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H. CosserTeE, M. DENUIT, E. MARCEAU, Sainte-Foy, Louvain-la-Neuve

Distributional Bounds for Functions of Dependent Risks

| Introduction and Motivation

The present paper aims to provide a method to derive bounds on the cumulative
distribution function (cdf, in short) of a function of dependent random variables
(claims severities, remaining lifetimes or stochastic interest rates for instance).
Whereas standard actuarial mathematics always assume independence, it is clear
that this theoretical situation seldom holds in practice. Therefore, we show here
how to handle possibly correlated random variables when (almost) no information
about their dependence structure is available. This allows the actuary to quantify
the impact of a possible correlation among the risks he faces.

Let us point out several examples concerning correlated random variables. In
life insurance, policies sold to married couples clearly involve dependent random
variables (namely, the spouses’ remaining lifetimes). Various methods dealing
with such a situation have been proposed, e.g. by Carricre and Chan (1986),
Norberg (1989), Wolthuis (1994), Frees, Carriere and Valdez (1996), Dhaene,
Vanneste and Wolthuis (2000), Denuit, Dhaene, Le Bailly de Tilleghem and
Teghem (2001) and Denuit and Cornet (1999a, b). Another fine example of
dependent random variables in an actuarial context has been studied by Klugman
and Parsa (1999), where the correlation structure between a loss amount and
its ALAE is investigated. Catastrophe insurance (id est policies covering the
consequences of events like earthquakes, hurricanes or tornados, for instance)
of course deals with dependent risks; this aspect has been addressed e.g. by
Dhaene and Goovaerts (1996, 1997), Biiuerle and Miiller (1998) and Cossette,
Gaillardetz, Marceau and Rioux (1999). Among the possible tools for taking
dependence into account in a non-life context, copula models seem to be of
primary interest; they have been used e.g. by Carricre (1994, 1998, 2000), Frees
and Valdez (1998), Genest, Ghoudi and Rivest (1998), Wang (1998), Embrechts,
McNeil and Strauman (1999, 2000), Klugman and Parsa (1999), Denuit, Genest
and Marceau (1999, 2002), Cossette, Gaillardetz, Marceau and Rioux (1999) and
Genest, Marceau and Mesfioui (2000).

In this paper, we examine the following problematic. Consider two random
variables X| and X5, with specified cdf’s [} and F5, as well as a measurable
function W : R* — R. Typically, W(x,2) is the amount paid by an insurance
company if X, = wx; and X = x, or a suitable risk measure. The joint
distribution of the random couple (X, X3) is unknown to the actuary, but he feels
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that the dependence structure between X and X, might cause severe problems
to the company (in the sense that large values of X tend to occur with large
values of X5, and vice versa). Therefore, he would like to determine bounds on
the cdf of the random variable W (X, X3), provided I satisfies some reasonable
regularity conditions. Taking W(X, X») = X + X, leads to the case treated in
Denuit et al. (1999).

[n this context, generalized inverses will play a central role. We thus recall some
results that can be found for instance in De Vylder, Dhaene and Goovaerts (1999).

Let ¢ : R — R be a non-decreasing function. The left-continuous inverse ¢! of
@ 1s defined as

e ' (x) = inf{t e R| o(t) >z}, (1.1)
with the convention that inf §) = +o0. Similarly, the right-continuous inverse ¢~ '*
of ¢ is defined as

e '*(z) =sup{t e R | p(t) <z}, (1.2)
with the convention that sup ) = —oco. Provided that ¢ is left-continuous, the
equivalence

< (y) & o)<y (1.3)

l

always holds. Now, if ¢ is non-increasing, its left-continuous ¢~ and right-

continuous ¢~ '® inverses are respectively given by

o '(z) = inf{t e R| p(t) <z}, (1.4)
and

o !*(x) =sup{t € R | p(t) > z}. (1.5)
Provided that ¢ is right-continuous, the equivalence

e 'y <z & y> ) (1.6)

always holds.
Similar problems have been previously addressed in the literature. For instance,
if W is a non-decreasing function such that 0? W /0x10xy > 0 then Property 4.4(i)
in Denuit, Lefevre and Mesfioui (1999) yields the stop-loss inequalities
F max {\D(Fl_'(U), 1 -U)) - t,()}
< Emax {¥(X,, X;) —t,0}
< Emax {U(F'(U), F, ' (U)) — ¢,0} (1.7)
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which are valid for any level ¢ of the deductible, where U is a random variable
uniformly distributed over [0, 1].

