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M. DENZLER, H. MULLER, D.SCHERER, Ziirich, St. Gallen

A Practical Application of Continuous Time Finance:
Calculation of Benchmark Portfolios™*

1 Introduction

1. In the modern asset allocation process the determination of a benchmark
portfolio is of considerable importance. In principle one could define a dynamic
benchmark strategy and measure the performance of the active portfolio relative to
it. For practical and institutional reasons however, one prefers a constant portfolio
as a benchmark. Typically this benchmark portfolio is calculated either with the
one period Markowitz approach or with a special continuous time model. This
leads to a constant investment strategy.

For the following reasons most practitioners currently use the one period Marko-
witz approach:

° The model is simple and easy to understand.
Standard software for the Markowitz approach is commercially available.
o Many practitioners are interested in shortfall probabilities. Without much
additional complexity shortfall constraints can be imposed in Markowitz
optimization.

However, it is hard to find a foundation based on choice theory for the one period
Markowitz approach without assuming asset returns to be multivariate normally
distributed. This theoretical issue has rather unpleasant practical consequences:

° Given the chosen portfolio, one is typically interested in the distribution of
wealth several years ahead. This leads to a product of normally distributed
random variables. Quantiles and other characteristics of the distribution can
only be calculated by simulation.

° Moreover, such a portfolio model is incompatible with International Capital
Asset Pricing Models and the Black/Scholes Option Pricing Model, which
are based on lognormal distributions (geometric Brownian motions),

* The authors are indebted to Pascal Guillet who implemented an earlier version of the model presented
in this article and to Andreas Homberger for his helpful comments.
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[n this paper we favor the continuous time approach (Merton, 1990) for the
following reasons:

° Given standard assumptions (geometric Brownian motion for asset prices,
constant relative risk aversion) it can be shown that even under some types
of constraints the optimal investment strategy is given by a portfolio which
is constant over time (Cvitanic/Karatzas, 1992, Miiller, 2000). In this case
the dynamic stochastic optimization can be reduced to a static optimization
problem as simple as Markowitz optimization.

° Under the special assumptions just mentioned, the optimal wealth process
follows a geometric Brownian motion. Hence future wealth is lognormally
distributed at each point of time. All characteristics can be calculated
analytically and no simulation is needed.

o There is full compatibility with the assumptions of International Capital
Asset Pricing Models and the Black/Scholes Model.

Two additional differences between the one period Markowitz approach and the
continuous time models should be mentioned:

° The continuous time model assumes continuous rebalancing of portfolio
weights, whereas in the Markowitz model no rebalancing takes place within
one period (typically a year). In reality portfolios are rebalanced monthly
or quarterly.

° In the continuous time model there is no natural way to model shortfalls.
If there is a minimum target for future wealth the optimal portfolio choice
typically becomes wealth and time dependent.

2. Within the continuous time framework we discuss an Asset Only Model and
an Asset Liability Model. This distinction is motivated by the discrete one period
model, where the covariance matrix is typically estimated on the basis of monthly
or quarterly data. Moreover, a money market rate (3 or 12 months) is used as the
risk free rate. Hence the implicit investment horizon is very short and the resulting
asset allocation is inappropriate for private investors with long investment horizons
and in particular for pension funds. To overcome this difficulty asset liability
models are used. For pension funds one applies the Markowitz method on the
surplus (assets minus liabilities) in the next period. Very often the liabilities of
a pension fund are approximated by a fixed income portfolio. Analogously, for
private investors with a long investment horizon, the asset portfolio is optimized
relative to a long term fixed income index (Sharpe/Tint (1990), Keel/Miiller
(1995)).

This method can be adapted to the continuous time case (Miiller (1999), (2000)).
For a pension fund the funding ratio at the end of the planning horizon is
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optimized. Under standard assumptions (geometric Brownian motion for asset
prices and the liability, constant relative risk aversion) this problem can again
be reduced to simple static optimization. Analogously, for a private investor
optimization is applied on the ratio of final wealth of assets to the value attained
under a reference strategy (e. g. given by a long term fixed income index).

3. For the Asset Only Continuous Time Model, as inputs one needs the covariance
matrix of assets, expected returns of assets and the risk aversion of the investor:

o The covariance matrix is estimated on the basis of historical logarithmic
returns. Our model contains less than 20 asset classes. Therefore variances
and covariances can be estimated in a straightforward way. For models
with more than 20 investment opportunities factor models are needed (see
Grinold/Kahn (1995)). For the straightforward estimation of the covariance
matrix typically monthly data over the last 5 years are used. An alternative
method is based on more data, which enter the estimation with weights
exponentially decreasing for the more distant past.

° The expected returns are calculated with the reverse optimization method.
[n the continuous time case the reverse optimization can be applied in
full consistency with the Fisher Black (1989) model on Uniform Currency
Hedging.

° Since our optimization is based on utility functions with constant relative
risk aversion, the preferences of the investor can be fully characterized by
the relative risk aversion parameter.

