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H. Cossette, M. Denuit, É. Marceau, Sainte-Foy, Louvain-la-Neuve

Distributional Bounds for Functions of Dependent Risks

1 Introduction and Motivation

The present paper aims to provide a method to derive bounds on the cumulative
distribution function (cdf, in short) of a function of dependent random variables

(claims severities, remaining lifetimes or stochastic interest rates for instance).
Whereas standard actuarial mathematics always assume independence, it is clear
that this theoretical situation seldom holds in practice. Therefore, we show here

how to handle possibly correlated random variables when (almost) no information
about their dependence structure is available. This allows the actuary to quantify
the impact of a possible correlation among the risks he faces.

Let us point out several examples concerning correlated random variables. In
life insurance, policies sold to married couples clearly involve dependent random
variables (namely, the spouses' remaining lifetimes). Various methods dealing
with such a situation have been proposed, e.g. by Carrière and Chan (1986),

Norberg (1989), Wolthuis (1994), Frees, Carrière and Valdez (1996), Dhaene,
Vanneste and Wolthuis (2000), Denuit, Dhaene, Le Bailly de Tilleghem and

Teghem (2001) and Denuit and Cornet (1999a, b). Another fine example of
dependent random variables in an actuarial context has been studied by Klugman
and Parsa (1999), where the correlation structure between a loss amount and

its ALAE is investigated. Catastrophe insurance (/V/ est policies covering the

consequences of events like earthquakes, hurricanes or tornados, for instance)
of course deals with dependent risks; this aspect has been addressed e.g. by
Dhaene and Goovaerts (1996, 1997), Biiuerle and Mtiller (1998) and Cossette,

Gaillardetz, Marceau and Rioux (1999). Among the possible tools for taking
dependence into account in a non-life context, copula models seem to be of
primary interest; they have been used e.g.. by Carrière (1994, 1998, 2000), Frees

and Valdez (1998), Genest, Ghoudi and Rivest (1998), Wang (1998), Embrechts,
McNeil and Strauman (1999, 2000), Klugman and Parsa (1999), Denuit, Genest
and Marceau (1999, 2002), Cossette, Gaillardetz, Marceau and Rioux (1999) and
Genest, Marceau and Mesfioui (2000).
In this paper, we examine the following problematic. Consider two random
variables ACi and X2, with specified cdf's F| and F2, as well as a measurable
function T : iF —> R. Typically, is the amount paid by an insurance

company if AC
1 aq and X2 £2, or a suitable risk measure. The joint

distribution of the random couple (AC|, AC2 is unknown to the actuary, but he feels
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that the dependence structure between X| and X2 might cause severe problems
to the company (in the sense that large values of X| tend to occur with large
values of X2, and Wee versa). Therefore, he would like to determine bounds on
the cdf of the random variable 4>(X|,X2), provided satisfies some reasonable

regularity conditions. Taking X| + X2 leads to the case treated in
Denuit et a/. (1999).
In this context, generalized inverses will play a central role. We thus recall some
results that can be found for instance in De Vylder, Dhaene and Goovaerts (1999).
Let </? : M —> M be a non-decreasing function. The left-continuous inverse of

is defined as

<p~' (x) inf{i G M I <p(i) > x} (1.1)

with the convention that inf 0 — +00. Similarly, the right-continuous inverse

of <p is dehned as

<p~"(x) sup{f G M I cp(f) < x} (1.2)

with the convention that sup0 —00. Provided that is left-continuous, the

equivalence

a- < '"(l/) <=> <p(a0 < 2/ (1-3)

always holds. Now, if is non-increasing, its left-continuous and right-
continuous ip~'* inverses are respectively given by

' (x) inf{f G M I tp(f) < x} (1.4)

and

^>~'*(x) sup{£ G M I </?(£) > x} (1.5)

Provided that is right-continuous, the equivalence

^ 2) > <p(-'c) (1-6)

always holds.

