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HANSJORG ALBRECHER, ROBERT F. TICHY, Graz

Zur Konvergenz eines Losungsverfahrens fiir ein Risikomodell
mit gammaverteilten Schiaden™

1 Einleitung

In der Risikotheorie gibt es eine Vielzahl von entwickelten Modellen und mathe-
matischen Methoden; ein guter Uberblick findet sich in [Ger 79] und [Biihl 70]
sowie, mit besonderem Schwerpunkt auf der Berechnung der Wahrscheinlichkeit
fiir Ruin, in [Tho 82].

N(

Wir betrachten im folgenden den Risikoprozess Sy = = + ¢t — zi:f ) X ; fiir den
Fall eines zusammengesetzten Poisson-Prozesses mit unabhingigen Einzelscha-
denshohen mit Verteilungsfunktion /. Dabei bezeichne x das Anfangskapital und
c die Pramiendichte, wobei ¢ > A fooo y dF(y) gelten muss, damit die Uberlebens-
wahrscheinlichkeit positiv ist. Weiters gebe es eine lineare Dividendenschranke
b + at, d.h. falls das Kapital die Barriere b + at erreicht, werden Dividenden
ausbezahlt und das Kapital bleibt auf der Barriere, bis der ndchste Schaden auftritt
O0O<a<e b>0).

Fiir Modelle mit absorbierenden horizontalen Dividendenschranken wurden in
[DiGr 84] fiir beliebige Verteilungen der Einzelschadenshohen numerische Ap-
proximationen gefunden und im Falle von linearen Dividendenschranken erhilt
man obere Schranken fiir die Ruinwahrscheinlichkeit mit geeigneten Martingal-
methoden (siehe [Ger 73]).

Sind die Schadenshohen exponentialverteilt, so 1dBt sich, wie in [Ger 81] gezeigt
wurde, eine exakte und explizite Losung fiir die Uberlebenswahrscheinlichkeit
U(x,b) mithilfe einer Darstellung von U(z,b) als Reihe finden. Weiters wurde
ein algorithmisches Losungsverfahren fiir die Ermittlung der Koeffizienten dieser
Reihe entwickelt und schlieBlich konnte die Konvergenz dieser Reihe bewiesen
werden. In der Arbeit [SiTi 96] dieser Zeitschrift wurde dieser Ansatz dann auf
Risikomodelle mit Gamma(c, (3)-verteilten Einzelschadenshéhen mit ganzzahli-
gem Parameter « > 0 verallgemeinert (3 € R") und ein analoges algorithmi-
sches Losungsverfahren mit einer solchen Reihenkonstruktion vorgestellt. Dabei
wurde aber auf die Frage nach der Konvergenz dieser Reihe und somit dieses
Verfahrens nicht eingegangen, sondern nur darauf hingewiesen, dass Simulatio-
nen nahelegen, dass dieses Verfahren nach der Berechnung von rund 100 Termen
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in der Reihenenwicklung die exakte Losung U(z,b) hinreichend genau liefert.
Obwohl zahlreiche Simulationen eindeutig darauf hinweisen, dass dieses verall-
gemeinerte Losungsverfahren (mitunter recht rasch) konvergiert, liegt also kein
formaler Beweis fiir dessen Konvergenz vor.

Fiir ein beliebiges o« € N stellt sich die Antwort auf die Frage nach der
Konvergenz als schwierig und vor allem extrem aufwendig heraus. Wir werden
deshalb in der vorliegenden Arbeit exemplarisch fiir a« = 2 als einfachsten
Vertreter dieser allgemeineren Klasse von Schadenshohenverteilungen beweisen,
dass das in [SiTi 96] entwickelte Losungsverfahren auch wirklich konvergiert und
somit die exakte Losung U (x, b) explizit liefert.

2 Das Verfahren

Es seien also im folgenden die voneinander unabhingigen Einzelschadenshthen
X; gemil der Verteilungsfunktion

Yy a—1
F(y):/O I“?aweédz (¢ €N, BeR") (1)
verteilt und es bezeichne A > 0 den Erwartungswert der exponentialverteilten
Zwischenschadenszeiten. Weiters sei ¢ die konstante Intensitdt der Pridmienzah-
lungen, wobei ¢ > AE(X;) = afB\. Die Uberlebenswahrscheinlichkeit U (z, b)
einer Versicherung in diesem Risikomodell ist dann, unter Einbeziehung einer
linearen Dividendenschranke b + at, die Losung der Gleichung

cUz(x,b) + aUp(z,b) — AU (2,b) + /\/ Uz —y,b)dF(y) =0 (2)
0
unter den Nebenbedingungen
Ux(b,b) =0 und Elim il b) = O(w) (3)

wobei U(x) die Uberlebenswahrscheinlichkeit mit Startkapital z in Abwesenheit
der Dividendenschranke bezeichnet (vgl. [Ger81]). Ist F' von der Form (1), so
14Bt sich, wie in [SiTi 96] vorgeschlagen wird, die Losung von (2) unter (3) in
der Form

a+1

U(,b) = i Y A (@)
1=1

k=0

darstellen, wobei die Exponenten und Koeffizienten nach folgendem Algorithmus
bestimmt werden:
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Fir alle £ € N sind die Koeffizienten Tgk) die « + 1 Losungen der folgenden
Gleichung in R:

cR(BR+ 1)® +aS(BR+ 1)® = ABR+ 1)* + A =0, (5)

wobei S = s*) gilt,
Die Koeffizienten A; ; sind die Losungen des linearen Gleichungssystems

a+1 A
Z%“O’ Vi=1,...,a. (6)
i1 (1+B8r;7)

