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Hansjörg Albrecher, Robert F. Tichy, Graz

Zur Konvergenz eines Lösungsverfahrens für ein Risikomodell
mit gammaverteilten Schäden*

1 Einleitung

In der Risikotheorie gibt es eine Vielzahl von entwickelten Modellen und
mathematischen Methoden; ein guter Überblick findet sich in [Ger 79] und [Bühl 70]
sowie, mit besonderem Schwerpunkt auf der Berechnung der Wahrscheinlichkeit
für Ruin, in [Tho 82].

Wir betrachten im folgenden den Risikoprozess St x + et — für den

Fall eines zusammengesetzten Poisson-Prozesses mit unabhängigen Einzelschadenshöhen

mit Verteilungsfunktion F. Dabei bezeichne x das Anfangskapital und

c die Prämiendichte, wobei c > A J0°° y dF(y) gelten muss, damit die
Überlebenswahrscheinlichkeit positiv ist. Weiters gebe es eine lineare Dividendenschranke
b + at, d.h. falls das Kapital die Barriere b + at erreicht, werden Dividenden
ausbezahlt und das Kapital bleibt auf der Barriere, bis der nächste Schaden auftritt
(0 < a < c, b > 0).
Für Modelle mit absorbierenden horizontalen Dividendenschranken wurden in
[DiGr 84] für beliebige Verteilungen der Einzelschadenshöhen numerische
Approximationen gefunden und im Falle von linearen Dividendenschranken erhält
man obere Schranken für die Ruinwahrscheinlichkeit mit geeigneten Martingalmethoden

(siehe [Ger 73]).
Sind die Schadenshöhen exponentialverteilt, so läßt sich, wie in [Ger 81] gezeigt
wurde, eine exakte und explizite Lösung für die Überlebenswahrscheinlichkeit

U(x,b) mithilfe einer Darstellung von U(x,b) als Reihe finden. Weiters wurde
ein algorithmisches Lösungsverfahren für die Ermittlung der Koeffizienten dieser
Reihe entwickelt und schließlich konnte die Konvergenz dieser Reihe bewiesen
werden. In der Arbeit [SiTi 96] dieser Zeitschrift wurde dieser Ansatz dann auf
Risikomodelle mit Gamma(a,/3)-verteilten Einzelschadenshöhen mit ganzzahligem

Parameter a > 0 verallgemeinert (ß £ M+) und ein analoges algorithmisches

Lösungsverfahren mit einer solchen Reihenkonstruktion vorgestellt. Dabei
wurde aber auf die Frage nach der Konvergenz dieser Reihe und somit dieses

Verfahrens nicht eingegangen, sondern nur darauf hingewiesen, dass Simulationen

nahelegen, dass dieses Verfahren nach der Berechnung von rund 100 Termen

*Die Autoren wurden durch das Projekt S 8308-MAT des Fonds zur Förderung der wissenschaftlichen

Forschung unterstützt.
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in der Reihenenwicklung die exakte Losung U(x,b) hinreichend genau liefert
Obwohl zahlreiche Simulationen eindeutig darauf hinweisen, dass dieses

verallgemeinerte Losungsverfahren (mitunter recht rasch) konvergiert, liegt also kein
formaler Beweis fur dessen Konvergenz vor
Fur ein beliebiges a 6 N stellt sich die Antwort auf die Frage nach der

Konvergenz als schwierig und vor allem extrem aufwendig heraus Wir werden
deshalb in der vorliegenden Arbeit exemplarisch fur a 2 als einfachsten
Vertreter dieser allgemeineren Klasse von Schadenshohenverteilungen beweisen,
dass das in [SiTi 96] entwickelte Losungsverfahren auch wirklich konvergiert und

somit die exakte Losung U(x,b) explizit liefert

2 Das Verfahren

Es seien also im folgenden die voneinander unabhängigen Emzelschadenshohen

Xt gemäß der Verteilungsfunktion

py Q; J

F^ Jo T{a)ßae~^dz (a e N' -0 e R+)

verteilt und es bezeichne A > 0 den Erwartungswert der exponentialverteilten
Zwischenschadenszeiten. Weiters sei c die konstante Intensität der Prämienzahlungen,