Similar problems have been previously addressed in the literature. For instance,

if iP is a non-decreasing function such that 0^1>/c)xi<9x2 > 0 then Property 4.4(i)
in Denuit, Letevre and Mesfioui (1999) yields the stop-loss inequalities

ßmax{vp(ßf'((7),ßf'(l - t/)) -f,0}
< £max{®(X|,X2)-t,0}
< ß max {$(F,-'([/), F2"-' (f/)) -f,0} (1.7)
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which are valid for any level f of the deductible, where {/ is a random variable
uniformly distributed over [0, 1].

In general, (1.7) does not provide bounds on the cdf of 4/(X|, X2); moreover,
it requires second-order regularity condition 011 4* to be valid. Our aim is to
determine lower anil upper bounds on the cdf of 4>(X|, X2) when all that is known
about the risks Yi and X2 is their marginal distributions F| and F2. We only
require to be continuous and monotone in each argument. It is worth mentioning
that similar problems have heen studied by Frank, Nelsen and Schweizer (1987),
Williamson and Downs (1990), Williamson (1991) and, in an actuarial context,
by Denuit, Genest and Marceau (1999) and Embrechts, McNeil and Strauman

1999, 2000).
In the numerical illustrations, we focus on d'jxi,£2) £1/2:2 and

£1X2- The reason is that both functions are non-linear and possess a nice actuarial
interpretation. Typically, 4/(2q,X2) £|/£'2 has the form of a loss ratio: aq is the

total loss experienced by the company and £2 represents incomes of the company
(premiums paid by policyholders but also amounts due by reinsurers and returns
on financial assets). Therefore, the numerator and denominator become dependent,

especially if the company bought financial products hedging insurance risks. In
the second example, \P(£|,£2) £ 1 £2, £1 could be the total loss experienced
by the insurer, and £2 the indicator for some event, or a percentage depending
on some index; then *F(£i,£2) may be considered as the amount of indemnity
produced by a reinsurance agreement.
The paper is organized as follows. In Section 2, we first consider the bivariate
case. After having briefly recalled the definition of the copulae, we derive bounds
for the cdf of \P(X), X2). We also show how it is possible to improve these bounds
when additional information about the correlation structure of the random couple
(2f|, Y2) is available. To close this section, we address the numerical aspects of
the method. Then, in Section 3, we extend the results to the multivariate case
and we propose stochastic bounds on \P(X),... X„ for continuous monotone

: R" • R, when all that is known about the X*'s is their marginal cdf's
-F*i,...

2 Bounds on a function of two dependent risks

2. / ß/Vn/iatc CY;/?«/« mor/e/j

Copulae are functions that join (or "couple") multivariate distribution functions
to their one-dimensional marginals. Technically speaking, copulae are distribution
functions whose marginals are uniform. Since Fréchet and Höffding, it is well
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known that all copulae satisfy

Cl(*i,*2) < C(£,,*2) < CV/(f,,t2) for all (/1. /2) G [0, 1]', (2.1)

where the copulae C'y and C'y are given by

Cy (:fi,Ï2) max{f] + <2 — 1,0}
and

Cc/(fi,Ç) minf^i,^} (^1,^2) G [0, 1]" ;

see e.g. Nelsen (1999). C'y and C'y are known as the Fréchet lower and upper
bounds copulae, respectively. Coming back to the stop-loss bounds in 1.7), it is

easily seen that

P [F,~
' ([/) < x 1. FÇ

'
1 - [/) < .,2] Cy (P, (x, P2(X2))

and

P < X,,P2-'(P) < X'2] C'y(P,(x,),P2(x2))

If the random couple (JY|, JY2) has the copula C'y then (JsTi, JC2) is said to be

comonotonic. Comonotonicity thus represents perfect positive dependence (since
both JYi and JY2 are non-decreasing functions of the same underlying random
variable (7).