[n general, (1.7) does not provide bounds on the cdf of W(X,, X,); moreover,
it requires second-order regularity condition on W to be valid. Our aim is to
determine lower and upper bounds on the cdf of W(.X, X,) when all that is known
about the risks X, and X, is their marginal distributions /} and /5. We only
require W to be continuous and monotone in each argument. It is worth mentioning
that similar problems have been studied by Frank, Nelsen and Schweizer (1987),
Williamson and Downs (1990), Williamson (1991) and, in an actuarial context,
by Denuit, Genest and Marceau (1999) and Embrechts, McNeil and Strauman
(1999, 2000). -

In the numerical illustrations, we focus on W(xy,x2) = @ /xy and W(x, x5)
2. The reason is that both functions are non-linear and possess a nice actuarial
interpretation. Typically, W (), z;) = @ /x> has the form of a loss ratio: x, is the
total loss experienced by the company and @, represents incomes of the company
(premiums paid by policyholders but also amounts due by reinsurers and returns
on financial assets). Therefore, the numerator and denominator become dependent,
especially if the company bought financial products hedging insurance risks. In
the second example, W(xy,x2) = a2, @ could be the total loss experienced
by the insurer, and x, the indicator for some event, or a percentage depending
on some index; then W(xy,z>) may be considered as the amount of indemnity

produced by a reinsurance agreement.

The paper is organized as follows. In Section 2, we first consider the bivariate
case. After having briefly recalled the definition of the copulae, we derive bounds
for the cdf of W(X, X,). We also show how it is possible to improve these bounds
when additional information about the correlation structure of the random couple
(X1, X3) is available. To close this section, we address the numerical aspects of
the method. Then, in Section 3, we extend the results to the multivariate case

and we propose stochastic bounds on W(.X,...,X,) for continuous monotone
W R"™ — R, when all that is known about the X;’s is their marginal cdf’s

.
[’|.,... ,[“,,,

p- Bounds on a function of two dependent risks

2.1 Bivariate Copula models

Copulae are functions that join (or “couple”) multivariate distribution functions
to their one-dimensional marginals. Technically speaking, copulae are distribution
functions whose marginals are uniform. Since Fréchet and Hoffding, it is well
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known that all copulae satisty

Cr(ti,ta) < C(t, k) < Cu(ty,ty)  forall (¢, t) € [0, 1]?, 2.1)
where the copulae ', and Cy are given by

Cr(t1,t2) = max{t, + t, — 1,0}

and
Cr(t,ta) = min{t, t,}, (ti,t2) € 0, 1]?;

see e.g. Nelsen (1999). Cf, and C'py are known as the Fréchet lower and upper
bounds copulae, respectively. Coming back to the stop-loss bounds in (1.7), it is
casily seen that

= [Ffl (U) < xy, F{l (1-U) < .'l,'gil = Cpr(Fi(x)), [5(x2))
and

PFTUU) <o, By '(U) € aa] = Cu(F (1), Faa2)) .

If the random couple (X, X3) has the copula Cp; then (X, X3) is said to be
comonotonic. Comonotonicity thus represents perfect positive dependence (since
both X| and X, are non-decreasing functions of the same underlying random
variable (/).

Now, let F{x, x,) be a two-dimensional distribution function with univariate
marginals £} and . There exists a copula C' such that

Fix, xn(ti ) = C(Fi(t), Fa(ty))  for all (¢,t) € R%. (2.2)

The copula €' contains all the dependency informations about the random couple
(X1, X2). Copulae theory therefore provides a natural setting for the study of
questions dealing with properties of distribution functions with fixed marginals.
In particular, when C'(¢),t2) = Cy(t1,t2) = Lil, the components of the random
couple (X, X3) are mutually independent. Henceforth, we assume that the
marginal cdf’s F| and F are continuous; this ensures that the copula C' achieving
the representation (2.2) is unique, whereas some technical difficulties arise when
the F}’s exhibit jump points (for more details, see e.g. Nelsen (1999)).
The dual of a copula C' is the function C'(.,.) defined by

CUty ta) =t + 1t — Clt, k), (ti,t2) €[0,1)2. (2.3)
[t is easily seen from (2.2) that

C'(l(Fl((‘,|),Fg(t2)) = P[X] <t uX; < ;‘fg] . ([T|,t2) € [0, 1]2 :
For instance, the dual of (', is given by

C’ﬁ(t],fg) = lIliIl{t[ + ta, l} ; (tl,t?_) S [0, ]]2;

the latter will play a central role in the next section.
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2.2 Distributional bounds on V(X,, X3)

Assume one wants to get bounds on the distribution function of W(X, X,)
in terms of the marginals F} and F,. Frank, Nelsen and Schweizer (1987,
Theorem 5.1) were the first who solved this problem. We recall their result here,
and we provide an elementary proof of it, which appears to be new.

Proposition 2.1 Let (X, X5) be a bivariate risk with marginals Fy and I. Given
a non-decreasing and continuous function W : R*> — R, let us define for arbitrary
s and x in R the continuous function p, : R — R by t — () = ¥(x,¢).
Then, the inequalities

Fmin(s ' \D) 5 P[\[’(‘XI,XQ) < 3] < an.x("" J \Ij) (2.4)

hold for all s € R, with
Fuin(s | W) = sup CL(Fi(h), Fa(py, ' ()

tER
and

Frax(s | ¥) = ti}gﬁg CHE (), Fa(er"*(9))).