wobei c > AE(Wj) aßX Die Überlebenswahrscheinlichkeit U(x,b)
einer Versicherung in diesem Risikomodell ist dann, unter Einbeziehung einer
linearen Dividendenschranke b + at, die Losung der Gleichung

cUx(x, b) + aUb{x, b) — XU(x, b) + A f U(x — y, b)dF(y) 0 (2)
Jo

unter den Nebenbedingungen

Ux(b,b) 0 und lim U(x, b) U(x), (3)
6—

wobei U(x) die Überlebenswahrscheinlichkeit mit Startkapital x in Abwesenheit
der Dividendenschranke bezeichnet (vgl [Ger81]) Ist F von der Form (1), so
laßt sich, wie m [SiTi 96] vorgeschlagen wird, die Losung von (2) unter (3) in
der Form

oo a+1
Jk)

U{x,b) ^Tes b^2\Althe
k=0 i=l

(4)

darstellen, wobei die Exponenten und Koeffizienten nach folgendem Algorithmus
bestimmt werden
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(k)Fur alle k e N sind die Koeffizienten r\ ' die a + 1 Losungen der folgenden
Gleichung m R•

cR(ßR + 1)Q + aS(ßR + 1)" - \{ßR + l)a + A 0, (5)

wobei S gilt
Die Koeffizienten A.fc sind die Losungen des linearen Gleichungssystems

Ak^ 0, Vj 1, ,a (6)
t^ß+ßr[k)V

Um die zweite Nebenbedingung in (3) zu erfüllen, wird A" gleich Null gesetzt,

womit auch 0 gilt Das Polynom (5) hat genau a + 1 (möglicherweise
komplexe) Nullstellen, somit sind die Exponenten eindeutig bestimmt Um der

ersten Nebenbedingung in (3) zu genügen, wird fur ein beliebiges k fur jeden
(k) i (M

Summanden AJtkes eL x (j 2,. a + 1), dessen Ableitung nach x in
(b, b) ungleich 0 ist, ein Term eingeführt, sodass die Summe beider Terme Null
ergibt Wenn also die Ableitung des j-ten Summanden des fc-ten Termes 0 ist,
so suchen wir ein noch nicht besetztes k' > k und setzen, um Ausloschung fur
alle b zu erreichen,

r[fc'> + a(fc') rf>+*(*) (7)

woraus sich mit der Bestimmungsgieichung (5) fur R der Exponent s^kergibt
Dafür wird jene Losung der Gleichung verwendet, fur die der Realteil 72.(5) < 0

minimal wird (ob eine solche Losung mit negativem Realteil immer existiert, muss

aber erst untersucht werden und blieb m [SiTi 96] unbehandelt) Dieses S
wird dann wieder in (5) eingesetzt und nun sind die a + 1 (möglicherweise

komplexen) Nullstellen des Polynoms (5) die Exponenten r[k ^

(i — 1, a+1).
Weiters wird

A\ k>r\k,) ~AJtkr{k) (8)

gesetzt, um die Terme, die nun gleiche Exponenten in (b, b) haben, m Summe

zu eliminieren Ausgehend von A,o 1 (was sich durch Vergleich mit der
bekannten Losung U(x) ergibt) können nun aus (6) und (8) die Koeffizienten

At,k {i 1, a + 1) als Losung eines linearen Gleichungssystems mit a + 1

Unbekannten eindeutig bestimmt werden (da die zugehörige Matrix, wie sich

zeigen laßt, vollen Rang hat)
Auf diese Weise werden in jeder Stufe k also a neue Stufen k' mit ihren

"Anfangswerten" versehen und somit eindeutig bestimmt.
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3 Beweis der Konvergenz dieses Verfahrens für a 2

Wir zeigen nun, dass das in Abschnitt 2 erläuterte Verfahren fur a 2

konvergiert In diesem Fall ist also

U(x,b) (k)b
C

k=0

(k) (k) (k)
A^ker< X + A2keri x + A3 fcer' a (9)

und die Bestimmungsgieichungen (5) und (6) reduzieren sich entsprechend zu

cR(ßR + l)2 + aS{ßR + l)2 - \{ßR + l)2 + A 0, (10)

bzw

A\ k A2k A2k

(1 + ßr^ß (1 +ßr^)° (l+ßr^ß
0, 0 1,2) (11)

