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BierNn SUNDT and DAviD C.M. DICKSON, Bergen and Me'bourne

Comparison of methods for evaluation of the
n-fold convolution of an arithmetic distribution

1 Introduction

1A. The main purpose of the present paper is to compare De Pril’s (1985)
algorithm for recursive evaluation of the m-fold convolution of an arithmetic
distribution with more traditional evaluation, that is, evaluation directly based
on the expression for the convolution. We want to find out how large n should be
for it to be more efficient to apply De Pril’s method rather than the other method.

IB. Our measure of efficiency is the number of elementary algebraic operations.
Like Kuon, Reich, & Reimers (1987) we distinguish between bar operations
(summation and subtraction) and dot operations (multiplication and division) as
dot operations would normally be more time-consuming than bar operations.
These comparisons would give a rough idea of which method is most efficient.
However, we stress that for several reasons one should not draw too strong
conclusions:

l. By distinguishing between bar and dot operations we have two dimensions
so what do we do if one method i1s more efficient than another with respect
to bar operations, but the opposite is the case for dot operations? One
solution would be to give bar and dot operations different weights, but
how should we choose the weights? To a large extent that would depend
on the computer hardware, programming language, and programming style.

2 Some programming languages have strong built-in functions that would
be more efficient than programming the individual elementary algebraic
operations.

3 Is it really so that a summation is always less time-consuming than a

multiplication? Is the summation a+a more efficient than the multiplication
2 - a? Intuitively one would tend to choose multiplication in such cases.
However, in the present paper we shall count multiplications by 2 as bar
operations.

4. In addition to algebraic operations, aspects like storage, etc. also ought to
be taken into account. Should we always store the value of a product a - b
if this product is needed more than once? In our considerations we have
done that to reduce the number of multiplications.
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3 An algorithm with less algebraic operations could be more complicated to
program, and the more complicated a program is, the more time-consuming
is the programming and the greater is the danger of errors in the program.
To what extent one should care to minimise the number of algebraic
operations, would very much depend on how much the program is to be
applied. For a program that is to be used frequently, efficiency becomes
more crucial. However, as computers get faster and more powerful, such
considerations become less important.

6. All the methods that we present are in principle exact, but rounding errors
can occur. Panjer & Wang (1993) discuss numerical stability of recursive
methods. In particular they show that De Pril’s method is unstable.

1C. Let f be a probability function on the non-negative integers, x a positive
integer, and n an integer greater than one. We assume that we need f™* (y) for
Y=Ly 00

We do not make any simplifying assumptions like f (y) = 0 for certain values
of y. However, because of division by f(0) in De Pril’s method and the De Pril
transform method it is assumed that f (0) > 0.

ID. We shall first consider traditional evaluation. This is based on repeated
application of

FEED* () = (7" 5 ) ( pr* )F* (u—2) (1.1)

Thus, a crucial element will be the convolution of two probability functions f
and g, that is,

Y

(fr9) ) => Ff(gly—2) . (12)

z2=0

The number of algebraic operations needed for evaluation of this formula will be
studied in Section 2. In the special case when g = f, by brute force evaluation
of (1.2) we would perform many of the operations twice. Thus, we can reduce
the number of operations considerably. This is the topic of Section 3.

In Section 4 we discuss evaluation of f™* by repeated application of (1.1). An
alternative approach for evaluation of f™* is De Pril’s (1985) recursive procedure,
which will be analysed in Section 5. In Section 6 we consider evaluation by De
Pril transforms as discussed in Sundt (1995).

In Section 7 we compare the three approaches. It turns out that De Pril’s method
is more efficient than the De Pril transform method, and that for most values of
n De Pril’s method is more efficient than traditional evaluation.
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Finally, in Section 8 we briefly consider the situation where we want to evaluate
not only f™*, but f7* for all j < n. In this case traditional evaluation is preferable
whereas the De Pril transform method could be preferable in some cases where
we want to evaluate f7* for 7 non-consecutive values of j.

IE. If = is a real number, then, by [z] we shall mean the largest integer less than
or equal to x.

We make the convention that Zi.):a = 0 when b < a.

2 The convolution of two distributions

For evaluation of (f *g)(y) by (1.2) we need y + 1 dot operations and y bar

operations, that is, for y =0, 1,..., 2 we need
(x4 1
b(z) = T—(“inl 2.1)

bar operations, and

d(z) = fart- 1)2(:L' +2) (2.2)

dot operations.