Now, let P(x,A) bo a two-dimensional distribution function with univariate

marginals P| and F2. There exists a copula C such that

iW,)(*..fc) C(Fi(f,),F2(i2)) for all (/i/fijetf. (2.2)

The copula C contains all the dependency informations about the random couple

(XyXî). Copulae theory therefore provides a natural setting for the study of
questions dealing with properties of distribution functions with fixed marginals.
In particular, when C'(i 1, ^2) C*/ (i 1, <2) CC, the components of the random

couple (vYyTG) are mutually independent. Henceforth, we assume that the

marginal cdf's F and P2 are continuous; this ensures that the copula C achieving
the representation (2.2) is unique, whereas some technical difficulties arise when
the Pj's exhibit jump points (for more details, see e.g. Nelsen (1999)).
The dual of a copula C is the function C defined by

C*(i,,i2) i,+i2-C(*.,f2), (t,.P) e [0, 1]'. (2.3)

It is easily seen from (2.2) that

C(P|(f,),P2(f2)) - P[vY, < i, UX2 < f2] (*1,*2) G [0, 1]*.

For instance, the dual of Cy is given by

Cy(f 1, F) min{f 1 + £2, 1} (P,C) G [0, if :

the latter will play a central role in the next section.
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2.2 D/.v/r/AwAouo/ Ao««r/.v o« 4>(A4,W2)

Assume one wants to get bounds on the distribution function of (F^^AT)
in terms of the marginals F| and F2. Frank, Nelsen and Schweizer (1987,
Theorem 5.1) were the first who solved this problem. We recall their result here,

and we provide an elementary proof of it, which appears to be new.

Proposition 2.1 /.er A4. TG) Ae o A/vart'ote rM vwVA worg/na/s F| our/ /A G/ven

fl onrf conf/rtuo«s/M«cr/ort 4/ : R^ —> R, /ef ms r/e/?ne/or orAArary
s our/ x /'« R /Ae c0U//uho«.ï /««cf/ou ^ : R —» R Ay >-> ^(t) 4>(x, f).
TAeu, /Ae /urY/uo/ù/ev

F„,in(s I vf) < P[vF(X,, A/) < s] < F„ax(s | *) (2.4)

Ao/r/ /or a// s G R, vv/7A

^min(s I *F) Slip Cl(F|((|), F2(<p/'*(s)))
tiR

our/

I <P) inf C^(F|(f|),F2(v?/'*(s))).
<i ÇIR

Proof Let C be the copula such that (2.2) holds for the random couple (A4, A/).
Then it is clear from (1.3) that A4 > x and AT > ¥>/"(«) together imply
tf(A4,A4>) > s. We then have for any s G R that

P[VL(W,,W2) <«] < F[x, <IUI2<^'(«)1
C^(F,(a:),F2(^-"(s)))

<Gf(F,(x),F2(^"(.s))).

Therefore,

P[4r(W,, A/) < s] < inf C|(F,(x)>2(^"(s)))
:clR

which is the right inequality of (2.4). In order to get the left one, it suffices to

note that for any s G R

P[*(*.,*2) < «] > C(F,(x),F2(^"(S)))
> Cl(F| (X), F2(<P/'*(«))).

and the best lower bound is finally obtained by taking the "sup",
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Remark 2.2 It is worth mentioning that Fmin('l^) can be cast into

iW*|*)= sup Cj;(Fi(i,)>*2(*2)). (2.5)
(t,,t.)6R2|*(t,,t2)=S

On the contrary, we do not have in general that

i^«*(s|*)= inf ^(F|(i,),^2(<2)). (2.6)
(ti,t2)eR'h('(ti,tj)=s

The explanation behind this fact is the following. The condition ^(ii, £2) s is

equivalent with <pt, (£2) — s which is the same as

feilte) <s ^
!£2 <Vt,'*(s)

|<Pti('2) > s — £ for all e > 0 |£2 > — e) for all e > 0

according to (1.3), i.e.

V^'*(s-) < <2 < <Pt~'*00-

Now, since Cl(^i(f 1), ^2(^2)) is non-decreasing in (£[, £2), it follows that the

supremum in the right hand-side of (2.5) is taken at the right endpoint of
the interval ),<Pt('*(•*)] implying the equality in (2.5). However, this

reasoning cannot be repeated for the non-decreasing function Cy'(F[ (£| ^(£2))
for which we have to take the infimum.