Dazu beweisen wir zunächst einige Eigenschaften der Koeffizienten mittels

vollständiger Induktion

Lemma 1. Fur alle k > 0 gilt

rf'.sf'eR (i=l,2,3), (12)

r[fc)>0, (13)

s(fe) < 0, (14)

1
3 <ri2k)<-~5, (15)

ß Y 4ß2(c — o) " 2 " ß

und

< rik) < 0 (16)

Weiters gilt s^k ' < s^) < o, r^k ^

sowie
^

> r^, r[K ' >
und (s^k + r[k Y < (s^ + r{^) < 0, d h innerhalb einer "Bildungskette" im
Algorithmus handelt es sich um monotone Folgen und es gilt

lim s^ — oo, lim r= +oo und lim ~ — (17)
k—*oo k—>oo k—>oo ' p



119

Beweis: Jede Bildungskette im Algorithmus hat ihren Ursprung in der 0-ten
Stufe und wir können darum fur em beliebiges k £ N die obigen Eigenschaften
beweisen, indem wir eine vollständige Induktion innerhalb der entsprechenden
Kette fuhren

1) Induktionsanfang Fur k 0 gilt per defimtionem 0 und somit ist
r{0' =0 eine Losung von (10) Die restlichen Losungen ergeben sich dann zu

jo) __
' ± \J\2ß2 + 4Aßc

~ _/3 +
2cßrl{ - -75 + — (18)

und sind somit reell Weiters sind sie genau dann beide negativ, wenn c > 2Xß,
was unserer vorausgesetzten vernunftigen Pramiumspohtik entspricht

Betrachten wir weiters ausgehend von (10) das Polynom

p0{B) =cR{ßR+ l)2- X(ßR+ 1)2 + A, (19)

so ist (wegen r[0^ 0) po(0) 0 und Pq(0) c — 2Xß > 0 Da aber po( — jj)
A > 0, muss eine weitere Nullstelle im Intervall (—4,0) existieren, die wir
mit r\ ' bezeichnen Fur R —» —oo geht po(R) gegen —oo und somit gilt

Um nun zu zeigen, dass r^ im Intervall (15) liegt, muss also

P° (— ]3 ~ \J Aß1 (c-cß) ® gelten Dies fuhrt auf die Bedingung

4(c-a)
' \\ß ' " ' w " ' ' (20)

Um ihre Gültigkeit zu beweisen, setzen wir c — a xXß (mit einem festen

x > 0) in (20) ein und erhalten

c>Vp|S (21)
1 + v4a:

Wegen a > 0 gilt c > xXß und somit gilt (20) genau dann, wenn fur alle x > 0

4x — \ßt~x

17=" - x
1 + s/4x

erfüllt ist, was eine Kurvendiskussion dieser Funktion bestätigt
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2) Induktionsannahme: obiges gelte für k

3) Induktionsschritt: k —» k'
(k)Die Stufe k bildet sich aus rK wobei j 2 oder j 3. j sei also im folgenden

o.B.d.A. fest gewählt. Wir zeigen sukzessive:

a) s(-k") e M: Setzen wir R : r^ + s^ — S in (10), so bestimmt sich wegen

(7) s(kals eine der drei Lösungen in S (nämlich jene mit kleinstem Realteil)
der kubischen Gleichung

(a - c) ß2 S3

+ ((c (rf} + sW) - A) ß2 - 2 (a - c) (ß (rf} + s^k)) + 1) /?) S2

+ (-2 (c (rjfe) + SW) - A) (/3 (rf} + s(fc)) + 1) ß

+ (a-c) +s(fc)) + l)2)s

+ (c (rjfc) + SW) - A) (ß (rf + s(fc)) + l)2 + A 0 (22)

Eine weitere der drei Lösungen dieser kubischen Gleichung ist aber das schon

bekannte s^k\ denn (22) liefert ja alle S, für die gilt, das R + S + s^ ist.