For the Asset Liability Continuous Time Model one has to define the liability.
Moreover, the covariance matrix and expected returns of the assets and the liability
have to be calculated. The preferences of the investor can still be represented by
the relative risk aversion parameter. The following aspects are of some importance:

° The lability price process may be defined rather generally (e.g. the
consumer price index, which is not fully trackable by assets) or more
specifically by an asset portfolio (e. g. long term fixed income index).

° The covariance matrix and the vector of expected returns must include the
liability as well. Strictly speaking, the expected return and the variance
of the liability are not needed for the optimization in our model, but for
illustrations of the results.

4. The rest of the paper is organized as follows: In section 2 the Asset Only
Model is presented. Section 3 deals with the Asset Liability Model. Section 4
contains some concluding remarks.
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2 The Asset Only Continuous Time Model

2.1 Theoretical Aspects

There is a riskless investment opportunity ¢ = 0 with a constant logarithmic rate
of return r and N risky investment opportunities ¢ = 1,... , N with geometric
Brownian motions as price processes. Hence the price processes Soy ... , SN
(adjusted for dividends, coupon payments, etc.) are given by

l Y
(_:5() = rali
So
dS; (D
r =widt+0;dZ;, i=1,...N
Si
Besides
E(dZ;) =0, Var(dZ;)=dt, i=1,...,N
the Wiener processes Z(t),... , Zn(t) satisty
(;'OV(O’,; dz;, op (JZJ) = V” dt (2)

where Vjj, i,7 = 1,... , N denotes the covariances of the logarithmic returns.
The relative allocation of total wealth in ¢ € [0, 7] is given by the portfolio choice

:lf[)(t) N
x(t
x[t) = 1]:( ) , with Z:l:h(t) = | (3)
* h=0
;L‘N(t)

Equivalently an investment strategy is given by the subportfolio of risky assets

x(t) N
x(t) = ; and xo(t) = 1 — Z-‘L‘h.(t)- (4)

xy(t) h=)
In a model without consumption this leads to a wealth process

(l I/Vt

N
= [r+ w7 x(t)] dt + ;J;i(z)ai dZ; (5)



with
i
' =(wm—7...,un—T). (6)
Given initial wealth Wy, the investor chooses an investment strategy x*(t),
t € [0, 7] maximizing the expected utility of final wealth under a set of constraints
on the portfolio weights. Examples will be discussed below.
Formally, the optimization problem is given by

. Ax(t) > b
max Elu(Wrp)|]  subject to (O)
x(H)ERN | te(0,T) Cx(t) =d.

As usual the relative risk aversion is assumed to be constant. A constant relative
risk aversion ¢ > 0 leads to a utility function of the type

u(w) = (1 —c)w'™¢, fore>0,c# 1

u(w) = Inw, for ¢ =1

(7)

Under (1) and (7) it is well known, that (O) leads to a constant proportion
investment strategy (constant portfolio weights) provided there are no constraints
on the portfolio choice. In Cvitani¢/Karatzas (1992), pp. 802-803 and in Miiller
(2000) it is shown that this result still holds under the constraints imposed in
(0). Knowing that we have only to deal with constant proportion investment
strategies x allows us to reduce (O) to a static optimization problem as simple as
a traditional Markowitz optimization (Miiller (1999) or Seiler (2000)).

For a constant proportion investment strategy x equation (5) becomes

dW,
Wi

= pydt + o, dZ (8)

with

Z(t) a Wiener process
e =T+ ‘n"x

ol =xTVx, V=(V;), i,j=1,...,N.

According to (8) (see e.g. Hull (1999), pp. 221-222), final wealth Wy is given
by the lognormal random variable

3
&

Wpr =W, -(‘xp{ (;c_,‘ ~ %‘—)I ‘o [Z(T) — Z(())I} . 9)
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Obviously for ¢ # 1

w(Wr) = (1 -¢) I/V()l“"
2
.()X[){(l —c) (/f»;u - %)7 + (l — (,:)U_,;[Z(T) — Z(O)]} (10)

is again lognormally distributed. According to the formula for the expected value
of lognormal distributions (see e. g. Hull (1999), p. 229) one obtains

Elu(Wr)] = (1 — )W,

g2 o (L)
- e l—¢)| pe — == | T+ (L — )" = -]
(‘(p{( ()(,H“ 2) F (1l —c¢) 5 f}
or
Blu(Wy)] = (1 — )W, ¢ (pr{(l —c) [/LA,; - %O’?] T} . (12)
Maximizing (12) is equivalent to the maximization of
C 9
r — 50y 13
or
2
;(l‘:z: = ) = Ufz : (14)

Hence (O) can be reduced to the static optimization

. , 1
max {277 x —x"Vx}, with 7 = -
TzeRN C

Ax > b

Cx=d.

(0S)
subject to

1) The reduction of (O) to (OS) holds as well for the case ¢ = 1. The
derivation is straightforward.