Williamson and Downs (1990, Theorem 3) proved the pointwise best possible

nature of the bounds (2.4). More precisely, they showed that there always exists

a copula such that the distribution function of d/(X|,X2) meets the bounds (2.4)
at some given point s. In other words, one cannot construct tighter bounds. In

the particular case (a: 1,0:2) aq +£2, Proposition 2.1 reduces to Proposition I

in Denuit, Genest and Marceau (1999).
It is worth mentioning that Proposition 2.1 is easily adapted to monotone functions
4/. This is formally stated in the next corollary.

Corollary 2.3 f/nc/er tbe a.y.vumption.y 0/ Proposition 2. / vvitit 4> non-tiecremying
(Vi ttie yirot argument anti non-/nfroa.ying in t/ie seconti argument, tiie bounr/.y in

(2.4) become

- I /

anti

^min(s I *) sup {Fi(£|) - C[/(F|(£|),f2(<Pe,'(s)))}
t,eR

F„ax(s I ®) mf {1 - F2(^'(.s)) + C^(f,(£,).F2(^-;'(a
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Proof The reasoning of Proposition 2.1 is easily adapted to deal with the present
situation. Indeed, we now have from (1.6) that

P[¥(A,, Aj) < «1 < P[A, <xUAz > <P~'(s)]

P[*2 > ¥>"'(*)] + C[A, < X, A-, < yÇ'(«)]
1 -F2(^'(s)) + C(F,(X),F,(VÇ'(^)))

< l-F2(vp;'(s)) + Ct;(F,(x),F2(cp;'(s))).

On the other hand,

P[*(X,,*2) < «] > C[A, < ^2 > ¥>"'(«)]

F,(a:)-C(F,(x),F2(^'(a)))

>F,(s)-C, (F,(®),F2(¥»; '(*))),

and this ends the proof.

To end with, if *P is decreasing, (2.4) becomes

1 - Fmax( -s| - VP) < P[*(A,, Az) < s) < 1 - Fn|„(-a| - tf)

This is easily obtained from Proposition 2.1 since *P is non-decreasing if, and

only if, — >P is non-increasing.

2.5 //n/?rwemen/.y o/ the /w//«c/,v

If we know moreover that the copula C describing the structure of dependence

of the random couple (Ai, A2) is such that

C(Äi,iz) > Co(*i,i2) > Ci(ti,i2) forall (f,,f2) S [0,1]2, (2.7)

for some given copula Co, then we get better bounds by substituting Co for C/,
in (2.4). This is formalized in the next result; the proof follows the same lines as

for Proposition 2.1 and is therefore omitted.

Proposition 2.4 Le/ (Ai, A2) Le c/ Zu'rar/a/e ràL vw'/L margma/.v F, rmc/ F2, «nr/

.w/fv/y/ng (2.2) w/7L /Le eopu/fl C /Lc</ /«////F (2.7). G/ven m no/t-rfecrefli/ng «ne/

cwi/Ljhom.v /«ne//«« *P : —> IR, /Le Lfee/u«L7/e.?

Cm in (-S I vp, Co) < P[*(A,, Aj) < s] < Fma*(s | *, Cq) (2.8)



52

/îo/c/ /or «// s g R, vi^/Y/î

f,nin(s | ®,Co) Slip C()(F| (f | F2(</?,"'*(s)))
il ÇM

«rte/

F,„a*(.S I tf,C„) - inf Co"(F,(/),F2K"(5)))
c 1 £lt\

Obviously, Remark 2.2 also applies in this case (simply substituting Co for C/
or Cq for CJ-). Again, Williamson and Downs (1990, Theorem 3) proved the

pointwise best possible nature of these bounds.
Let us briefly expand on the meaning of a majoration like in (2.7). Since