Wir können also die Lösung s^ mittels Polynomdivision in (22) wegdividieren
und erhalten eine quadratische Gleichung in S. In dieser kann nun wegen (10)

durch

A A er^
(ßr^ + iy a

s(fc) "7^7G 777~ + Z-—^- (i=1>2,3) (23)

(k)mit i j ersetzt werden. Im folgenden sei rj ' durch r3 abgekürzt. Insgesamt

ist also s(fc -1 eine der beiden Lösungen der quadratischen Gleichung

(2/3 A a2+ 20 r] a2 ß4 A + 20a2 ß3 r2 A + 10a2 ß2 r3 A + 5 ß4 X2 ar)
+ 2 Tj ß3 A2 a — 29 ß4 X a c r3 — 20 ß3 X a c r2 — 5 ß2 X a c r3

+ 26 r4 a ß4 c2 — 3 7-j
a2 ß6 c — 16 r3 a2 ß3 c + 2 rj5 a2 ß6 X

+ 10 r4 a2 ß5 X - 35 r4 a2 ß4 c + 3 a ß6 c2 + 14 r3 a ß5 c~

- 40 r3 a2 ß3 c + 24 a ß3 r3 c2 + a3 + r3 a3 ß6 + 6 r3 a3 ß5

+ 15 r4j a3 ß4 + 20 rj3 a3 ß3 + 15 a3 ß2 r2 + 6 a3 ß r3 - 6 c3 r4 ß4

- c3 r3 ß6 — 4 c3 r3 ß5 ~ 4 c3 r3 ß3 - c3 ß2 r2 - ca2 - 4r3 a ß6 cX
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— 18 r4 a ß5 c A — 25 a2 ß2 r2 c + 11 a ß2 r2 c2 — 8 a2 ß r3 c

+ 10 A ß4 r3 c2 — A2 ß6 r4 c — 4 A2 ß5 r3 c + A2 ß6 r4 a + 4 A2 ß5 r3 a

+ 2 A /36 rj c2 + 8 A ß5 r4 c2 — 4 A2/?4 r2 c + 4 A ß3 r2 c2 + 2 c2/3 r, a)

j{ißr3 + 1 )4 — /^(2ßc2 r-j —4er3 aß3 — 10er2 aß2

— 2 c A /33 r2 — 4 c A /32 r3 + 2 A a /33 r2 + 4 A a ß2 r7 — 8 ß c r3 a

+ ß A a + 2 c2 r2 /33 + 4 c2 r2 ß2 + 2 r2 a2 /33 + 6 a2 ß2 r2 + 6 a2 ß r3

— 2 ca + 2 a2)5j ({ß rj-\-\)2a)j + (a — c) ß1 S2 0 (24)

Die beiden Lösungen dieser Gleichung sind genau dann reell, wenn die Diskri-
minante

ß2\2a2 -4ßXa3 + 12 Xa2ß3 r2 c + 4 er3 a2ß4 X — 4r3 a3ß4 X

— 12A a3ß3 r2 — \2Xa3ß2 r3 + 12cA ß2 r3 a2 +4ß X a2 c > 0 (25)

ist, was sich auf folgende Bedingung reduzieren läßt:

4(a-c) {ßrj + l)3 -ßX < 0 (26)

bzw.

r3>~ß~i[m^ä)' (27)

dies ist aber laut Induktionsannahme für j 2, 3 erfüllt.

Anmerkung: Bedingung (27) ist die bestmögliche bzw. exakte Schranke für r3,
um die Reellheit von s^k 1 zu erreichen.

b) r\k ' g I: Da r\k •* r^ +8^ ~s^k \ ist also wegen der Induktionsannahme

auch rjfe ' reell.

c) r[k ' > 0: Betrachten wir nochmals Gleichung (10) und ersetzen diesmal S

durch r^ — R, so erhalten wir die kubische Gleichung in R

(c — a) ß2 R3 + (a/32(rf}+s(fc))-A/32+2(c-a)/?) R2

+ (2aß{r[k) + s(fc))-2A/3 + c-o) R + a (r(k) + s(fc)) =0 (28)
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(k) (k')wobei zwei der drei Lösungen ; und r\ sind. Somit muss auch die dritte

(für den Algorithmus letztendlich irrelevante) Lösung ru reell sein und man erhält
nach dem Vieta'schen Satz aus (28)

a (V(fc) + s(k)\
VJ /
(c — a)ß2

r\K >r)K>ru V: (29)

(k)Der rechte Term und r^ ' sind aber nach Induktionsannahme positiv bzw. negativ,

somit muss das Produkt r[k \u negativ sein. Da s^k ' die kleinere Lösung von
(k')

(24) war, ist das zugehörige r\ der größere Multiplikant des obigen Produktes
und also positiv.

