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M. SNoussi, Brussels

The severity of ruin in Markov-modulated risk models

1 Introduction

The theory of ruin has been the object of inspiration of several authors. A huge
related literature is central to the most existing works and papers [c.f. Bowers
et al. (1986), Gerber (1979), Grandell (1991)]. In recent years a great variety of
results on evaluation of ruin probabilities has been studied in various kinds of risk
models, see for example Grandell (1991) and references there in. In this paper
we are interested in the severity of ruin in Markov-modulated model. Models
of this type have been investigated, e.g., by Asmussen (1989), Reinhard (1984)
who were concerned in finding the probability of ruin in finite or infinite time as
function of the initial reserve. Biiuerle (1996) has been interested in the expected
ruin time,

Considerable attention has been given to the probability of ruin, because it is
widely considered as a powerful tool for the control of risk and the determination
of stability criterions. The classical results concerning ruin probabilities were
obtained by Arfwedson (1950), Beekman (1966), Cramér (1955), Prabhu (1961)
and generalized by Cai and Wu (1997), Dufresne and Gerber (1991), Janssen

(1981, 1982), Janssen and Reinhard (1985), Reinhard (1984), Thorin (1975),
Willmot (1994) and Wu (1999), .. ..

Unfortunately, this probability is not completely satisfactory in some cases, for
instance it has been pointed out by Gerber, Goovaerts and Kaas (1987) that it is
a “very crude stability criterion”.

In order to fill these deficiencies, we will introduce the severity of ruin. The
practical interest of this concept is, in particular, the possibility of bringing an
additional element of information on the ruin.

The severity of ruin was first studied by ‘Gerber et al. (1987) and Dufresne and
Gerber (1988), in the classical risk model, where the risk process is a compound
Poisson process and the premium rate is constant. Then, Dufresne (1989) extended
this concept to model where a diffusion process is added to the compound Poisson
process, the generalization can be interpreted as allowing for some uncertainty
both in the premium income and in the claim amounts. We also emphasize the
considerable works dealing with the severity of the ruin in a discrete risk model.
References we may cite on this topic are Dickson and Waters (1992), Dickson
et al. (1995), Gerber (1988) and Reinhard (1997). More recently Reinhard and
Snoussi (1998) have extended the results in a discrete semi-Markov risk model.
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The aim of this paper is to study this distribution in Markov-modulated model
where the intensity and the premium can fluctuate according to a Markovian
environment.

In Section 2 basic definitions and results in the Markov-modulated model are
provided. Then, in Section 3 a differential system for the severity of ruin is
established. Finally, in Section 4, we will calculate explicitly the severity of ruin
in the particular case where one has two possible states for the environment
process and certain types of claim size distribution.

2 Preliminaries

In this model we suppose that the frequencies of the claims and their amounts are
influenced by an external environment {/(t), ¢ > 0} evolving randomly in a space
of m states 1,... ,m (m € Ny). As pointed out by Asmussen (1989), in health
insurance, sojourns of {/(t), ¢ > 0} could be a certain type of epidemics or, in
automobile insurance, could be the weather type (for example, icy, foggy, ...). We
suppose that {I(¢), t > 0} is a homogeneous, irreducible and recurrent Markov
process with finite state space J = {l,... ,m}. We denote by 7 = (7,... ,Tm)
its unique stationary probability distribution and by A = («;;) where ay; = —a;
the intensity matrix. The transition probability matrix of the embedded Markov
chain is given by

0 if § = 4

Dij = Yii  up . .

’ U £ ]
Y

Moreover, we suppose that at time ¢ claims occur according to a Poisson process
with intensity \; € RT if [(t) = i and the corresponding claim sizes have
distributions F;(x) with finite mean p; (¢ € J). Assume further, that premiums
are received continuously at a constant rate ¢; > 0 during any time interval when
the environment process remains in state i. Denote now by A,, the time between
the (n — 1) — st and n — th claim arrival and by B, the amount of the n — th
claim.

We will suppose that the sequences of random variables (A,,) and (B,,) are
conditionally independent given {I(¢), t € R*}.