2)  (OS) is fully analogous to the Markowitz one period optimization. 7 and
V' refer now to the geometric Brownian motions defining the asset price
processes (see (1)).
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3)  Without constraints the optimal solution x* of (OS) is given by
™ =Vx* (15)
On the one hand this leads to the famous Merton formula
x**=7Vlx (16)
and on the other hand the condition

|
m=-Vx* (17)
T

can be used as a basis for the “reverse optimization”. The ‘“reverse
optimization” technique is widely used by practitioners for the estimation
of the risk premia 7 (see below).

2.2 Practical Implementation

For the practical application of (OS) one needs the covariance matrix V', the
vector of risk premia 7v and the risk tolerance parameter 7.

a. Estimation of the Covariance Matrix

Typically a benchmark portfolio contains less than 20 asset classes represented
by indices (e.g. CH cash, CH bonds, CH equities, EURO cash, EURO bonds,
EURO equities, etc.). In this situation the covariance matrix V' may be estimated
without using a factor model. An estimation based on historical data is generally
accepted by the profession. Due to changes in the economic environment the
stationarity assumption for return processes is questionable. Therefore data from
the far distant past should have at most a negligible influence on the estimation.
Moreover, due to the lack of stochastic independence daily or weekly data should
not be used in a straightforward way. One generally accepted method uses monthly
data over the last five years. As an obvious disadvantage the covariance matrix
estimated by this method may change considerably five years after a crash has
occurred. Another method is based on a longer history of monthly data. To cope
with the nonstationarity this more sophisticated method attributes exponentially
decreasing weights to observations in the more distant past. For the estimation
the logarithmic excess returns relative to the riskless domestic cash are used. The
covariance matrix is estimated using monthly data from Dec. 1987 until Jan. 2001.
The weights for the world market portfolio are taken from Dec. 29, 2000. The
weights for the world bond market portfolio are from the Merrill Lynch Global
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Government and Global High Grade Corporate Indices and the weights for the
world equity market portfolio come from the MSCI World Index.

b. Risk Premia

The optimal portfolio is highly sensitive to changes in risk premia. Therefore a
precise estimation of the vector of risk premia is most important. Since returns
are nonstationary one cannot use data reaching in the far distant past for a direct
estimation of the risk premia. With only a few data over the last few years
however, the estimation is not reliable. This can be illustrated by the Japanese
equity market. In the early nineties an estimation of the risk premium based on
the performance in the eighties would have led to disastrous results.

The problem can be circumvented by the reverse optimization technique. Formula
(17) relates the vector of risk premia 7 to the optimal portfolio x* and the risk
tolerance 7 > 0. If x*" denotes the portfolio chosen by a representative investor
with risk tolerance 7%, then in the absence of constraints his choice is consistent
with risk premia given by the reverse optimization formula

[
w=—7 VM (17)
7—{

The main difficulty consists in finding a good proxy for x™. Many practitioners

use the Fisher Black Model on “Universal Currency Hedging” (1989). For this
model Adler/Solnik (1990) pointed out that x™ has to be the partly currency
hedged world market portfolio, given by

xx\[ _ ‘m”[xlz' o (1 o Tf\l)xl'),(r’]

+ (1 —wg)[x? - (1 — 7M)xBC] (18)
with
xE world market portfolio for equities
5™ world market portfolio for bonds
e currency hedging portfolio for x*
(i.e. x — x is fully hedged in each foreign
currency)
B,C SR : . o
x currency hedging portfolio for x
Wg : ; .
wp = with Wg, Wi world equity, respectively bond mar-

We + Wb ket capitalization.
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Table | shows the world market and currency hedging portfolios x”, x”, x/¢

x5 used for our subsequent calculations (portfolio weights are subject to
rounding errors).

,¢

t.h' xlf II'.‘.( xB.(‘ x‘\[ T ﬂ.loc
B CHF % 0.4% % % 0.3% 0.3% 0.3%
k. CHF 2.9 .2 5.0 5.0
C EURO 18.7 33.2 -23.0 0.5
B EURO 33.2 19.9 1.0 0.6
E EURO 18.7 1.3 6.1 5.6
C USD 55.3 40.2 -38.8 1.9
B USD 40.2 24.1 24 0.5
E USD 51.3 20.5 7.0 5.1
C GBP 9.7 5.2 -5.9 1.3
B GBP 5.2 3.1 2.2 0.9
E GBP 9.7 3.9 5.6 43
C JPY 13.4 21.0 -15.1 1.9
B IPY 21.0 12.6 2.2 0.2
E JPY 13.4 5.3 6.3 4.4
E EMMA¥* 4.1 1.6 8.1 6.3
C CHF ~100.0 -100.0 82.8

™ =0.16, wf =04

* For emerging market equities (E Emma) USD is used as local currency

Table 1: Market portfolio and risk premia

Now the reverse optimization formula becomes

] 0 ] G O
™w = WV{HJE[X"‘ = (i —_— T”)x{ i« ]
F (1= wp)[x? - (1 - 7M)xBC)) (19)

The parameters 7™ and wy cannot be directly observed in the market'. For this
reason one can use 7 and wp to calibrate the model. In fact these parameters
are chosen such that the average risk premia on equities, bonds and currencies

become consistent with historical observations reaching in the far distant past.

