,
we have generated M samples from the multivariate normal distribution with
mean vector (&,B, ®)! and covariance matrix T,

The parametric Monte-Carlo method used in this paper is an interesting first
attempt to quantify the uncertainty of the future mortality. Nevertheless, its major
drawback is that it is based on a normal approximation which may not be very
accurate. Since the second step of the simulation consists in estimating an ARIMA
model using generated data that are multivariate normal with known mean and
covariance matrix, the whole simulation is fully determined by the estimated v, ’s,
B3,’s and k;’s together with the information matrix. Hence, the real structure of
the data cannot be fully captured.

To avoid these drawbacks, we can contemplate other possibilities for dealing
with the insecurity of the parameters of the Poisson model. Two of these
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are semiparametric and nonparametric bootstrapping. Both procedures involve
generating M new tables of observed numbers of deaths and reestimating the
Poisson model with each of these generated data matrices. This yields the M
sets of «v,, (., and x, parameters that are needed in the subsequent steps. The
two bootstrapping methods differ in the manner in which the M new data sets are
generated. A straightforward manner to implement the semiparametric bootstrap is
to generate observed numbers of deaths from the Poisson distribution defined by
estimates of the Poisson parameters and the observed exposures times. Another,
more complicated, implementation involves generating cohort survival tables using
the estimated Poisson rates, where the risk population is adapted depending on
the numbers of deaths in the previous year. In the nonparametric bootstrap, the
M new data matrices are obtained by means of sampling with replacement from
the original data matrix.

[n a forthcoming paper, we will compare the fully parametric approach worked
out in the present article to semi- and nonparametric bootstrap, to check whether
the confidence intervals on the life annuitiy premiums derived in this paper are
not artificially too small.

To end with, let us mention that the study of the variability of the amounts of
premium, and of the corresponding ruin probabilities, are of prime importance
for deciding upon the level of reinsurance needed.
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Appendices
A LEM input files

This is the LEM input file that estimates the Poisson parameters v, . and &,
involved in (3.2):

man 2

dim 39 51

lab X T

mod {wei(XT), X, spe(T,1a,X,b)}
dat deaths.dat

sta wei(XT) exposures.dat

The command “man” indicates the number of (manifest) variables, in this case
2 (age and calendar time). With “dim”, one specifies the number of levels of the
variables. For females, we had 39 age groups and 51 time points. The command
“lab” is used to specify variable labels. The “mod” statement is used to specify
the three relevant model terms: the exposures [wei(XT)], the age effect [X],
and the bilinear term [spe(T,la,X,b)]. It is assumed that the files “deaths.dat”
and “exposures.dat” contain the tables with observed counts d,; and exposure
ETR,;. The commands “dat” and “sta” are used to specifty these data files.

B Fisher Information matrix

[n order to simplify notation in the description of the elements of the Fisher
information matrix, we write the expected number of deaths at age x in year ¢
for an exposure to risk £T'R,; in the Poisson model in a slightly different form;
that is,

Tivas & rin tinax
Fyt = ET Ry CXP[( Z a:vyay) + ( Z b;vyﬁy)( Z kt'rﬁ"r)jl

Y=Tmin Y=Tmin r=tmin

where Ziin, Tmax, tmin and tmax have obvious meanings. Here, agy, b, and
k:, denote elements of three design matrices A, B, and K, whose columns are
associated with the three sets of Poisson parameters. More precisely, a,, and
byy equal 1 if x = y, and 0 otherwise. Moreover, ky, equals | if £ = r, -1 if
t = tmax, and O otherwise. Note that setting k; ., = —1 amounts to saying
that x; = — Zt"”"‘” k-, which is needed for identification. As a result, K

T=lmin
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contains only #,,,« — tin instead of ¢,,0« — tmin + 1 columns. For identification,
we also fix 4, . to 1. As was explained in the text, it is straightforward to
switch from this parameterization to the Lee-Carter parameterization in which
Z;‘:L‘ 3, = 1. With this parameterization, it is much easier to derive the
Fisher information matrix.

Using L as a shorthand for L(a, 3, k), the elements of the Fisher information
matrix for the free parameters v, ., to o, Bemint+1 10 B and k¢, to

max? / min
(s — i) €aN be obtained by

~E ( P ) = Z; Flogitlsy iz
(00 ; ) ZZ“ (Kebay) (Rebay)
(();) i ) ZZ“ (Beker) (Bekir)
(()((y),,/[;’ ) Zzl't“w (Rebay’)
0L ) ZZ[””W )

(()a,,h,

Tmax?

C’j

t':

AL

="
00,k

Z l'trt (th.ry) (,Hu:/‘:h')
t

[n the first step of the our Monte Carlo simulation procedure, we generate
ayt, 47 and k) from a MVN distribution with means equal to the maximum
likelihood (ML) estimates v, 11' ., and x; and covariance matrix equal to 7=
Note that the estimated Fisher information matrix is obtained by filling in the
ML estimates in the above formulas.

In practice, simulation from a MVN distribution is done as follows:

~

g”l - 6 ,*_. aum

Here, ¢ denotes the vector with ML estimates, u™ is a vector of independent
standard normal deviates, and C' is the Choleski decomposition of 7~

Before going to the second step in which the ARIMA model is estimated using
ky" as data points, we rescale the 37" and ] terms so that they are in agreement
with the Lee-Carter parameterization.
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Abstract

Projected lifetables are used to price life annuities because they include a forecast of the future
trends in mortality. However, such tables may not properly represent future mortality, originating
the so-called longevity risk. The present work purposes to quantify the uncertainty inherent to
mortality projections in the framework of the log-bilinear Poisson regression model of BROUHNS,
DenvrT & VERMUNT (2002).

’

Résumé

Les tables de mortalité prospectives sont utilisées pour la tarification des rentes viageres car elles
incorporent une anticipation de la mortalité future. Cependant, ces tables pourraient ne pas décrire
adéquatement la mortalité future, donnant ainsi naissance au risque de longévité, Le présent travail
a pour but de quantifier I'incertitude entachant les projections de mortalité dans le cadre du modele
de Poisson log-bilinéaire de BROUHNS, DENUIT & VERMUNT (2002).

Zusammenfassung

Projizierte Sterbetafeln werden eingesetzt, um den Preis von Leibrenten zu bestimmen, weil in
ihnen eine Voraussage der Entwicklung der zukiinftigen Sterblichkeit enthalten ist. Solche Tafeln
werden in der Regel aber den Verlauf der zukiinftigen Sterblichkeit nicht genau darstellen woraus
das sogenannte Langlebigkeitsrisiko entsteht. Ziel des vorliegenden Artikels ist es, die Ungewissheit
die solchen Sterblichkeitsprojektionen innewohnt zu quantifizieren. Dies geschiecht im Rahmen des
log-bilinear Poisson Regressionsmodells von Brouuns, DenuiT & VERMUNT (2002).
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