C'(f 1,C) > Co(f|,f2) actually means that Co precedes C in the correlation order
of Dhaene and Goovaerts (1996, Dehnition 2 and Theorem 1), we get that

Covc„[<M*i),fc(X2)] < Covc[0,(X,)./2(X,)]

for any non-decreasing functions 0i and 02 for which the covariances exist,
where Covc[0i(AL 02(A/)] (resp. Covco[/t(ATi), 02(A/)]) is the covariance

of 0i(Aj) and 02 (A^) given that the joint distribution function of (A/,^)
is C(F,,F>) (resp. Co(F|,F2)). Therefore, CovcJATi,A/] is a lower bound on
the covariance between A) and A/. This highlights the dependency induced by
Co ^ Cr,. Note that the interpretation of Co C/ in (2.7) is particularly simple.
It says that A!) and A/ are positively quadrant dependent (PQF>, in short). This
is to say that the independent version of (A^,A/) precedes (ATi,^) in the

correlation order, /V/ est

P[A/ > Z, A/ > £2] s! PpC > /]Ppf2 > ft] lot" nil (£1 »£2) R^
•

Roughly speaking, this means that the probability that Xi and A/ both realize

large (resp. small) values is larger than the corresponding probability in the case

of independence.

2.4 /Vu/wericfl/ z7/i«/rafio«.S'

Let us first consider that we only know the F/s, and that we do not have any
additional information about the dependence structure of the AT,'s. In general, it is

not possible to get closed form expressions for F,,,;,/.I'D) and F,,,ax(-|d/), and we
have to resort to numerical methods. To be specific, we approximate Fmin(-I^)
and F,nax(-|^) by FP„(.|iL) and F,/.^(.|iL), by means of a slight adaptation of
the method given in Denuit, Genest and Marceau (1999). First, we choose some
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large integer /V and for each r 1,2,... TV — 1, we compute the (r/7V)th
quantile of iq, i =1,2, fft(r/7V) say, given by

fi(r/W)=^-'(r/JV), i 1,2.

Let us also define

ft(0) Cj and g»(l) d*

for some reals such that

- x) < ^ < </.;( 1 /AT) and <?«( 1 - 1/-/V) < d, < +oo.

In typical actuarial applications, Cj would be 0 and dj could be taken as the

expected maximal loss. Then, the approximated bounds and T'max(-I^)
are given by

^min(s I ^ X1^9m,n(r/JV|4')(s) (2.9)

r= I

and

^.nax(s I ^ ^max('7'V|>P)(«) (2.10)

r=0

where J,, denotes the indicator function of the interval [c,+oo[, and 9min(-|^)
and <7max(-|^) are defined as follows:

1. if vp is non-decreasing, then

gmi„(r/W I ®) min {vp(</, (^/dV),^(l - (* - r)/W))} (2.11)
r<£</V

and

<7,„ax(r/fV I vp) max {tffa,(*/W),<ß((r - 0/^0)} (2-12)
0<£<r #•

2. if vp is non-decreasing in the first argument and non-increasing in the

second, then

9min(r/W I vP) min {$(«i(W, ®((* - r)/JV))} (2.13)
r<t< TV

and

9max(r/Af I vp) max {vp(çi(f/fV),fy2(l - (r - £)/AT))} (2.14)
0<£<r
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According to Williamson and Downs (1990, pp. 118-123), it follows that
I *!') and -^maxG? I *) tend to Fmin(s I f) and i7nax(s I if) as AT tends

to infinity, respectively. Also, from Williamson and Downs (1990, Theorem 4),

we have

^min(s I *) < ^min(s | *) < W* I *) < I *)
Let us now turn to the improved bounds, id est those obtained when (2.7) is known

to hold. The approximations of the bounds .F„,i„(.|vf, Cb) and FmaxM'f, Co),

denoted as F^„(.|vf, Co) and -F^(.|if,Co), are given by

1

^min(« I *.Co) ^2jïq,„i„(r/iV|vI',C'„)(s)
r= I

and

JV-I

r=0

where </min(-|if, Co) and 7max(-|if, Co) are defined as follows:

1. if *f is non-decreasing, then

Çmin(''/Af I if, Co) min {if (ç,(g/AT),<72 ('V))}
r<t<yv

and

9max(r/(V I Co) max {vf(r/,(/7:V),f/2(i/*())}

with for the solution of the equation

Co(f//V, zvr)=r/iV
and for zCthe one of

Q*(f/7V,^) r/iV.
2. if if is non-decreasing in the first argument and non-increasing in the

second, then

<?min(r-/iV I vf, Co) min {if(ç,(£/(V), ^K.e)}
r<e<iv

and

9max(r/(V I vir, Co) ma^x {vf (ry,(£/iV), Q2(<,))} •
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Similarly, from Williamson and Downs (1990), | $,Co) and I

$, Co) approach asymptotically F,„in(s I T, Co) and F,* (>s | $, Co) respectively.
In order to illustrate the accuracy of the bounds on the cdf of $(X|, X2), we
considered two specific examples for $. In the first case, we chose $(£1,2:2)
£i/a'2 and plotted the graph of Figure 1 with X| exponentially distributed with
unit mean and X2 Pareto distributed with mean I and variance 2, ;V/ c.vr

P[Xj < ,r] 1 - (3^)

Figure I: Bounds on the cumulative distribution function of X1/X2, À) exponentially
distributed with unit mean, X2 Pareto distributed with mean I and variance 2.

Since $(£,,£2) :i'i/:i'2 is non-decreasing in the first argument and non-
increasing in the second one, (2.13) and (2.14) become

Çmin(r/iV I $) min {gi (^/iV)/^2(( — r)/iV)}
r < £< iV

and

9max(p/(V|1') max {^t(^/W)/®(l - ('' - ^)/N)}
0<«<r

The dashed line corresponds to the cdf of $(Xi,X2) when X1 and X? are
mutually independent.
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As another example, the graph of Figure 2 corresponds to the bounds on the cdf
of 4/(Ai,A2) with $(a;[,X2) X|at2, A| and A2 as described in the preceding
illustration. In this case, is non-decreasing so that (2.1 I) and (2.12) become

9min('-//V I $) mm {fjfi(f/iV)fy2(l - - r)//V)}
r<£<iV

and

Çmax('ViV I max {tfi(£/iV)ç2((r - 0/^0}
0<K<r

Figure 2: Bounds on the cumulative distribution function of A ^2. A exponentially
distributed with unit mean, A Pareto distributed with mean I and variance 2.

Now, let us consider the exponentially distributed risks X| and At, with respective

means 20 and 1. If At and A2 are comonotonic then

A, —201n(l — {/)
V T7T—F7T 20 almost surely
A2 — ln( 1 — C/j

must hold, where [/ denotes a random variable uniformly distributed over [0,1],
This explains why in Figure 3 F„,;n 0 on [0,20[, and F^ax 1 on [20,+oo[.
Let us now turn to Figure 4, where the product A1A2 is considered, with A| and

A2 as described before. If At and A2 are comonotonic, we have that

A1A2 =d 20A|,
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so that

P[X,^2 < .?] P[^2 < v/^720] 1 - exp(—v^72Ö) •

Of course, the curve 2 1—> 1 — exp(—yz/20) lies between the bounds F„iin and
-Pmax depicted in Figure 4. It is worth mentioning that once the marginals are
fixed, the best upper bound on i?[max{XiX2 — pO}] is obtained when Xi and
X2 are comonotonic, see (1.7). In other words, if the marginals are exponential
with means 20 and 1, as above,

+OO

i7[max{X| X2 — 0}] < ^ exp(—\/z/20) rfz.

Figure 3: Bounds on the cumulative distribution function of X1/À2, X] and X2
exponentially distributed with respective means 20 and 1.
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Figure 4: Bounds on the cumulative distribution function of XiX>, X| and .V,

exponentially distributed with respective means 20 and 1.