Let N(t) = sup{n e N|> ;_, Ax <t} be the number of claims that have
occurred before time t. The insurer’s surplus {Z(¢),t > 0} is given by

N(t)
Z(t)=u+C(t)+ > Ba,

n=I



a3

where C'(f) denotes the total premium received during (0,¢] and v € R" the
insurer’s initial surplus. Reinhard (1984) showed that

N, (1)
(;’(f,) == Cli_y (”\ = rj:g,_|) -+ (.IN,(.-) ([ . fl.ﬂN.‘(t))
k=1

where [); and T} denote respectively the state of the environment after its & — th
transition and the time at which occurs the & — th transition of the environment

process, and N, (¢) = sup {k: Tj < t}.
We define the ultimate ruin probabilities by

bi(w) =P(T < oo | Z(0) =1wu, I(0) = 1) (1)
where 7" denotes the time of ruin,

T'=inf{t >0 | Z(t) <0}
(17" = oo if ruin does not occur). The corresponding ultimate survival probabilities

Ri(u) = 1 —;(u) (2)
[t is well known from the theory of random walks (see Reinhard (1984)), that

o Yi(u) > 0Vu >0, i€ Jand ¢(00) = 0if d = 377 m (’—\f - ,u»,—) is

strictly positive,
L Wi(u) =1 Vu>0,ieJ ifd<O0.

We suppose therefore that o > 0.

3 Properties of the severity of ruin

We define the severity of the ruin in Markov-modulated risk models, in the

following way

i(u,y) =P(T < 0o and Zy < =y | Zo = u,1(0) =i) (u,y € RT)
(3)

This represents the probability that ruin occur and that at ruin time the surplus
takes a value less then —y starting from an initial surplus w, and an initial

environment i € .J.
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Note that by letting y = 0 we obtain (1), i.e. 9;(«,0) = %;(u). The method used
hereafter for computing the probabilities 1); (u, ) may also be used for computing
the probabilities

Gi(u,y) =P(I'<oo and Zr>-y| Zy=u, 1(0)=1)
— () — i () (u,y € RY) 4)

The probabilities (4) generalize those introduced by Gerber et al. (1987) in the
classical risk model.
[n the following theorem, we derive a differential system for ; (u, y).

Theorem 1 For all 1 € J, the probabilities of the severity of ruin satisfy the
Jfollowing system of differential equations

)
CL "

5w y) = (i + A)i(u,y)

— A [/ Yi(u —z,y) dF;(x) + 1 — Fi(u+y)

0

m

— oy Z Pik Pk (1, y) (5)

k=1

Proof Conditioning on what happens in a small time interval [0, h] with h > 0,
we get
Yi(u,y) = (1 — agh — Aih)pi(u + cih, y)
w-F Ci h
+ /\L'/L[ / (w4 ch —x,y) dFi(x) + 1 — Fi(u+ cih + y)

0
T

+ i h Z pirtr(u + cih,y) + o(h) (6)
k=1
(where 9-(,—:’1 = 0). The right hand side can be interpreted as follows:

the first term corresponds to the case where no claim and no change of
environment occur in the interval [0, h], the second term to the case where a
claim occurs in [0, A] (it can either cause the ruin or not), the third term to the
case where the environment changes in [0, h]. Finally, the possibility that two or
more events occur in [0, 4] is a o(h).



Then we get
Di(u + cih,y) — ¥i(u,y)

h
= (v; + A (v + cih,y)
u,+r.-,-h
- X [ / i(u+ cih — x,y)dFi(x) + 1 = Fi(u+ cih + y)
0
" o(h)
— ik (u + ¢;h, .
% ;IM\.U’A(” + ¢;h,y) + h
The desired result follows by letting £ tend to 0. £

We can also show that (5) has a unique solution such that (oo, y) =0
(ie.J, yeRT)

Proposition 1 \, y
bilt,y) = (0, y) + | / Wit — u, '.U)(l — Fi(u)) du
ci .
u=0
k
A
—— [ (1 = Fi(u+y))du
¢ .
0
t. m
+ . {q’u‘('u‘ y) — Zp,:k'l,/-’k(“w .U)J du L
Ci | k=1
s =

Proof by integrating (5) over (0,¢), it yields:
tl
civi(t,y) = e i (0,y) + (M + ) / vi(u,y) du

0
t

— A\ /(l — Fi(u+1v))du

— A / /d} x,y) dF;(x)du

u=0xr=0

m

—mZp,k /z/J w, ) du

k=l g
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Thus, we have
t

mwm:mmm%ﬁ/mwmm

T

t t—x
—— / ] Yi(z,y) dz dF;(x)
2=0 2=0
Ai
. u—mwwwm
Ci
0
’ Ty
+ t [l/) w,y) — ZP!M/A u, Uﬂ du
4 k=
t
Xi |
= 9;(0,y) + — / it — w,y) du
Ci
0
t
Ai
B (1 = Fy(u+y))du
(I .
0
t
Ao f ;
— — | it —u,y)Fi(u) du
Ci .
=0
¢ n
v%i/ Wi (u,y) ZP”“/’ (w,y)| du |
Ci . k=1
0