! Whereas reasonable estimates for the world market capitalization of equities Wy are available, the
capitalization of bonds W cannot be reliably estimated.
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For our calculations we used 7 = 0.160 and wgz = 0.40. This leads to the
market portfolio x* (standardized such that the sum of equity and bond holdings
is 100 %) and the risk premia 7 in CHF shown in Table 1. Our choice of 7V
and wp guarantees that the average risk premium on equities

M

LB __loc
E ] m;

=1

is© equal to 5 %. This level is consistent with very long run historical observations.

c. Estimation of the Risk Tolerance T for an Individual Investor

Given some idea about the composition of the desired portfolio x* (total weights
of equities, bonds and cash) one can get a rough estimate of the investors risk
tolerance 7. Transforming formula (15) leads to

2 T Yt

d. Calculation of Optimal Portfolios

If we use the covariance matrix V' and the risk premia 7r calculated in 2.2.a, 2.2.b
and put 7 = 7™ then in the absence of constraints the market portfolio x» (see
Table 1) must be the optimal solution of (OS). This is shown in Table 2. For later
reference Table 2 contains as well the growth optimum portfolio (7 = 1) and the
optimal portfolios for 7 = 0.1, 0.2, 0,3. Of course in accordance to (16) all these
portfolios are proportional. For the riskfree rate we assumed » = 4.33 % which
corresponds to the historical average over the sample period.

= wl9€results from 7 by subtracting from all foreign assets the corresponding cash risk premia.
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T 0.1 0.16 0.2 0.3 1
B CHF 0.2% 0.3% 0.3% 0.5% 1.6%
L. CHF 0.7 1.2 .4 22 12
C EURO —-14.4 -23.0 -28.7 43,1 —-143.7
B EURO 12.4 19.9 249 37.3 124.5
E EURO 4.7 7.5 9.3 14.0 46.7
C USD -24.2 -38.8 —48.5 -72.7 242 .4
B USD 15.0 24.1 30.1 45.1 150.5
I USD 12.8 20.5 25.0 38.4 128.0
C GBP -3.7 -5.9 1.3 ~11.0 -36.6
B GBP 1.9 3.1 39 5.8 19.3
E GBP 2.4 39 49 7.3 243
C JPY -9.4 —15.1 —18.8 -28.3 -94.2
B JPY 7.9 12.6 15.8 23.6 78.8
E JPY 3.3 53 6.7 10.0 334
E EMMA 1.0 1.6 2.0 3.1 10.2
C CHEF* 89.3 82.8 78.5 67.8 -7.4
Total 100.0 100.0 100.0 100.0 100.0
Equities 25.0 40.0 49.9 74.9 249.7
Bonds 37.5 60.0 74.9 112.4 374.6
Net CH Cash* 37.0 0.0 -24.9 -87.3 -524.3
Total 100.0 100.0 100.0 100.0 100.0
Currency
Hedging * 51.7 82.8 103.4 155.1 517.0
Jha 5.9 6.9 1.5 9.1 20.2
O 4.0 6.4 8.0 1.9 39.8

* Foreign currency hedging is implemented by future or forward contracts. These contracts
can be decomposed in short postions in foreign money markets and long positions in the
domestic money market.

- C CHF includes the currency hedging part of the domestic money market

position,

- Net Domestic Cash denotes the position in domestic cash not including the
currency hedging part.
- Currency Hedging Positions denote the corresponding  future or forward

contracts.

Table 2: Optimization without constraints
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Next, in table 3 it is shown how the optimal portfolios change if currency hedging,
short selling and borrowing is excluded (i.e. x; > 0,7 =1,... | N, Zi\il B < 1)
Table 3 shows that excluding currency hedging leads to a decline in foreign
equities and bonds. Overall the equity exposure is clearly reduced.

T 0.1 0.16 0.2
B CHF 11.9% 19.0% 23.8%
E CHF 4.3 7.0 8.7
C EURO 0.0 0.0 0.0
B EURO 9.4 15.0 18.7
E EURO 1.7 2.7 34
C USD 0.0 0.0 0.0
B USD 0.0 0.0 0.0
E USD 9.5 15.1 18.9
C GBP 0.0 0.0 0.0
B GBP 0.0 0.0 0.0
E GBP 1.8 2.8 3.5
C JPY 0.0 0.0 0.0
B JPY 0.0 0.0 0.0
E JPY 3.l 4.9 6.2
E EMMA 0.0 0.0 0.0
C CHFEF* 58.4 333 16.8
Total 100.0 100.0 100.0
Equities 20.4 32.6 40.7
Bonds 21.3 34.0 42.5
Net CH Cash* 58.4 33.3 16.8
Total 100.0 100.0 100.0
Currency
Hedging* 0.0 0.0 0.0
e 5.7 6.6 7.1
(o 3.7 6.0 7.5