3 Simplification for the two-fold convolution

With ¢ = f in (1.2) we obtain

Y

)= f)fly-2) . (3.1)

z=0

In particular, we see that to evaluate f>* (0) we need one dot operation. When
is positive, many of the products in (3.1) are equal, and, thus, we can reduce the
number of operations in this special case of (1.2). On the other hand, programming
may become more messy, in particular as we have to consider even and odd 3’s
separately.
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Let © be a positive integer. We have
2u—1

PPu-1)=> flz)fQu—-1-z)
z=0

w—1 2u—1

=3 " f@)fQu-1-2)+> f2)fQu—1-2),

z=0
and as the two sums in the last expression are equal, we obtain

u—1

Pu—-1)=2> f(z)f(u—1-2z) . (3.2)
=0
Analogously
u—1
Fru) =2 F(2) f(Qu—2)+f () . (3.3)

2=0

Evaluation of f** (2u — 1) by (3.2) involves u bar operations and u dot operati-
ons, and evaluation of f>* (2u) by (3.3) involves u + 1 bar operations and u + 1
dot operations (recall that we count multiplication by 2 as a bar operation). Thus,
evaluation of f2* (2u — 1) and f** (2u) involves 2u -+ 1 bar operations and 2u + 1
dot operations.

We let b, (x) and d; (x) denote the number of bar and dot operations respectively
needed to evaluate f2*(0), f**(1),..., f** (z) with our present methodology.
We see that dp (z) = by (x) + 1.

Let v be a positive integer. Summation over u gives that with z = 2v we obtain

v

z(x+4)

by (z) = ;(zwr L=y -2 == (3.4)
b P 2
& (z) = ‘I(ITM +1= ('“2”) . (3.5)

For x = 2v — 1 it seems most convenient to evaluate b, () by subtracting from
b, (2v) the number of bar operations to evaluate f** (2v). We obtain

2?4+ 4 — 1
bz(m):v(v+2)—(v+1)mw+ (3.6)
22+ 4 — 2+ 4
dz(gp):LM_*_l:LM. (3.7)

4 4
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We have

d> (2 |
L _Z(_Ut__)

=N
vToo dz (21]) ’

that is, not unexpectedly, the numbers of operations in the odd and even cases
are asymptotically equal. We also find
dz (C(‘) bz (iL) 1

I =1 =,

that 1s, asymptotically, evaluation by (3.2) and (3.3) requires half the number of
operations required for evaluation by (3.1).

4 Extension to the n-fold convolution

As mentioned in subsection 1D, we can evaluate f™* by repeated application
of (1.1). The question is what would be the most efficient way to do this? In
Section 3 we saw that evaluation of (f*g)(y) by (1.2) for y = 0,1,..., 2
requires asymptotically twice as many algebraic operations for g # f as for
g = f. Thus, it seems that in addition to keeping the number of applications of
(1.1) as low as possible we want as many as possible of them with p = ¢. Let
us count each usage of (1.1) as 2 when p # ¢ and 1 when p = q.

The least efficient we could do, would be to use (1.1) with p =7 and ¢ = 1 for
1 =1,2,...,n— 1. That would give a count of

wn)=2mn-1)—1=2n-3;

the deduction of 1 being for the evaluation of f%*.
Let us now describe what we believe to be the optimal strategy. We introduce
the binary representation

k(n)—1
m=2RM g Y " Dy
i=0
of n, where k(n) is a positive integer and b,,; € {0,1} fori =0,1,...,k(n)—1.

We first evaluate fzi* by (1.1) with p =g =2""! fori=1,2,...,k(n); each of
these & (n) applications has count 1. Finally we find f™* by

” k(n) i,
o= (L )
{’L:[)?l;:l}
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which is evaluated by Zfi’g)_l bni applications of (1.1), each of which has count
2. Thus, we apply (1.1)

k(n)—1 k(n)—1
a(n)=*k(n)+ Z bz = Z (bni + 1)
=0 i=0

times, and that gives a total count of
k(n)—1

c(n)=k(n)+2 Z B
i=0

k(n)—1
— Z (2bni +1) =2a(n) —k(n) . (4.1)

=0

We believe that ¢ (n) is the lowest possible number of counts for evaluation of
f™* by repeated application of (1.1).
We trivially have

c(n)=a(n) =k(n) (4.2)
when n is a power of two, and
c(n) >a(n) > kn) (4.3)

when this is not the case.
When applying the present strategy to evaluate f™* (0), f™* (1),..., f™ (x), we
need

bn (x) = k (n) by (2) + (a(n) — k (n))b () (4.4)
bar operations and
dn () =k(n)dy(z) + (a(n) —k(n))d(x) (4.5)

dot operations.