d) < 0: Wegen s^k= r^ — r\k ^
und der Negativität von

bzw. der Positivität von r[k ist also (mit 0) s^k ' < < 0.

e) r[k3^ £ M: Um die beiden restlichen Exponenten der Stufe (k1) zu untersuchen,
''

(k')können wir die nunmehr schon bekannte reelle, positive Lösung r\ aus der
kubischen Gleichung in R

cR(ßR + l)2 + as(k>){ßR + l)2 - X(ßR + l)2 + A 0

wegdividieren und erhalten, wenn wir für s

s(k') _A
+

A
_ ctV

(ßr[fc •*

+ l)2 a a a

einsetzen, die quadratische (bemerkenswerterweise von a unabhängige) Gleichung
in R

q2 d2 ß (4cr{fe ' ß — ß X + 2 c + 2cr[fc ' ß2) R
cß Rz +

(ßr^ + lf
cr[k) ß2 ~ Xß2r[k) ~2ßX + 2cr{k) ß + c

_
(ßr-r+i)2

}

(k')Diese liefert genau dann zwei reelle Lösungen r\ 3 % wenn die Diskriminante

D \2cr[k ^
ß2 X + ß2 X2 + 4 ß Xc+12cr\k ^ ß3X + 4 er!1' ß4 X
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(k')
positiv ist. Wegen der bereits gezeigten Positivität von r, sowie aller restlichen

(k')auftretenden Parameter ist diese Bedingung aber erfüllt, also sind auch r2 und

r^k ' reell.

ik') | I (k')
f) r) < — jj bzw. —jj < r) <0: Betrachten wir zuerst, ausgehend von (10),

das kubische Polynom mit reellen Koeffizienten

p{R) cR{ßR + l)2 + aS(ßR + l)2 - X{ßR + l)2 + A

Offensichtlich gilt p(0) aS < 0, da S s^k ja negativ ist. Weiters gilt
lim p(R) oo, also gibt es mindestens eine positive Nullstelle von p(R). Nun

R—>oo

ist die Ableitung

p'(R) (ßR+ 1) [2ßcR + c(ßR + 1) + 2aSß - 2Xß]

ein Polynom zweiten Grades mit den Nullstellen jV) — ^ und N2

2XI3~3ßcl3~C a'so nur eine Extremstelle positiv sein kann, gibt es genau eine

positive Nullstelle von p(R) und diese muss r[k •*

sein. Somit sind < 0.

Setzt man ausgehend von (30)

pßR) :=cß2R2+ _ {k
l2 u2 ß (4cr[k,) ß - ßX + 2c + 2cr\k']2 ß2)R

(ßr\k ' + l)2

—A ß2 rjfc ' — 2 ß X + cr[k •*

ß2 + 2cr[k ^
ß + c

+
(ßr[k,) + l)2

so sieht man (mit c > 2ßX), dass Pi(-jj) —

^ (0 + 1p
< ® S0Wle Pi(0) > 0

und lim p\ (R) +00. Das ist aber gleichbedeutend mit
R—* —00

rik ' < — -5 bzw. — < rik ^

< 0
ß ß

g) Monotonie der r[k^ (^ 1,2,3): Sehen wir noch einmal Gleichung (23) an

ßk) -
X

+ («=1,2,3).
{ßr k + l)2 a a a
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Fassen wir nun r^ als Funktion r[k\s^) auf, so können wir (23) implizit nach
s(fc) differenzieren und erhalten

drW
ß„(k) 2ß\

(k)_ — C
(i 1,2,3). (31)

(ßr^' + iy

Wegen > 0 ist der Ausdruck (ßr^ + l)3 > 1 und somit (wegen c > 2ß\)

< 0. Da aber s^k'^ < s^k\ folgt r\k ^

Wegen < — jj gilt (ßr^ + l)3 <0 bzw. < 0. Analog zu oben gilt

deshalb r[k ' > und somit ist auch r"k ^ wieder im gewünschten Intervall
(15).

Setzt man schließlich Tj0-1 aus (18) in (31) ein, so ergibt sich wegen c > 2ßX eine
(k;) (k)

positive Ableitung und insgesamt mit (16) im weiteren r3 < r3 für beliebige
k' > k.