* See table 2

Table 3: No borrowing, no short selling, no currency hedging
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Finally, table 4 contains the optimal portfolios under the following constraints:
(1) No short selling of equities and bonds:
TE CHF, TEBEURO; TE USD, TEGBP, TEJPY, LE Bmma, = 0 21
LB CHF, TB EURO; B USD; YBGBP, TBJPY =0

(2)  Currency hedging is allowed, but overhedging is excluded:

TEREURO + ZBEURO + TCEURO >0
TEUSD + TEEmma + TBUSD + Zgusp =0 (22)
TEGBP + TBGBP + TCGBP >0
rpypy + xpypy + Togpy =0

(3) No long position in foreign cash:

TCEURO, TCUSD, ZCGBP, Zojpy <0 (23)
(4)  No net borrowing in domestic cash:

TeoHrF + TeEURO + Zcusp +Teasp +rogpy = 0 (24)

(5) At least one half of the overall equity investment has to be domestic (home
bias):

TECHF — (TEEURO + TEUSD + TEGBP + ZEJPY + TEEmma) => 0 (25)

Comparing the results of tables 2 and 4 one observes that the home bias leads
to a strong move from foreign (in particular European) equities towards domestic
equities. The overall equity exposure sharply declines because the diversification
potential is reduced.
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T 0.1 0.16 0.2
B CHF 0.0% 0.0% 0.0%
E CHF 10.3 16.5 20.7
C EURO -2.0 -3.2 8.3
B EURO 9.0 14.4 6.9
E EURO 0.0 0.0 0.0
C USD -23.7 -38.0 1.4
B USD 19.1 30.7 31.7
E USD 6.7 10.7 14.3
C GBP -1.4 -2.2 -5.4
B GBP 4.7 7.6 1.8
E GBP 0.0 0.0 0.0
C JPY 4.9 -1.8 ~6.1
B JPY 6.0 9.6 8.2
E JPY 1.9 3.0 3.6
E EMMA 1.7 2.8 2.8
C CHF* 72.5 56.0 44.7
Total 100.0 100.0 100.0
Equities 20.6 33.0 41.4
Bonds 38.9 62.3 58.6
Net CH Cash* 40.5 4.7 0.0
Total 100.0 100.0 100.0
Currency
Hedging* 32.0 51.3 44.7
I 5.8 6.7 2
o 3.8 6.1 7.4

* See table 2

Table 4: Home bias, currency hedging, no borrowing, no short selling
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Since a continuous time model is used, one can easily calculate the quantiles for
the wealth W; .« at time t under a portfolio choice x*. According to formula (9)
the a-percentile of W; .- is given by

2
T

"2“)t+ Vit oy z} (26)

‘/Vg,u;t ((.Y) = "V() i CXP{ (N:L‘* -

where z, is defined by

l z(l .nz
—— e Tdr=a«
V2T /
— 00

In figure 5 the percentiles of W, ,- are shown for the optimal portfolio x* in
table 4 corresponding to 7 = 0.2 (pty+ = 7.2 %, oz« = 7.4%, Wy = 100).
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Figure 5: Wealth percentiles for a portfolio x*
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3 The Asset Liability Continuous Time Model
3.1 Theoretical Aspects

As in section 2 there is a riskless asset 2 = 0 and [V risky investment opportunities.
The price processes 9; ; are defined as in section 2.

Moreover, there is a process L, representing a liability. For a pension fund Z,
would correspond to the value in ¢ of present and future net obligations. The
processes (see also Browne (1999)) are given by

1S

(5' 0 = rdt

:
(b - :

— =y dt+o,dZ;, i=1,...,N

Si
1L
’f — updt +op dZ; (28)

with the Wiener processes Z(t),...,Zn(t), Z1(t) satisfying
Cov(o; dZ; , o; dZ;) = V;; dt
( 1 423) = Vg tigd = Ly eamyd¥s (29)

Cov(o;dZ; , o, dZ1,) = v; dt
Using the notation of section 2 an investment strategy x(t) leads again to the
wealth process W, (see (8)) given by

) ‘/Vp
W,

= ha(p) At + 04 (p) dw (30)

with
faty =T+ T“Tx(t)
oy =X (HVx(t).

&T

[n the following we concentrate on

i W,
Fr=—. 31
L= 30
Comments:
. For a pension fund F; obviously denotes the funding ratio.
2. If L; is a price index then F} denotes real wealth (see Adler and Dumas

(1983)).
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3. Some long term investors may be interested in the performance of their
investment strategy x(t) relative to a fixed income portfolio with a price
process L.

Generally investors may be interested in beating some moving target L, (pension
fund obligations, price level, reference strategy, etc.). In this case it may be

appropriate to maximize the expected utility of Fp = Wy /Ly, Therefore we
look at the asset liability optimization problem (see also Browne (1999))
o Ax() = b
max Elu(fp)]  subject to (OAL)
z(t)eRN, te[0,T) Cxlt) =d.