3 Hounds on a function of n dependent risks

3. / co/?«/fl woc/e/s

As for the bivariate case, any multivariate distribution function can be represented
in a way that emphasizes the separate role of the marginals and the dependence
structure. To be specific, let F(x, x„) be the cumulative distribution function
of a n-dimensional random vector (X|,... with marginal cdf's F|,... F„,
respectively. Then, there exists a multivariate distribution function C with uniform
marginals such that the representation

F(x, X„)(-4.'I, • • • ,•''«) C(F|(•/,) F„(.(•„)) (3.1)

holds.
As in (2.1), all n-dimensional copulae C satisfy

Cn(f|, • • ,£«) < C(f|,... ,f„) < C[/(f|.... ,f«) (3-2)

for all (f[,... ,t„) G [0, 1]", where C/, and Cr/, given by

Cl((i, ,f„) maxj^T - (n - I ),oj (f|,... ,/„) G [0, 1]",
M=1 ^
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and

C'r (t|,... i„) min{ii,... f„}, [0, 11"

are known as the Fréchet lower and upper bounds, respectively. Let us point out
that C'(/ is a Aono//V/e copula whereas this is not necessarily true for Cx when

n > 3. For more details, see e.g. Nelsen (1999).
As in (2.3), for each copula C, we define its dual C"' as

Observe that no simple relation as (2.3) exists between C and C' when n > 3.

J.2 O/.vZr/AwZ/onu/ Aonuc/.v on

We provide a multivariate extension of Proposition 2.1.

Proposition 3.1 Let (A),... ,X„) Ac « zz-rA'/nen.vz'ono/ ronz/o/n vector wn'zA /nor-
#/no/.v _F|,... _F„,. GzVen o non-r/ecreo.s7ng onz/ con/inwof/.v/nnct/ou <JZ : R —> R,

/e/ i/.v r/e/'ne/or orA/'/rory s, X|, X2 onJ x„_i /'« R zAe conZ/nuoz/.v /h/jcZjoh

L/'i r„ I

: K —» R Ay

^(xi,... ,x„ i,t).

77/en, zAc /negz/aAzzes

AoW /or a// s G R, vv/ZA

^min(-s I tf)

sup C/(F)(/l) ,in-l(^n—l)i^»(v<|(s))),

^(F,(x,),... ,F„(s„)) P[U?=,{* <xj]

F„,i„(a I < />[*(*, X„) < s] < F',„ax(.s I «0 (3.3)

one/

Aniax(.S I *F) inf
in |)IR"-'
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Proof Let C be the copula such that (3.1) holds for the random vector
,yY„). Then it is clear that X| > a.'i, X2 > r'2, X„..| > .r„ 1

and A'„ > V.Ë,',*. ,(*) imply *I/(X| ,X„) > -s, so that

P[vT(X|,... ,X„) <a]
< P[W, < ;r, U U X„_i < ®„_i U X„ < vV,". .,(»)]

n— 1

< 5] + »„.,(«))-
i=i

whence the right hand side inequality follows in (3.3). For the other inequality,
it suffices to note that

P[tf(X,,... ,X„) < -s]

> C7, (Fi (a: 1 F„_ 1 (x„_ 1 (v:,,' *. (s))),

and this completes the proof.

Remark 3.2 We adapt here the comments in Remark 2.2 to the multivariate case.

The condition ,t„) s is equivalent with

1 (in) Si ^

V<, /„ ,(P) > « - £ for all s > 0

^
fin <vii,'.
\fn > Vq,'*,t„ .,(*-£) for all e >0

i.e.