Proof Let ' be the copula such that (2.2) holds for the random couple (X, X5).
Then it is clear from (1.3) that X, > 2 and X, > ¢, '*(s) together imply
W(X,, X3) > s. We then have for any s € R that
P[¥(X,,X5) < 3] < P[X) <zUXs < ;'*(s)]
= CU(F (2), Fa(; "*(5)))
< CL(Fi (), Fa(pz " ()

Therefore,
PIW(X1, X) < 5] < inf CF(Fi (@), il ()

which is the right inequality of (2.4). In order to get the left one, it suffices to
note that for any s € R
P[lp(:‘{h)(z) < S] > C(Fl( ) FZ( _l.('-)))
> CL(Fi(x), P2 (),

and the best lower bound is finally obtained by taking the “sup”. 0
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Remark 2.2 It is worth mentioning that F,;,(-|W) can be cast into

Fmin(""|“p) = sup (]L(Fl (tl )s F2(’2)) . (25)
(ff],tz)E‘\Rzl‘p(h,t:):h‘

On the contrary, we do not have in general that

Frnax(s | W) = inf CLF (t), Fr(t2)) . 2.6

B[ W)= st s £ (Fi(f), Bx(ta)) (2.0)

The explanation behind this fact is the following. The condition W(¢;,%,) = s is
equivalent with ¢y, (t2) = s which is the same as

pu(t2) <s = or'*(s)
o, (t2) >s—¢e foralle >0 ty > cpt_l"(s —¢) foralle >0

according to (1.3), i.e.

i (s—) <t < pp ' (s).

Now, since C',(F\(t1), F2(t2)) is non-decreasing in (¢, 12), it follows that the
supremum in the right hand-side of (2.5) is taken at the right endpoint of
the interval [np;"(s—),tpt_l"(s)] implying the equality in (2.5). However, this
reasoning cannot be repeated for the non-decreasing function CY (F) (), F5(t2))
for which we have to take the infimum.

Williamson and Downs (1990, Theorem 3) proved the pointwise best possible
nature of the bounds (2.4). More precisely, they showed that there always exists
a copula such that the distribution function of W(.X, X5) meets the bounds (2.4)
at some given point s. In other words, one cannot construct tighter bounds. In
the particular case W(x|,x2) = x| + 22, Proposition 2.1 reduces to Proposition |
in Denuit, Genest and Marceau (1999).

It is worth mentioning that Proposition 2.1 is easily adapted to monotone functions
. This is formally stated in the next corollary.

Corollary 2.3 Under the assumptions of Proposition 2.1 with W non-decreasing
in the first argument and non-increasing in the second argument, the bounds in
(2.4) become

Fain(s | ¥) = SUI& {Fi(t) — Cu(Fi(t), Faler' ()}
b e

and

Pl | @) = inf {1 = B0 (5)) + C& (Fu(t1), Balepr, () } -

Lt ER
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Proof The reasoning of Proposition 2.1 is easily adapted to deal with the present
situation. Indeed, we now have from (1.6) that

PlP(X|,X2) < 8] < P[Xi <zUX2 > @, ' (s)]
= P[X2 > 7' ()] + P[Xi < 2, X2 < ;' (s)]
=1 — F(p;'(s)) + C(Fi(x), Fa (e ' (5)))
<1 — Fy(p;'(s)) + Cu(Fi(x), Fa(eg ' (3))) -
On the other hand,

PW(X),X2) < 8] > P[Xi <, X5 > ¢, ()]
= Fi(z) — C(F) (=), FZ(‘P.:l (s)))
> Fy(z) — Cu(Fi (2), B, ' (5))).

and this ends the proof.
To end with, if W is decreasing, (2.4) becomes
| — Frax(—38| = ¥) < P¥(X,, X3) <8 <1 - Fiin(—8| — ¥).

This is easily obtained from Proposition 2.1 since W is non-decreasing if, and
only if, —W is non-increasing.

2.3 Improvements of the bounds
If we know moreover that the copula ' describing the structure of dependence
of the random couple (X, X>) is such that

(;'(tl_,fz) > C’()(tl, fl) > (,7[‘([?“[‘,2) for all (tl,tz) € [O, l]z ) (27)

for some given copula (), then we get better bounds by substituting Cy for 'y,
in (2.4). This is formalized in the next result; the proof follows the same lines as
for Proposition 2.1 and is therefore omitted.