As in section 2 the relative risk aversion is assumed to be constant. Hence we
deal only with utility functions satisfying (7).

Again it can be shown (Miiller (2000)) that (OAL) leads to a constant proportion
investment strategy x. Therefore [} is given by a geometric Brownian motion and
as shown in the appendix one obtains (see also Miiller (1999) or Seiler (2000))

o4l .
Fr = Fy - uxp{ (,u,,”,‘_,,. - A;’")T +oar[2(T) - [}(O)]}

T 2 (A.D)
: BALz = fiz — pbp — Y X+ 07,
with 5 - 5
O-..;\I,,:r: = (TJ.' - 27 X + UL .
Using these results (see appendix A.2) one can reduce (OAL) to
max {277 x —xTVx +2(1 — 7)y"x}, with 7 = -
z€RN €
Ax>b (OALS)
subject to o
Cix=d.
. (OALS) is not fully analogous to the one period surplus optimization. In

fact the continuous time asset liability model is based on the ratio of final
wealth W and the liability L and not on their difference. The impact
of the liability on the portfolio choice decreases for high levels of risk
tolerance and disappears for the logarithmic utility function (7 = 1).

2, Without constraints one obtains a well known mutual fund theorem. The
optimal portfolios are given by

=1 V'ig +(1-7)V'y, 7>0. (32)

growth optimum
portfolio
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3.2 Practical Implementation

a. Application of the Asset Liability Model

Typically the continuous time asset liability model 1s used for pension funds and
individual investors with a long investment horizon. The liability is represented
by a fixed income portfolio. Implicitly one assumes that these investors always
plan a fixed time horizon ahead.

Moreover, the model can be used for investors oriented towards several currencies.
In this case the liability is given by a multicurrency cash portfolio. Sometimes
one applies the asset liability model for investors interested in real rather than in
nominal wealth. As a liability one uses the consumer price index. However, in
most cases the impact on the portfolio choice is small and it is questionable to
represent the consumer price index by a geometric Brownian motion.

b. Estimation of V, v, ® and T

Variances and covariances (V,7) can be estimated as in section 2. For the risk
premia (7r) we shall use the estimation of table .

For the estimation of the risk tolerance 7 one can proceed as in section 2. In the
absence of constraints the optimality conditions of (OALS) are given by

m—Vx'+(l—=7)y=0 (33)
which can be transformed into
T(m — ’y)’[‘x" =x"TVx* - '\/Tx* (34)

or
x:k'l'vx* . ,.Y’['x*
(= )Tx

T =

Again, given some idea about the compostion of x*, one can get a rough
estimation of 7.

g Calculation of Optimal Portfolios

In order to illustrate the asset liability model we look at an investor with a long
investment horizon who is oriented towards Swiss francs (65 %), EURO (25 %)
and US dollar (10 %). Hence his reference strategy 1, is given by a portfolio
consisting of 65 % Swiss bonds, 25 % EURO bonds and 10 % US bonds. Given
the covariance matrix V' estimated in section 2 one can immediately calculate
v. First, in analogy to table 2 we solve OALS in the absence of constraints
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(table 6). Of course in the extreme cases 7 = 1, 7 = 0, the optimum growth and
the liability tracking portfolios, respectively, result. For the intermediate values
of 7 combinations of the optimum growth and the liability tracking portfolio are
obtained in accordance to (32).

T 0 0.1 0.16 0.2 0.3 1

B CHF 65.0%  58.7%  548%  52.3% 46.0% 1.6%

E CHF 0.0 0.7 1.2 1.4 2.2 7.2
C EURO 0.0 —-14.4 -23.0 -28.7  —43.1 -143.7
B EURO 25.0 34.9 40.9 44.9 54.8 124.5
E EURO 0.0 4.7 7.5 93 14.0 460.7

C USD 0.0 -24.2 -38.8 —-48.5 -72.7 2424

B USD 10.0 24.0 325 38.1 52.1 150.5

E USD 0.0 12.8 20.5 25.6 38.4 128.0

C GBP 0.0 -3.7 -5.9 =13 ~11.0 -36.6

B GBP 0.0 1.9 3:1 3.9 5.8 19.3

E GBP 0.0 2.4 3.9 4.9 7.3 243

C JPY 0.0 9.4 -15.1 -18.8 283 -94.2

B JPY 0.0 7.9 12.6 15.8 23.6 78.8

E JPY 0.0 3.3 5.3 6.7 10.0 334
E EMMA 0.0 1.0 1.6 2.0 3.1 10.2
C CHF* 0.0 -0.7 -1.2 ~1.5 2.2 7.4

Total 100.0 100.0 100.0 100.0 100.0 100.0

Equities 0.0 25.0 40.0 49.9 74.9 249.7
Bonds 100.0 127.5 144.0 1549 1824 3746
Net CH Cash* 00 524 -840 -1049 -157.3 5243

Total 100.0 100.0 100.0 100.0  100.0 100.0

Currency

Hedging* 0.0 51.7 82.8 103.4  155.1 517.0
M 5.0 6.5 7.4 8.0 9.6 20.2
lo g 3.1 6.0 8.1 9.5 133 39.8

* See table 2

Table 6: Liabilities, unconstrained

In analogy to table 3 we solve OALS for the case where currency hedging, short

selling and borrowing is excluded (i.e. @; > 0,7 =1,... /N, Z:\il e < 1),
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Optimization leads to portfolios which differ substantially from the asset only
results in table 3. Comparing tables 3 and 7 we observe a strong increase in bond
holdings, which is caused by the liabilities. The small increase in overall equity
holdings may be explained by the fact that the liability tracking portfolio consists
of bonds and there are positive correlations (covariances) between equities and
bonds.