In Table 4.1 we display & (n), a (n), ¢(n), w(n) forn =1,2,..., 16.
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n k(n) a(n) e(n) w(n)
2 1 1 1 1
3 1 2 3 3
- 2 2 2 5
5 2 3 4 i
6 2 3 4 9
7 2 4 6 11
8 3 3 3 13
g 3 4 5 15
10 3 4 9 17
11 . 5 7 19
12 3 4 5 21
13 3 5 7 23
14 3 ) ) 25
15 3 6 9 21
16 4 B 4 20

Table 4.1: Counts for the n-fold convolution.

5 De Pril’s recursion

De Pril (1985) presented the recursion

Y

1 n+ 1 ,
Y (—z2—1)f(2) ™ -2 =12...)
£ () = f(0) z:i( Y )

f)r . (y=0)

Most programming languages have a power function or routines for exponentials
and logarithms that could be applied for evaluation of the initial value

f(0) = £(0)". (5.2)

However, such procedures would introduce a new dimension as it is uncertain
how they compare to dot and bar operations. When restricting to dot and bar
operations, we can find f™* (0) by a(n) multiplications by optimising like we
did in Section 4.

For evaluation of f (y) for y > 0, we rewrite the expression in (5.1) as

(5.1

1

W=

Y
Y h(zy) [ (y—2) (5.3)
z=1



136

with

s(y)=yf0); hiz,y)=((n+1)z—-y)f(2),

which can be evaluated recursively by

sW) =sw—1+70) @G=23...) (5.4)
s(1) = f(0)
hizoy) =h(zy-1)—-f(z) (z=12...,y-1) (5.5)
h(y,y) =nyf(y) -
Let us first consider the case y = 1. To evaluate h(1,1) we need one dot

operation, and for s(1) we need no algebraic operations. To evaluate f™* (1)
by (5.3) we need two dot operations. Thus, totally we need three dot operations.
Let us now consider ¥y > 1. We need two dot operations to find A (y,y), and to
find h(z,y) by (5.5) we need one bar operation for each z = 1,2,...,y — 1.
To evaluate s (y) by (5.4) we need one bar operation. Finally we need y — 1 bar
operations and y + 1 dot operations to evaluate f™* (y) by (5.3). Thus, totally we
need 2y — 1 bar operations and y + 3 dot operations.

Summing up the number of operations that we have found, we obtain that for

evaluation of f™* (y) for y = 0,1,...,x we need
br(z)=) (Qy-1)=2"—1 (5.6)
y=2

bar operations and

(ir(a?)*a(n)+3+b2(y%3)%(x+7)+a(n)—l (5.7)

dot operations.

6 Evaluation by De Pril transforms

Sundt (1995) defined the De Pril transform ¢ of f by

1 y-!
o) —m<yf(y)—;sof(Z)f(y—z)) - wmena)
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The De Pril transform determines f uniquely. By solving (6.1) for f (y) we obtain
1 Y
f(y)EQZw(Z)f(y—Z) S w=12,...) (6.2)
z=1

Furthermore, Sundt (1995) showed that
o (y) =nep(y) - (¥y=12,...) (6.3)

Thus, we can evaluate f™* by first evaluating ¢ by (6.1), then finding ¢ ¢n~ by
(6.3), and finally evaluating f™* by (6.2), obtaining the starting value f™* (0) by
(5.2).

As argued in Section 5 we need a (n) dot operations and no bar operations to
evaluate f™* (0).

Let us now consider y > 0. To evaluate ¢ (y) by (6.1) we need y — 1 bar
operations and y + 1 dot operations. To evaluate ¢ sn+ (y) by (6.3) we need one
dot operation, and to evaluate f™* (y) by (6.2) we need y — | bar operations and
y + 1 dot operations. Thus, we totally need 2y — 2 bar operations and 2y + 3 dot
operations to evaluate f™* (y), and by summation over y and adding the operations
for evaluation of f™* (0) we obtain that to evaluate f™* (y) fory = 0,1,..., 2
we need

T

bp () =) (y—2)=z(x—1)

y=1
bar operations and

dp(z)=a(n)+ > (y+3)=z(z+4)+a(n)

y=I

dot operations.