Die jeweiligen Grenzwerte ergeben sich dann aus (23) wegen lim —oo.
k—>oo

h) + r\k ^ < 0: Die Monotonie dieser Summe folgt trivialerweise

aus

SW + r(fc) > s(fc) + rW s(k') + r(*')_ n

Um das asymptotische Verhalten der Koeffizienten Altk zu untersuchen, betrachten

wir wieder einen Schritt in einer Bildungskette {k —> k') und erhalten wegen
(8)

I A|/1|'fc'1"
|r(fc')| - |r(fe')j

-q^k'\A^\ (32)

mit der Konstanten K\ — ^ — \J Aßi(c_~ß- Die beiden anderen Koeffizienten der

Stufe k' ergeben sich dann aus dem linearen Gleichungssystem (6) zu

ßir^r\r22 + 2ß2rir\T2 + ß2r\r22 + ßr^r\
A2,k'

(1 +,öri)(/32r3rir2 + ßr3rx + ßr\r2 + ßr3r2 + r3 +r2)

H
2ßrxr2 + rt + ß2r3r22 + 2ßr3r2 + r3

(1 + ßr\)(ß2rir\r2 + ßr2r\ + ßrxr2 + ßr2r2 + r3 + r2))
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bzw.

Aix (n - r2)Ax,k>)/(/34r32ri2r2 + 2ßir2rxr2 + 20irirx2r2

+ ß3r2r2 + ß2r2r2 + 4ß2r2rxr2 + ß2rjr2

+ 2ß2r32rx + ß2r2r2 + 2ßr2r2 + 2ßrxr2 + ßrj
+ 2ßr2rx +r2+ r2),

(k')wobei r% für r) ' steht. Wegen (17) gilt also

lim \A%tk\ 0 {%= 1,2,3). (33)
k—>00

(k)Nun lassen sich mit den Monotonieeigenschaften der r\ bzw. ihren bekannten
Grenzwerten noch folgende Abschätzungen gewinnen:

bzw.

1/1 I ^
I

1' ^ I

I A
' 3,fe' - ^ ^ (fc)

a4 + K5r\

(34)

(35)

mit Konstanten Kt > 0. Wegen der Monotonie von werden die qlyk («

1,2,3) fur hinreichend grosse k beliebig klein und es existiert beispielsweise ein

k\, sodass für alle k > kx gilt: q^ max{gi./t, q2ta., q2,k} < 1- Auf diese Weise
kann die Folge AltkJ innerhalb einer Bildungskette dann mit einer geometrischen
Reihe majorisiert werden.
Die absolute Konvergenz unserer Reihe (4) ergibt sich nun mit folgenden
(großzügigen) Abschatzungen: Wir betrachten jede der drei Teilreihen

£<
k=0

\AZtk\e
(k)

(z 1,2,3) (36)

separat. Aufgrund der Ergebnisse bezuglich der Monotonie der Koeffizienten r\
und gilt (0 < x < b sind ja fest gewählt)

(fc)

| j &
Sk)

<CZJ2\^\ (« 1,2,3) (37)
k=0

mit Konstanten C, > 0.

*.=o
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Nach dem Cauchy'schen Konvergenzkriterium liegt genau dann absolute Konvergenz

vor, wenn für jedes e > 0 ein Nt existiert, sodass für alle n > m > Ne

Ylk=m+1 \ Ai,k\ < e gilt (i 1,2,3). Aufgrund der Struktur des Algorithmus
stehen Elemente mit benachbarten Indizes nicht unbedingt in "kausalem"
Zusammenhang (bezüglich der Bildung der Folgenglieder); jedoch kann die Reihe (37)
in Blöcke mit 1,2,4,8,... ,2m~1 Elementen zerlegt werden; innerhalb des m-
ten solchen Blockes (mit 2m~' Folgengliedern) gibt es dann also keine direkte

Abhängigkeit zu den Koeffizienten des (m — 2)-ten Blockes mehr bzw. anders

ausgedrückt, erzeugen die Elemente des (m— l)-ten Blockes sämtliche Koeffizienten
des m-ten Blockes. Wegen (32), (34) und (35) gilt

\Aitk\ < (k 2m~2,... m > 3; i= 1,2,3)

wobei

|Ai,fem_,|= max |Ai,fe| und qSm max qk.
ke(2m-\..,2m-2) fce(2-2,..,2"*-')

Mit denselben Argumenten kann man dann

l^kfcl < qljAuk^l (k 2m~\... ,2m; i= 1,2,3)

bzw. analoges für größere k folgern und es ergibt sich insgesamt

OO OO

£|A*I< 53 2m-'go|A1,fcmo_1| (z 1,2,3)
k=ko m=mo

und dies ist für qBm < A eine geometrische Reihe. Da für hinreichend große fco
°

(k)
(und somit für hinreichend große rrio) das qe (als Funktion der r\ ') beliebig
klein gemacht werden kann, konvergiert die Reihe (4) also gegen eine beschränkte

Funktion, die auch (3) erfüllt.