Note that for m = 1, (7) is the well known renewal equation for the severity of
ruin in the classical risk model and it is essentially the formula (5.19) in Dufresne
(1989), 1.8,

i

V) = 00)+ 2 [ pla (1~ F@)do
=0

- ? /(1 ~ F(x+y))da (8)
0

Unfortunately for m > 1, (7) is not more a renewal type equation.
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Proposition 2 ~
A
-(}-!i(()‘y) — — /(l — f‘w, (‘H.))(l“
Ci .
Y
72 '.A/l | B m“ . / 9
e / [U’;(“-w .U) Z[)JA'(/ k(”’a U):‘ au (9)
0 k=1
Proof the result follows immediately by letting ¢ in (7) tend to infinity. &l

Note that in the case m = |, we obtain the following result derived by Dufresne
(1989),

P(0,y) = é / (1 — F(u)) du

( .
Y

which is equivalent to the result obtained by Bowers et al. (1986) (Theorem 12.2),

U
G(0,y) = A / (1 — F(u)) du

(l .
0

see also Gerber et al. (1987).

4 The two state model

[n this section, we obtain analytic expressions for the severity of ruin. The method
used below consist to eliminate the integral term on the right-hand side of (5)
by differentiation. This result leads us to change an integrodifferential equation
to a differential equation which is easier to solve. This technique works only for
certain types of claim size distribution.

We consider the case where [(t) is a two state Markov process (only two
environment states). We show that an explicit formula for ;(u,y) can be
given under the additional assumption that the claim amounts distribution are
exponential with finite mean ;.

Fi(x)=1—-¢" e (x> 0).

The same argument can be used for a mixture of exponential distributions.
We suppose that the premium income is constant and independent from the
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environment process (i.e. ¢; = ¢ (¢ = 1,2)). Our approach is closely related to

that of Reinhard (1984). In this case (5) is reduced to

u

0 /\' L ' L
c—i(u,y) = (N + a)i(u,y) — —e wi" / i, GRSl
ou 4
z=0
|
- ,\ie_'ﬁf(”'HJ) — C\c,;‘lbg)(i)('f-hlf/)

(where 9(1) = 2,49(2) = 1). Differentiation of (10) leads to

w

82

13, fli

Ly,

=

Ai b (uty)

Ai § e
- —ll«fz/).i(u, y)+—e w — o

Ly 2z

Finally, by replacing the term between the brackets, we obtain

o? ey ¢ Q;
C "()_’"Mitd}i(u’ ’.U) = ()\é + oy — _) _"‘[’i(“ﬂy) T !_Lf'llji("%y)

2

i ) Ou

d

(&%)
s CYit)—’f/)ﬁ(-i)(’lhy) - _."/)1‘)(-::)(“1/.’/)

agu i

with boundary conditions
4
lp,(OO,’lj) =0

)
{ e iwi(u,y) = (A + )i (0, y)

u=0

\

These differential equations may be written in matrix form

V' =AY
where

0 0 | 0
0 0 0 |
2 7 :

A= o o @
C Cli s C
8%} %) (e5] 2

e —n " mES . SHemgy

cin Clin c C

1, 0
Y= 'l/jl (uv U)1 wa(u'v y): ézz‘lpl(uay)a 5;'(/)2({“5 y)

=il = Fi(y)) — astby(s)(0,9)

!

T/)‘U('i) (“7 ,U)

(10)

) | /\-1' ' ———(u—=z
C W'zpj(-a.a, y) = (\; + (_y.,;)%'z/),;(u,y) + — {— / vi(z,y)e o € ) dz

(1)
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and

i /\,‘ .
Qi:___.« (1:{112})
I (i

Without loss of generality we suppose that o; > 0. In this case
=L 9 + 2L gy

d = £t cpy &%
Ay + Ao

and the condition ¢ > 0, is here equivalent to the following :

% v
==y = —=py =1}
Clo Cily

As 01 > 0,2, then oy is clearly strictly positive. On the other hand, it is clear that
ko = 0 is an eigenvalue of A (i.e. det(A) = 0). The other three eigenvalues k),
k> and k3 are roots of the following characteristic equation