Proposition 2.4 Ler (X, X3) be a bivariate risk with marginals Fy and I';, and
satisfving (2.2) with the copula C' that fulfills (2.7). Given a non-decreasing and
continuous function W : R> — R, the inequalities

Fmin("" l "[’1 C’()) S [)[‘D(Xh /YE) S "] S -P’nmx(s l l[;,\ C()) (28)
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hold for all s € R, with

Fin(s | U, Co) = sup Co(Fi (1), Fz(ﬁoﬂl.(s))),

tHER

and

Frnax(s | ¥,Co) = inf C{(Fi(t1), Fa(py,*(5))) -

Obviously, Remark 2.2 also applies in this case (simply substituting Cy for ',
or C’(‘)’ for C’}f). Again, Williamson and Downs (1990, Theorem 3) proved the
pointwise best possible nature of these bounds.

Let us briefly expand on the meaning of a majoration like in (2.7). Since
C(t,t2) > Colty, t2) actually means that Cyy precedes C' in the correlation order
of Dhaene and Goovaerts (1996, Definition 2 and Theorem 1), we get that

Covey, [1 (X)), p2(X2)] < Cove[di(X1), h2(X2)]

for any non-decreasing functions ¢; and ¢, for which the covariances exist,
where Cove[pi(X1), p2(X2)] (resp. Cove,[oi(X1), p2(X2)]) is the covariance
of ¢ (X)) and ¢(X3) given that the joint distribution function of (X, X3)
is C(Fy, Fy) (resp. Co(Fy, F5)). Therefore, Cove, [ X, X3| is a lower bound on
the covariance between X, and X,. This highlights the dependency induced by
Co # C',. Note that the interpretation of Cy = C in (2.7) is particularly simple.
It says that X| and X, are positively quadrant dependent (£() D, in short). This
is to say that the independent version of (X, X;) precedes (X, X;) in the
correlation order, id est

P[X| > t, Xy > ta] > P[X| > ti]P[Xy > 1] for all (¢,t;) € R?.

Roughly speaking, this means that the probability that X, and X, both realize
large (resp. small) values is larger than the corresponding probability in the case
of independence. '

2.4 Numerical illustrations

Let us first consider that we only know the F}’s, and that we do not have any
additional information about the dependence structure of the X;’s. In general, it is
not possible to get closed form expressions for Fiui, (.|W) and Fiuax(.|W), and we
have to resort to numerical methods. To be specific, we approximate Fii,(.]\V)

and Frax (.| ¥) by FN (W) and N (.|¥), by means of a slight adaptation of

min
the method given in Denuit, Genest and Marceau (1999). First, we choose some
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large integer N and for each r = 1,2,... ,N — 1, we compute the (r/N)th

quantile of Fj, i = 1,2, q;(r/N) say, given by
g(r/N) = F ' (r/N), i=1,2.
Let us also define
¢i(0) =¢; and ¢(l)=d,
for some reals such that
—00 < ¢; < q(1/N) and ¢l —1/N)<d; <+oo.

[n typical actuarial applications, ¢; would be 0 and d; could be taken as the

expected maximal loss. Then, the approximated bounds £, (.|W) and EN (.|W)
are given by
[ N
. . | )
Flilin(s ‘ l[l) = N ZII(["”“(J'/N|‘[’)(5) (2))
and
| N—I1
N (s 0) = — : 2.10
lulnx(“’ ' \[’) — N ; Iq.,,;m(r/Nl\[’)("’)v ( )

where 7, denotes the indicator function of the interval [, +00[, and guin(.|W)
and ¢uax(.[W) are defined as follows:

1, if W is non-decreasing, then

uin(r/N | ) = min {W(an(¢/N), (1= (€=1)/N)} Q21D

and
Gmax(T/N | V) = nax {(U(q(¢/N), @2((r —€)/N))} (2.12)
2. if W is non-decreasing in the first argument and non-increasing in the
second, then
Quin (/N [ W) = min AW(@(¢/N),@((E=T)/ND}  @13)

and
Guax(r/N | V) = max {(U(qi(¢/N),q@2(1 = (r = €)/N))} . (2.14)
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According to Williamson and Downs (1990, pp. 118-123), it follows that
FN (s| W) and FN (s ] W) tend t0 Fiyin(s | ¥) and Fioax(s | W) as N tends

to infinity, respectively. Also, from Williamson and Downs (1990, Theorem 4),
we have
EN (s 1) < Fin(s | ©) < Frax(s | W) < EY

min max

(s|W).

Let us now turn to the improved bounds, id est those obtained when (2.7) is known
to hold. The approximations of the bounds Fin(.|W,Cy) and Fia(.|¥, Co),
denoted as /'Y (|W,Cy) and FN (|, Cp), are given by

min max

X I N
V ' ,
Eilin(s ’ \[}1 CU) = N gIffmin("/fw‘[’,C’u)('S)

and
[ N-—I
N
'Flimx(s | v, CO) - ']"V— Z I‘fnmx("/N|‘[’.C'(])("’;) )
r=0

where Guin (.|, Co) and Gmax (.|, Cp) are defined as follows:
l. if W is non-decreasing, then
Gnin(r/N | W,C0) = min {¥(@ (¢/N), @(vr)}
and
Gmax (r/N | ¥, Cy) = nax {‘P((ll((?/[V),(lz(l/:,e))} ;
with for v, . the solution of the equation
Co(¢/N,vre) =1/N
and for u;‘f‘e the one of
CS(¢/N,vr,) =7/N.