7 Comparison of the methods

TA. We easily see that d,, (x) — d, (z) is always positive. On the other hand,
by () — by () is negative for all = > 1, that is, dot and bar operations give
opposite conclusions. Let us therefore compare the total number of algebraic
operations required for the two methods. We have

bp(a:)+dp(w)(bT(m)+d,.(m)):§($—1)+2>O,
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that is, totally the De Pril transform method requires more algebraic operations
than De Pril’s method. Furthermore, as d, (x) — d, (z) > 0, and our reason for
distinguishing between bar and dot operations was that the latter would be more
time-consuming, we conclude that De Pril’s method is more efficient than the De
Pril transform method. Thus, we can concentrate on comparing De Pril’s method
and traditional evaluation. However, we point out that for large n the method of
Section 6 will be more efficient than traditional evaluation.

7B. To compare the number of operations needed in De Pril’s method and the
method of Section 4 we introduce the differences

boa () = b () —br (2);  dpa (z) =dn(z) —dr (2) .
By application of (4.4), (3.4), (3.6), (2.1), (4.1), and (5.6) we obtain
bnA (:E)
% ((c(n) —4)z*+2(a(n)+k(n)x+ 4) (z even)

=) e )% + 2(an) o
+k(n))x +4 — k(n)) (x odd)
and by (4.5), (3.5), (3.7), (2.2), (4.1), and (5.7)
dna ()
1 ((c(n)=2)2*+ Bc(n)+k(n)—14)z+4) (z even)
= (7.2)

2((e(n) — 2)z* + (3¢(n)
+k(n) —14)x+4 - k(n)). (x odd)

From (7.1), (4.2), (4.3), and Table 4.1 we see that for all n > 5 except for n = 8
we have b, () > 0 for all z > 0. For n = 8 and n < 5 we have b, (z) <0
except for some small values of x. Thus, we conclude that with respect to bar
operations traditional evaluation is preferable when n = 8 and n < 5 whereas De
Pril’s method is at least as good for all other values of n.
Let us now turn to dot operations. For all n except 2 and 4 we have d,a () > 0
for all x > 0. For n = 2 and n = 4 we have d,a (x) < 0 except for some small
values of x. Thus, with respect to dot operations we conclude that traditional
evaluation is preferable when n = 2 and n = 4 whereas De Pril’s method is at
least as good for all other values of 7.
We see that the conclusions with respect to bar and dot operations are consistent
except for n = 3 and n = 8. In both these cases we have b, (z) +d,a () > 0
for all z, and by similar reasoning as in subsection 7A we conclude that in both
these cases De Pril’s method is more efficient than traditional evaluation, that is,
we prefer De Pril’s method for all values of n except 2 and 4.
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8 Evaluation of f2*, f3*,..., f**

Until now we have discussed evaluation of f™* (0), f™* (1),..., f™ (x), and
our conclusion was that for most values of n, De Pril’s method is preferable to
traditional evaluation with regard to the number of algebraic operations. If we also
need f7* (0), f7*(1),..., f7* (x) for j = 2,3,...,n — 1, the picture changes.
Whereas De Pril’s method is a recursion in y for f™* (y), in traditional evaluation
we also evaluate f7* for some values of j < n.

The most efficient way of traditional evaluation of f*, f?* ... f™* seems to be
to evaluate f7* by the method of Section 2 with ¢ = fU~D* when j is odd, and

when j is even, as the two-fold convolution of f7* by the method of Section 3.
With De Pril’s method we will have to perform the recursion (5.3) for each
value of j. The only places where it seems possible to obtain some gain, are in
evaluation of f™* (0), s(1), and h (y,y).

Without going into further detail we conclude that in this situation, traditional
evaluation is preferable to De Pril’s method.

Traditional evaluation will also be more efficient than the De Pril transform
method. However, the latter method may be more efficient in some cases where
we want to evaluate f7* (0), f7* (1),..., f7* (x) for r non-consecutive values
of 7.
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Abstract

In the present paper three methods for evaluating the n-fold convolution of an arithmetic distribution
are compared by counting the number of elementary algebraic operations.

Résumé

L’article compare trois méthodes d’évaluation du énieéme produit de convolution d’une distribution
arithméthique en comptant le nombre d’opérations algébriques élémentaires requises.

Zusammenfassung

Im vorliegenden Artikel werden drei Methoden zur Berechnung der n-fachen Faltung einer
arithmetischen Verteilung verglichen, indem jeweils die Anzahl elementarer Rechenoperationen
bestimmt wird.
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