Bemerkung: Für a > 2 sind die Koeffizienten r\k^ und im allgemeinen
nicht mehr reell und deshalb kann die vorgestellte Beweistechnik in dieser Form
nicht auf die Fälle mit a > 2 übertragen werden. Immerhin hat man mit dem
Beweis für a 2 aber die Gewißheit erlangt, dass zumindest für einen Vertreter
der Klasse der allgemeineren Verteilungen, für welche das obige algorithmische
Lösungsverfahren formuliert wurde, dieses auch konvergiert.
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Zusammenfassung

In der Arbeit von Siegl und Tichy [S1T1 96] wird die exakte Losung fur die

Überlebenswahrscheinlichkeit U(x,b) eines Risikoprozesses St x + cf — E^f^X, mit Anfangskapital

x, konstanter Pramiendichte c und linearer Dividendenschranke b + at fur den Fall eines

zusammengesetzten Poisson-Prozesses mit unabhängigen Gamma]«, /3)-verteilten Einzelschadens-
hohen Xt (wobei a 6 N, ß £ R+, 0 < a < c und b > 0) als Reihe dargestellt und ein

Algorithmus angegeben, um die Reihenkoeffizienten zu bestimmen Wahrend in [Ger 81] fur den

speziellen Fall exponentialverteilter Schadenshohen (also a 1) und ein entsprechend einfacheres

Losungsverfahren die Konvergenz dieser Reihe gezeigt werden konnte, ist die Konvergenz fur den

allgemeineren Fall noch nicht behandelt worden
In dieser Arbeit wird exemplarisch fur a 2 bewiesen, dass das Losungsverfahren nach [SiTi 96]
auch wirklich konvergiert und somit zur Ermittlung von U(x,b) angewendet werden kann

Resume

Nous considerons le modele actuariel St ;/: I et E^^X, en presence d'une barnere hneaire
de dividendes b + at, oü x est le capital initial, c l'mtensite constante des primes, le nombre
des simstres possede une distribution de Poisson et les montants des simstres X% des distributions
Gamma (o, ß) mdependantes (a N, ß £ 'S 0<a<cet&>0) Pour ce modele, Siegl et

Tichy [SiTi 96] representent la solution exaete pour la probability de survie U(x,b) sous forme
de sene et proposent un algonthme pour obtemr les coefficients correspondants Dans le cas de

montants de simstres qui suivent une loi exponentielle, 1'algonthme peut etre simphfie et Gerber

[Ger 81] a prouve sa convergence, cependent, la convergence dans le cas general etait une question
ouverte
Dans le present travail, les auteurs prouvent la convergence de cet algonthme ä la solution exaete

U(x,b) pour a 2 comme representant de cette classe de distnbutions plus generale et justifient
1'utilisation de cette methode pour obtemr la solution exaete U(x,b)

Summary

We consider the classical nsk process St x + et ~ E^'^Xj in the presence of a linear dividend
barrier b+at, where x is the initial capital, c is the constant intensity of the contmous premium flow,
the claim number variable N(t) is Poisson-distnbuted and the single claims X% are independent
Gamma(a, /3)-distnbuted random variables (a G N, ß G R+, 0 < a < c and b > 0) For such

a model Siegl and Tichy [SiTi 96] represented the exact solution for the probability of survival

U(x,b) as a series and provided an algorithm for obtaining the corresponding coefficients While
in the case of an exponential claim size distribution (a 1) this solution algorithm simplifies and

Gerber [Ger 81] could prove its convergence, the convergence of this method in the general case

was still an open problem
In this paper, the authors prove the convergence of this algorithm to the exact solution U(x,b)
for a representative of this more general class of distributions, namely a 2, and thus justify the

usage of this approach to obtain the exact solution U{x,b)
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