' if W is non-decreasing in the first argument and non-increasing in the
second, then

Qi (r/N | 2, Co) = min {P(q(¢/N), q2(vre)}
and

(anx(lr/N | v, C’()) == ()Iil(iaé(r {\p(ql (p/N)a (1'2(1/,':?))} .
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Similarly, from Williamson and Downs (1990), 2N (s | W,Cp) and EN (s |
W, ') approach asymptotically Fiuin(s | W, Cp) and Fiyax(s | W, Cp) respectively.
[n order to illustrate the accuracy of the bounds on the cdf of W(X|, X,), we
considered two specific examples for W. In the first case, we chose W (x,x,) =
xy/xy and plotted the graph of Figure | with X| exponentially distributed with
unit mean and X, Pareto distributed with mean | and variance 2, id est

3 4
PIX;<z]=1- , xr€RT.
[ *I] (3-!—;1:) !

1.0

—— —_
— e —

0.8

0.6

= upper bd on Fxjy
== lower bd on Fxly

0.4

0.2

T

0.0

I T T I

0 50 100 150 200

Figure 1: Bounds on the cumulative distribution function of X;/X>, X exponentially
distributed with unit mean, X, Pareto distributed with mean | and variance 2.

Since W(wx),2,) = xy/x, is non-decreasing in the first argument and non-
increasing in the second one, (2.13) and (2.14) become

Imin(r/N | ¥) = ,.éui“ {a1(¢/N)/q((¢ —7)/N)}

<N
and

QIlmx(r/Nlle) = ()Iélédé{r {(ll (()/N)/(lg(l - (7' o ﬁ)/N)} :

The dashed line corresponds to the cdf of W(X,, X3) when X| and X, are
mutually independent.
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As another example, the graph of Figure 2 corresponds to the bounds on the cdf
of W(X, Xy) with W(z,2,) = x 127, X| and X, as described in the preceding
illustration. In this case, W is non-decreasing so that (2.11) and (2.12) become

Gmin(7/N | ¥) = 12}1<HN {(ll((]'/N)(h(] — {{ —r)/N}}

and

Qs /N | ¥) = Jnax {1 (¢/N)q@((r—€)/N)} .

1.0

prem—"— e i

0.8

0.6

upper bd on Fx"y
— = lowerbdon Fx'y

0.4

0.2

0.0

T T T T T
0 50 100 150 200

Figure 2: Bounds on the cumulative distribution function of X; X5, X, exponentially
distributed with unit mean, X5, Pareto distributed with mean | and variance 2.

Now, let us consider the exponentially distributed risks X and X, with respective
means 20 and 1. If X, and X3 are comonotonic then

X, —20In(l —U)

X * —“In(l—0}

=20 almost surely,

must hold, where U denotes a random variable uniformly distributed over [0, 1].
This explains why in Figure 3 Fii, = 0 on [0,20], and Fla = 1 on [20, +oof.
Let us now turn to Figure 4, where the product X, X, is considered, with X, and
X5 as described before. If X; and X, are comonotonic, we have that

X1 X, =4 20X7,
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so that

P(X\X; < 2] = P[X; < V/2/20] = | — exp(—/2/20).
Of course, the curve z +— | — exp(—4/2/20) lies between the bounds F,,;, and
Finax depicted in Figure 4. It is worth mentioning that once the marginals are

fixed, the best upper bound on F[max{X;X, — ¢ 0}] is obtained when X and
X, are comonotonic, see (1.7). In other words, if the marginals are exponential

with means 20 and 1, as above,

+oo
Elmax{X,X; —¢0}] < / exp(—v/2/20) dz.
2=t ,

o
—

0.8
!

0.6

= upper bd on Fyy
== lower bd on Fxy

04

0.2

T

T I
50 100 150 200
Figure 3: Bounds on the cumulative distribution function of X;/X,, X; and X,
exponentially distributed with respective means 20 and 1.
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1.0

0.6

upper bd on Fx'y
" lower bd on Fx"y

0.4

0.2

0.0

]

T T T T
0 50 100 150

Figure 4: Bounds on the cumulative distribution function of
exponentially distributed with respective means 20 and [.

3 Bounds on a function of n dependent risks

3.1 Multivariate copula models

T
200

XX, Xy

and X»

As for the bivariate case, any multivariate distribution function can be represented
in a way that emphasizes the separate role of the marginals and the dependence

g

structure. To be specific, let [ x,

of a n-dimensional random vector (X,... , X,,) with marginal cdf’s £, ...