T 0.1 0.16 0.2
B CHF 44.3% 29.6% 19.9%
E CHF 4.0 7.l 9.1
C EURO 0.0 0.0 0.0
B EURO 31.8 34.1 35.6
E EURO 1.7 2.7 3.4
C USD 0.0 0.0 0.0
B USD 0.1 0.0 0.0
E USD 13.4 18.8 222
C GBP 0.0 0.0 0.0
B GBP 0.1 0.0 0.0
E GBP 2.1 3.6 4.5
C JPY 0.0 0.0 0.0
B JPY 0.0 0.0 0.0
E JPY 2.5 4.2 53
E EMMA 0.0 0.0 0.0
C CHF* 0.0 0.0 0.0
Total 100.0 100.0 100.0
Equities 23.7 36.2 44.5
Bonds 76.3 63.8 55.5
Net CH Cash* 0.0 0.0 0.0
Total 100.0 100.0 100.0
Currency
Hedging* 0.0 0.0 0.0
e 6.3 7.0 7.5
Ox 5.4 7.3 8.6

* See table 2

lable 7: Liabilities, no short selling, no currency hedging
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Finally, table 8 contains the asset liability results under the constrains (21)-(25)
imposed in section 2.

T 0.1 0.16 0.2
B CHF 23.2% 0.0% 0.0%
E CHF 10.8 17.2 214
C EURO -0.5 1.0 15:2
B EURO 30.6 324 21.4
E EURO 0.0 0.0 0.0
C USD -10.5 ~16.6 -19.6
B USD 14.6 17.1 17.3
E USD 8.3 13.3 17.0
C GBP ~6.3 -10.2 -13.7
B GBP 7.7 12.6 17.1
E GBP 0.0 0.0 0.0
C JPY —-1.4 -1.9 0.5
B JPY 24 3.5 1.4
E JPY 1.8 2.8 34
E EMMA 0.7 1.1 1.0
C CHF* 18.6 207 17.6
Total 100.0 100.0 100.0
Equities 215 34.5 42.8
Bonds 78.5 65.5 57.2
Net CH Cash* 0.0 0.0 0.0
Total 100.0 100.0 100.0
Currency
Hedging* 18.6 27.7 17.6
I 6.3 7.0 7.5
O 33 T2 8.4

* See table 2

Table 8: Liabilities, home bias, currency hedging, no borrowing, no
short selling

Due to the home bias there are important positions in Swiss equities. Despite
the strong weight of Swiss bonds in the liability tracking portfolio (65 %), Swiss
bonds do not occur for 7 = 0.160 and 7 = 0.2. This contrast to table 7 may be
explained by substitution effects between Swiss bonds and Swiss equities.
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4 Conclusions

[n the asset only case there are strong similarities between one period Markowitz
optimization and the continuous time model under consideration. Since in the
continuous time model the asset price processes are given by geometric Brownian
motions it is fully compatible with Black/Scholes option pricing. Moreover, under
the optimal investment policy, final wealth is given as well by a geometric
Brownian motion and is therefore lognormally distributed in each point of time.
Hence its quantiles can be easily calculated. This contrasts with the rather messy
distribution of final wealth resulting from a sequential application of the one
period Markowitz method.

In the asset liability case, for the following reason there is no full analogy between
the one period and the continuous time model: The one period model deals with
the surplus, i. e. the difference between final wealth and some stochastic reference
level (such as value of liabilities, initial wealth adjusted to inflation, etc.). The
continuous time model, however, puts its emphasis on the corresponding ratio
(e. g. funding ratio of a pension fund, final wealth in real terms, etc.). In practice
the continuous time model can be applied to investors with a long investment
horizon or with a multicurrency objective. Their final wealth is measured in
terms of a fixed income or a multicurrency portfolio.

Appendix: Formulas for the asset liability model
Appendix A.1

Applying 1t6’s lemma to F, = W, /L, leads to

dF dW dL AW dL AN
FoW L, W L '

- I,

Using (27)—(30) one obtains

N
AF - ,
(17 = (g — pr, — ~Tx + o‘f;’l)dt + E x;0;dZ; — o, dZ g,
i=I
or
dF

T = HAL,x dt + oA L,x dz
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with

T 2

BALz = Uz — UL —Y X+ 0],
2 i T 2
OALx =% Vi - 2’7 X+ oy

dZ ~ N(0,Vdt) .