Vi 1,... ,t„_! (®"~) — in S; Vi|.... ,t„ I
(®)

The increasingness of Cl(F| (L), F2C2)) ensures that the supremum over

{(ii,... ,f„) 6 R" I \P(ii,... in) s} is taken at the right endpoint of the in-

terval [Vi",'.*. ,e„_,(s-), VÜ,'.*. ,t„_,(«)] implying that (2.5) readily extends to di-
mension > 3 as

Pmin(-s I rf) SUp Cl(P|(1|), .F„(/„)).
(il,... ,in)6R"|*(i|,— ,tn) S

Exactly as in the bivariate case, a representation like (2.6) is in general not valid.
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Note that the computation of i'minM®) and ^max(-|40 in (3.3) involves an

optimum over a surface. In practice, FminM^) and Fmax(-I^) can be accurately
evaluated iteratively provided that 4» can be written as

*(* • • • » ~ £?(••• ^(^(^(^1 î ^2)? ^3)1 ^*4) • • • j

for some function p : R' —> R; see Denuit, Genest and Marceau 1999, Sec-
tion 3).
It is worth mentioning that the results of Proposition 3.1 can be adapted to
functions 4* non-increasing in some of their arguments and non-decreasing in the
others.

3.3 /mprovernent 0/ t/;e (w««i/.v

Now, assume as in Subsection 2.3 that we have at our disposal some partial
knowledge of the dependence structure existing between the /Y,'s, namely that

we have a copula Co providing a lower bound for C, «/ est

C(f i, • • • <„) > Co(<,,... f„) for all (t,,... <„) 6 [0, I]" (3.4)

and a dual copula Cf providing an upper bound tor C'', W e.vt

C) < Cf(i,,... i„) for all f„) £ [0, 1]" (3.5)

In such a case, we are in a position to prove the following result, which provides
better bounds on the cdf of 4>(Y|,... Y„) than Fmin(-I^) ""d ^max(-l^) in

(3.3).

Proposition 3.3 Let (Y),... Y„) /;e « n-c/iwcn.vw««/ ram/o/n vector w/Fi

warg/«a/s F,,... F„ jatt's/y/ng (3.4) a«r/ (3.5). G/ve« a ncn-r/ecrca.vmg une/

contoutou.v /«nc/ton Vf : R" —> R, fAe mcr/uatöto.?

F„,in(s I Co) < P[*(Y|, Y„) < s] < F,„ax(s I C| (3.6)

/ioW /or a// sfR, vv/7//

F,„,„(s I 4', Co)

sup Co(C| (f 1 ),..._, F„_i (Gl- I ^n(v?t|,... (®))) >

(t -,)eJR"-'

and

C„.ax(s I *,Cl)
inf Cf(Fi(f|),... F„_t (fri-i).,«„-,(^))) •

(£i



62

Obviously, Remark 3.2 also applies in this case (simply substituting Co for Cl
or Cf for Cf).
For instance, when (3.4) is satisfied with

n
Co 1 > • • • j

i=l

the vector (X|,... is said to be positively lower orthant dependent; when

(3.5) is fulfilled with

n

Cf(i|,... ,t„)= 1 - JJ(i-to,
i= 1

then (X|,... X„) is said to be positively upper orthant dependent, and finally,
when (3.4) and (3.5) are simultaneously verified, pQ,... ,X„) is said to be

positively orthant dependent. For more details, the interested reader is referred to

Szekli (1995, pp. 144-145) and Denuit, Genest and Marceau (2001), for instance.
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Abstract

This paper aims to derive bounds for the cumulative distribution function of a function of dependent
risks. The results presented here complement a recent work by Denuit, Genest and Marceau (1999)
where sums of correlated random variables were considered.

Résumé

Cet article est consacré à l'étude de bornes pour la fonction de répartition d'une transformation
de risques dépendants. Les résultats qui y sont présentés complètent ceux obtenus récemment par
Denuit, Genest et Marceau (1999) où des sommes de variables aléatoires possiblement corrélées

ont été considérées.

Zusammenfassung

Im Artikel wird eine Zufallsvariable betrachtet, die eine Funktion abhängiger Risiken ist. Ziel des

Artikels ist es, Schranken für die Verteilungsfunktion dieser Zufallsvariablen zu finden. Die hier

präsentierten Resultate ergänzen eine vor kurzem veröffentlichte Arbeit von Denuit, Genest und

Marceau (1999), wo Summen korrelierter Zufallsvariablen untersucht wurden.
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