.x,,) be the cumulative distribution function

] FH.’

respectively. Then, there exists a multivariate distribution function €' with uniform

marginals such that the representation
F(Xl,... '._.\'”)(;L‘l g ,;L‘n) = C’(F| (:L‘l ), 5 FH(:L'”))

holds.
As in (2.1), all n-dimensional copulae C' satisfy

Ci[;(tls'-' vtn.) S C,(th"' wtn) S C(f(tl!"' !t'rl)

for all (¢y,...,t,) € [0,1]", where C}, and Cy, given by

(3.1)

(3.2)

Cilbies: sln) = max{Zti —(n — I),O}, (oo stn) € [0,1]7,

=1
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and
Cu(tyy .. b)) =min{t|,... tn}, (ti,...,t,) €[0,1]"

are known as the Fréchet lower and upper bounds, respectively. Let us point out
that C'ty is a bona fide copula whereas this is not necessarily true for C';, when
n > 3. For more details, see e.g. Nelsen (1999).

As in (2.3), for each copula !, we define its dual C? as

CUF (1), ... Folan)) = PIU {Xi < 2:)] .

Observe that no simple relation as (2.3) exists between ' and C'" when n > 3.

3.2 Distributional bounds on W(X,,...,X,)

We provide a multivariate extension of Proposition 2.1.

Proposition 3.1 Let (X,..., X,) be a n-dimensional random vector with mar-

F,. Given a non-decreasing and continuous function W : R" — R,

ginals Fy,... [
let us define for arbitrary s, xy, &3, ..., and X, | in R the continuous function

Peyveitny - R — R by
't = (pJJh.., sy — 1 (,) — ‘D(l| § Buiw e *;I'.IP.*——Iw f)'

Then, the inequalities
Fuoin(s | ¥) < P[¥(X1,... , Xp) < 5] < Fruax(s | ¥) Lo

hold for all s € R, with

Fmin("" I \[})
= sup CL(Fy(t)s o s Faci(tna1)s Fulon e e, (5)),

(Bryere st -1 )ER?]

and

n—I
Finax(s | W) = inf mm{z Fi(ti) + Fuleg ) v, (8)), 1} :

(’|v~-<ﬂ'n |)E:Q ) l‘]
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Proof Let ' be the copula such that (3.1) holds for the random vector
(Xy,..., X,). Then it is clear that X| > x, Xo > @2, ..., Xouo) > @y
and X,, > ¢ '® o (s) imply ¥(X,...,X,) > s, so that

PIW(X,...  Xa) < s
<PX <muU..UX, <z,1UX, < L;Q;Il_..'_ 2, (8)]

n—I
<Y Fi(@) + Fulez® o (9),
=1

whence the right hand side inequality follows in (3.3). For the other inequality,
it suffices to note that

PU(Xy,...,X,) <5
= Ol Filer)s o s Fail@n—1)s BuleD® 5. (81));

and this completes the proof. U]

Remark 3.2 We adapt here the comments in Remark 2.2 to the multivariate case.
The condition W (t,... ,1,) = s is equivalent with

(fotl....,ﬁ,,,|(t’lr,) S S
Otyooitn (ty) >s—ctoralle>0

<:> tn S (pa‘l‘f' 9"'rz —1 (S)
te >0, (s —€) forall e >0
n wp *y _(s—¢)foralle

—le —1 ;
Lpf|,...,ﬁ,,‘,,|(8w) —<— t” S (Ioh‘....‘f,,..!(b) .

The increasingness of C'f(F\ (1), F5(t2)) ensures that the supremum over
{(t,...  tn) € R™ | W(ty,... ,t,) = s} is taken at the right endpoint of the in-
terval [p;,'% ,  (s=),;!% ;. (s)] implying that (2.5) readily extends to di-
mension > 3 as

Fuin(s | W) = sup Cr(Fi(ti),..., Fu(tn)).
(L1yeee s tn)ERNE(b),... by )=8

Exactly as in the bivariate case, a representation like (2.6) is in general not valid.
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Note that the computation of Fiin(.|W) and Fi.x(.|W) in (3.3) involves an
W) and [, (.|W) can be accurately

optimum over a surface. In practice, Fip (.
evaluated iteratively provided that W can be written as
V(xy, ... ,xn) =o0(...0(0(0(x),22),23),24) ... ,2p)

for some function o : R2 — IR: see Denuit, Genest and Marceau (1999, Sec-

tion 3).
[t is worth mentioning that the results of Proposition 3.1 can be adapted to

functions ' non-increasing in some of their arguments and non-decreasing in the

others.

3.3 Improvement of the bounds

Now, assume as in Subsection 2.3 that we have at our disposal some partial
knowledge of the dependence structure existing between the X;’s, namely that
we have a copula 'y providing a lower bound for C', id est

Gy, 4) > Oplt,. .« ytm)  Tof @l Bigs s o yln) € [0,1]7, (3.4)
and a dual copula (' providing an upper bound for C4, id est
CUt1, .. ,ta) S Oty \ta) forall (b, ta) €0 1". (35)

[n such a case, we are in a position to prove the following result, which provides
better bounds on the cdf of W(X,,...,X,) than Fin([W¥) and Fax(.[W) in
(3.3).