P(k) = %('lvt.(.A —kI)=0

where

P(}l) =% Afj A (Ql -+ 02 — (Y_l L (’E_g) kl

c C
v ) ) (8%) [Ne%)
e ..y T — - k
o ((Ql c ez c ) Ciyp Cln ¢ )
. ( % o) (12)
Clt Cl)
From d > 0, we have k k k3 > 0. Since
P0) <0
(Y|/\|
P(-a1) = 7 (01— @) 20
P(-02) = HZ:\z(Qz —01) <0 and
e ,
lim P(z) = oo

r—+oo

it follows from Reinhard (1984, p.41) that

ki < —o1 <k <min{0,—0}, ks3>0 if g >0
ki <k,=-0<0<ks ifgr=0=0p
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Therefore the general solution is of the following type

P (u,y) = Ag + Ajefre 4 A ek 4 Aqehisu
Pa(u,y) = Ag — D(k)) AP — D(ky)Aze*® — D(k3) Azekv

(:lﬁf,zu —ki(—c+ oy + pid) — o
oy + koo

D(k;) = (13)

From (11), we have clearly that Ay = A3 = 0 and A,, A, are the solutions of
the following linear equation
( {(TAT[ — AN —Q — (I]D(/ﬂ)} A

+ [Ck‘g - /\1 — (Y] — (X) D(/ﬁg)} AQ = -/\|(2~ﬁy

{(—(flﬂ + A+ (rz)D(k‘i) -+ (.Eg] A,

\

" {(_“"’2 + A2+ ) D(k2) + nz] Ay = —Dge” Y

By injecting D(k;) in the above equation, we get

| L
S (A R ——— =T -
fk + 1 I F;flnll‘ferl rm e (14)
_.._DL'L'_;_I)_A M Ay — Pﬁﬁl}"‘-ff

'U,gk‘[ + 1 L ;62!’\52 + [1. N

We get now the following theorem.

Theorem 2 [f “2-0y + -0y > 0, then it holds
Di(u,y) = Ajekrt + Apekan
.1[)2({::‘-!}) o _D(k-l)AIeA:m _ D(AJQ)AQ(’,A:J”

where ky and ky are the two negative roots of (12), the constants D(k;) are
defined by (13) and (A, Ay ) is the unique solution of the system of linear
equations (14).

If we assume that \y = Ay = A and p; = p2 = i, we obtain the classical risk
model of Lundberg and Cramer (c.f. Grandell (1991)) where the claims arrive
according to a Poisson process with parameter A > 0.



41

Corollary 1 if Ay = Xy = \ and jiy = po = p, we obtain for the classical risk
model with exponentially distributed claim amounts

Apt .
blu,y) = "Rk (15)
4
Proof k, = —o and &, is the negative root of
; + cvr o)+ o
Plk) = k> + k(o — -2y - & . Py
C [

Therefore D(k;) = %2, D(ka) = —1 and the solutions of (14) are A; = 0 and

oy’

Nig,
Ag:l({—'(’ ", [ |
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Abstract

[n this paper we are concerned with the severity of ruin in Markov-modulated risk models, It
is shown that the severity of ruin satisfy a system of differential equations. Explicit formula is
derived for the severity of ruin in the particular case where one has two possible states for the
process of environment and where the amounts of claims are distributed according to an exponential

distribution.

Zusammenfassung

Dieser Artikel befasst sich mit der Schwere des Ruins in Markov-modulierten Risikomodellen.
Es wird gezeigt, dass diec Schwere des Ruins ein System von Differentialgleichungen erfiillt. Es
werden explizite Formeln fiir die Schwere des Ruins hergeleitet fiir den Spezialfall, wo die Murko.v-
Umgebung durch zwei mégliche Zustinde definiert ist und die Schadenhhen exponentiell verteilt

sind.

Résumé

Ce papier traite de la sévérité de la ruine pour des risques dont les fréquences et lc.s mon.mnts
des sinistres dépendent d'un processus de Markov. On montre que la sévérité df‘ I‘a' r,umc Silllsf:ilil
un syteme d‘équations différenticlles. On dérive une formule explicite pour la scverlllﬁ: de la fuine
dans le cas particulier d*un processus de Markov a deux états ol les montants des sinistres suivent

une distribution exponentielle.
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