From this A.l follows immediately (see e. g. Hull (1999)).

Appendix A.2

For ¢ # | one obtains from A.l

1 o ~]1—¢ 03\1’{-" m
w(Fr) = (1 —c)Fy “exps (1 — )| par,z — T !

+ (1 —c)oar [Z(T) - Z(())]} .

In analogy to (10)—(12) this leads to
\ g .
Elu(Fr)] = (1 —c)F, ¢ cxp{(l —¢) [/L,\LP,- — 503“4““1’[’} ;
Maximization of E{u(F7)} is equivalent to the maximization of

C 2
HALa — E(Tfllwr:

or

2

c

(e — " %) — " Vx +29"x

or (due to (30))

- - - |
2ralx —xTVx +2(1 = 7)v"x, with 7= —.
&

The case ¢ = | can be dealt with similarly.
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Abstract

The goal of this paper is to show a practical application of creating benchmark portfolios using
continuous time assumptions. If stocks follow a geometric Brownian motion and investors have a
constant relative risk aversion profile, one can apply Merton’s findings that the investment decision
can be solved using static optimization. This result also holds given constraints on the portfolio
weights. The technique of “reverse optimization” to calculate the risk premiums and estimation
of the covariance matrix using historical data is explained. A few examples are given and the
continuous  time assumptions enable one to ecasily display the risk and return characteristics of the
investment strategy over time with the help of distribution quantiles.

An asset-liability model in continuous time is also presented. For example with pension funds it
is typical to consider the future funding ratio (ratio of assets over liabilities) instead of end of
period wealth. Similarly, a private investor maximizing real wealth would optimize the quotient of
nominal end of period wealth over a price index. According to these examples the quotient of
end of period wealth over a stochastic benchmark index is optimized. This problem simplifies to
a static optimization as well.

Zusammenfassung

Ziel der vorlicgenden Arbeit ist die praktische Anwendung der Portfoliothcorie in kontinuierlicher
Zeit zur Bestimmung von Benchmark Portfolios. Falls die Kursentwicklungen durch geometrische
Brownsche Bewegungen gegeben sind und konstante relative Risikoaversion vorliegt, so gilt auch
unter Anlagerestriktionen das bekannte Resultat von Merton, demgemiiss sich das Anlageproblem
auf eine statische Optimierung zuriickfithren lisst. In der Arbeit wird auf dic Schiitzung der
Kovarianzmatrix mittels historischer Daten und die “Reverse Optimization”-Technik zur Ermittlung
der Risikoprimien eingegangen. Anschliessend werden einige Beispicle gerechnet. Der Ansatz
in kontinuierlicher Zeit erlaubt es, anhand von Quantilen das Rendite/Risiko-Verhiltnis einer
Anlagestrategie im zeitlichen Ablauf einfach darzustellen.

Zudem wird ein “Asset Liability”-Ansatz in kontinuierlicher Zeit vorgestellt. Bei einer Pensionskasse
ist es naheliegend, anstelle des Endvermogens, den zukiinftigen Deckungsgrad (Quotient aus
Vermogen und Wert der Verbindlichkeiten) zu optimieren. Analog ist bei einem privaten Investor
mit realer Zielsetzung das reale Endvermogen, d.h. der Quotient aus nominellem Endvermogen
und Preisindex, zu optimieren. Ausgehend von diesen Beispielen wird beim vorgestellten “Asset
Liability”-Ansatz der Quotient vom Endvermogen und einer stochastischen Referenzgrosse optimiert.
Auch dieses Problem liisst sich aul eine statische Optimierung zuriickfiihren,

Résume

[objectif de ce papier est de présenter une application pratique de la théorie du portefeuille
en temps continu pour construire des portefeuilles de référence (benchmarkportfolios). Lorsque la
valeur des actifs suit un mouvement brownien géométrique et que les investisseurs ont une aversion
au risque constante le résultat de Merton, selon lequel le probleme de I'investisseur est réduit a
une optimisation statique, peut €tre appliqué méme si les proportions des divers portefeuilles sont
soumises a des restrictions. Dans ce travail 'estimation de la matrice de covariance a 1'aide de
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données historiques et la détermination de la prime de risque avec la technique de la “reverse
optimization” sont expliquées. On donne quelques exemples.

L'hypothése du temps continu permet de représenter facilement les rapports rendement/risque de
la stratégie d’investissement dans le temps au moyen de quantiles.

On présente également un modele actif/passif en temps continu. Pour une caisse de pension il
est logique d’optimiser le degré de couverture (quotient de la valeur des actifs par la valeur des
garanties) au lieu de la fortune finale. De maniére analogue, un investisseur privé, dans le but de
maximaliser sa fortune finale, optimisera le quotient de sa fortune finale nominale par un indice
des prix. En accord avec ces exemples on optimise le quotient de la fortune finale par un indice
aléatoire. Ce probleme se réduit également a une optimisation statique.



	A practical application of continuous time finance : calculation of benchmark portfolios