Proposition 3.3 Let (Xy,...,X,) be a n-dimensional random vector with
marginals Fy, ... F, satisfying (3.4) and (3.5). Given a non-decreasing and
continuous function W : R" — R, the inequalities

Enill("’l ' ‘D\ C*()) S [)[lD(le . ’/Yn‘) S ""} S P}'lilx('q ! ‘I‘]’C}[) (36)

hold for all s € R, with

Foin(s | ¥, Ch)
= sup ColFi(B1)s s 1.5 n=1{tnty Fn((p;l-'l: (),
(B15ee stn—1)ERP !

and

Ftnnx ("" ! lD’ C'l )

— iIlf C’;l(Fl (l‘| )\ ww Boy }J:’l._| (t”_[)‘ Fn ((,OI_I’I:-J." l(s))) |
(bryeetn—)ERM !
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Obviously, Remark 3.2 also applies in this case (simply substituting Cf for ',
or GF for CH).
For instance, when (3.4) is satishied with

n
iy s )= [ [ f2

=1

the vector (Xy,...,X,) is said to be positively lower orthant dependent; when
(3.5) is fulfilled with

n

Citry- o tn) = 1= JJ(1 =8,

1=l

then (X,..., X, ) is said to be positively upper orthant dependent, and finally,
when (3.4) and (3.5) are simultaneously verified, (X,...,X,) is said to be
positively orthant dependent. For more details, the interested reader is referred to
Szekli (1995, pp. 144-145) and Denuit, Genest and Marceau (2001), for instance.

Acknowledgements

Partial funding in support of this work was provided by the Natural Sciences
and Engineering Research Council of Canada, the Fonds pour la formation de
chercheurs et 1'aide a la recherche du Gouvernement du Québec and the “Chaire
en Assurance |’ Industrielle-Alliance”.

This work was partly done while Hélene Cossette and Etienne Marceau visited
the Institute of Statistics of the Université catholique de Louvain. The warm
hospitality of the members of the Institute is gratefully acknowledged.

Finally, the authors warmly thank an anonymous referee for careful reading
and numerous suggestions which greatly improved the original manuscript. In
particular, he pointed out a mistake in the original Proposition 2.1 and suggested
Remarks 2.2 and 3.2.



References

Biuerle, N., and Miiller, A. (1998). Modeling and comparing dependencies in multivariate risk
portfolios. ASTIN Bulletin 28, 59-76.

Carricre, J.F. (1994). Dependent decrement theory. Transactions of the Society of Actuaries XLVI,
45-74.

Carriere, J.F. (1998). Withdrawal benefits under a dependent double decrement model. ASTINV

Bulletin 28, 49-58. .
Carriere, J.F. (2000). Bivariate survival models for coupled lives. Scandinavian Actuarial Journal,

17-32.

Carriere, J.F,, and Chan, L.K. (1986). The bounds of bivariate distributions that limit the value of
last-survivor annuities. Transactions of the Society of Actuaries XXXVIIL, 51-74.
Cossette, H., Gaillardetz, P., Marceau, E., and Rioux, J. (1999). Dependence in the individual risk

model. Université Laval, Ecole d’Actuariat, Rapport Technique 99-01.

M., and Cornet, A. (1999a). Sur la hauteur du chargement de sécurité implicite contenu
dans I’hypothése d’indépendance: I'assurance du solde restant di sur la téte d’un couple
marié. Bulletin of the Swiss Association of Actuaries 1999(1), 65-80.

M., and Cornet, A. (1999b). Multilife premium calculation principle with dependent time-
until-death random variables: the widow’s pension. Journal of Actuarial Practice 7, 117~
150.

M., Dhaene, J., Le Bailly de Tilleghem, C. and Teghem, S. (2001). Measuring the impact
of a dependence among insured lifelengths. Belgian Actuarial Bulletin, l 18-39. .
M., Genest, C. and E. Marceau (1999). Stochastic bounds on sums of dependent risks.
Insurance: Mathematics & FEconomics 25, 85-104.

Denuit, M., Genest, Ch., and Marceau, E. (2002). A criterion for the stochastic ordering of random
sums. Scandinavian Actuarial Journal, 2002 (1), 3-16.

M., Lefevre, Cl., and Mesfioui, M. (1999). A class of bivariate stochastic orderings with
applications in actuarial sciences. Insurance: Mathematics & Economics 24, “_H_SO'

De Vylder, FE., Dhaene, J., and Goovaerts, M.J. (1999). Actuarial applications of generalized

Denuit,
Denuit,

Denuit,

Denuit,

Denuit,

inverse functions. Mimeo. i
Dhaene, 1., and Goovaerts, M.J. (1996). Dependency of risks and stop-loss order. ASTIN Bulletin

26, 201-212. o _ o N
Dhaene, J., and Goovaerts, M.J. (1997). On the dependency of risks in the individual life model.
Insurance: Mathematics & FEconomics 19, 243-253. o _ N
Dhaene, J., Vanneste, M., and Wolthuis, H. (2000). A note on dependencies in multiple life statuses.
Bulletin of the Swiss Association of Actuaries 2000(1), 19-34. o

Embrechts, P, McNeil, A., Straumann, D.(1999). Correlation and dependency in risk management:
properties and pitfalls. Proceedings XXXth International ASTIN Collogium, 22-25 August,
1999, pp. 227-250. . . _

Embrechts, P, A. McNeil and D. Straumann (2000), “Correlation and Dependency in Risk
Management: Properties and Pitfalls”, in Risk Management: Value at Risk and Beyond, eds
Dempster M. and Moffatt H., Cambridge University Press, Cambridge. o

Frank, M.J., Nelsen, R.B., and Schweizer, B. (1987). Best-possible bounds on the distribution of
a sum — a problem of Kolmogorov. Probability Theory and Related Fields 74, 199-211.

Frees, E.W., Carri¢re, J.F., and Valdez, E. (1996). Annuity valuation with dependent mortality.
Journal of Risk and Insurance 63, 229-261. . .

Frees, E.W., and Valdez, E.A. (1998). Understanding relationships using copulae. North American
Actuarial Journal 2, 1-25. ,

Genest, C., Ghoudi, K., and Rivest, L.-P. (1998). Comments on E.W. Frees and E.A. Valdez'
paper “Understanding relationships using copulas.” North American Actuarial Journal 2,

143149,



64

Genest, C., Marceau, E., and Mesfioui, M. (2000). Compound Poisson approximation for individual
models with dependent risks. Université Laval, Ecole d’Actuariat, Rapport Technigue 00—
02.

Klugman, S.A., and Parsa, R. (1999). Fitting bivariate loss distributions with copulae. Insurance:
Mathematics and Economics 24, 139-148.

Nelsen, R.B. (1999). An Introduction to Copulas. Lecture Notes in Statistics 139, Springer Verlag,
New York.

Norberg, R. (1989). Actuarial analysis of dependent lives. Bulletin of the Swiss Association of
Actuaries, 243-254.

Williamson, R.C. (1991). An extreme limit theorem for dependency bounds of normalized sums
of random variables. Information Sciences 56, 113-141.

Williamson, R.C., and Downs, T. (1990). Probabilistic arithmetic [: numerical methods for
calculating convolutions and dependency bounds. [nternational Journal of Approximate
Reasoning 4, 89-158.

Szekli, R. (1995). Stochastic Ordering and Dependence in Applied Probability. Lecture Notes in
Statistics 97. Springer Verlag. Berlin.

Wang, S. (1998). Aggregation of Correlated Risk Portfolios: Models and algorithms. Proceedings
of the Casualty Actuarial Society 848-939.

Wolthuis, H. (1994). Life Insurance Mathematics — The Markovian Model. CAIRE Education

Series 2, CAIRE, Brussels.

Hélene Cossette

Etienne Marceau

Ecole dActuariat

Université Laval

Sainte-Foy, Québec

Canada, GIK7P4

E-mail address: Helene.CossetteQact.ulaval.ca
Etienne.Marceau@act.ulaval.ca

Michel Denuit

[nstitut de Statistique

Université Catholique de Louvain
Voie du Roman Pays, 20

B-1348 Louvain-la-Neuve

Belgium

E-mail address: denuit@stat.ucl.ac.be



Abstract

This paper aims to derive bounds for the cumulative distribution function of a function ol dependent
N L R <l ~ H Tanpct ¢ A1C O 8
risks. The results presented here complement a recent work by Denuit, Genest and Marceau (1999)

where sums of correlated random variables were considered.

Résumé

Cet article est consacré 2 I'étude de bornes pour la fonction de répartition d’une transformation
de risques dépendants. Les résultats qui y sont présentés complétent ceux obtenus récemment par
Denuit, Genest et Marceau (1999) ot des sommes de variables aléatoires possiblement corrélées

ont €té considérées.

Zusammenfassung

Im Artikel wird eine Zufallsvariable betrachtet, die eine Funktion abhiingiger Risiken ist. Ziel des
Artikels ist es, Schranken fiir die Verteilungsfunktion dieser Zufallsvariablen zu finden. Die hier
prisentierten Resultate ergiinzen eine vor kurzem verdffentlichte Arbeit von Denuit, Genest und
Marceau (1999), wo Summen korrelierter Zufallsvariablen untersucht wurden.






	Distributional bounds for functions of dependent risks