Um die zweite Nebenbedingung in (3) zu erfiillen, wird s(°) gleich Null gesetzt,
womit auch TEO) = 0 gilt. Das Polynom (5) hat genau « + 1 (mdglicherweise
komplexe) Nullstellen, somit sind die Exponenten eindeutig bestimmt. Um der

ersten Nebenbedingung in (3) zu geniigen, wird fiir ein beliebiges £ fiir jeden

Summanden Aj,kes(k)bef;‘“m (j =2,...,a+ 1), dessen Ableitung nach z in
(b,0) ungleich 0 ist, ein Term eingefiihrt, sodass die Summe beider Terme Null
ergibt. Wenn also die Ableitung des j-ten Summanden des k-ten Termes # O ist,
so suchen wir ein noch nicht besetztes k' > k und setzen, um Ausloschung fiir
alle b zu erreichen,

r%ki) +5¢) = ""g('k) + s (7)

woraus sich mit der Bestimmungsgleichung (5) fiir R der Exponent sk ergibt.
Dafiir wird jene Losung der Gleichung verwendet, fiir die der Realteil R(S) < 0
minimal wird (ob eine solche Losung mit negativem Realteil immer existiert, muss
aber erst untersucht werden und blieb in [SiTi 96] unbehandelt). Dieses S = s(k)
wird dann wieder in (5) eingesetzt und nun sind die o + 1 (moglicherweise

komplexen) Nullstellen des Polynoms (5) die Exponenten Tik/) (t=1,...,a+l).
Weiters wird

Apgeri®) = = A0 (®)
gesetzt, um die Terme, die nun gleiche Exponenten in (b, b) haben, in Summe
zu eliminieren. Ausgehend von A, = 1 (was sich durch Vergleich mit der
bekannten Losung U(x) ergibt) kénnen nun aus (6) und (8) die Koeffizienten
Ak (i=1,...,a+ 1) als Losung eines linearen Gleichungssystems mit o + 1

Unbekannten eindeutig bestimmt werden (da die zugehorige Matrix, wie sich
zeigen 1dBt, vollen Rang hat).

Auf diese Weise werden in jeder Stufe k also « neue Stufen &' mit ihren
“Anfangswerten” versehen und somit eindeutig bestimmt.
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3 Beweis der Konvergenz dieses Verfahrens fiir o = 2

Wir zeigen nun, dass das in Abschnitt 2 erlduterte Verfahren fiir o« = 2
konvergiert. In diesem Fall ist also

= : (k) (k) . (K
Ul b) = 3 e [ e t® + gt 1 4407 ©)
k=0
und die Bestimmungsgleichungen (5) und (6) reduzieren sich entsprechend zu

cR(BR+ 1)+ aS(BR+1? —ABR+1)*+A1=0, (10)

bzw.
Al Az i As
1+ 8N (48 (14 priP)d

=0, (j=1,2). (11)

Dazu beweisen wir zunichst einige Eigenschaften der Koeffizienten mittels
vollstindiger Induktion:

Lemma 1. Fiir alle k > 0 gilt:

r® s®eR (i=1,2,3), (12)

>0, (13)

s® <o, (14)
1 A (k) 1

e e« < —=, 15
B \aple—o =" B W)

und

Lo oo (16)

o)

(k") (k) (k") (k)

k) sowte 1, > Ty, Ty >

Weiters gilt s(K) < (k) < 0, T(k') < 1

und (s + T‘Ek/)) < (st%) + r}k)) < 0, d.h. innerhalb einer “Bildungskette” im
Algorithmus handelt es sich um monotone Folgen und es gilt:
& 1

2:“5' (17)

lim s = —00, lim r® = 400 und lim 7
1 2
k—o0 k—o0 k—oo ©
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Beweis: Jede Bildungskette im Algorithmus hat ihren Ursprung in der O-ten
Stufe und wir konnen darum fiir ein beliebiges k& € N die obigen Eigenschaften
beweisen, indem wir eine vollstindige Induktion innerhalb der entsprechenden
Kette fiihren:

0)

1) Induktionsanfang: Fiir & = 0 gilt per definitionem $(°) = 0 und somit ist

(0)

r;’ = 0 eine Losung von (10). Die restlichen Losungen ergeben sich dann zu
1 A+ /A20% +4)0c
== e (18)

und sind somit reell. Weiters sind sie genau dann beide negativ, wenn ¢ > 2\[3,
was unserer vorausgesetzten verniinftigen Pramiumspolitik entspricht.

Betrachten wir weiters ausgehend von (10) das Polynom

po(R) = cR(BR+1)> = A(BR+1)* + X, (19)

so ist (wegen rEO) = 0) po(0) = 0 und py(0) = ¢ — 2A3 > 0. Da aber po(—é) =
A > 0, muss eine weitere Nullstelle im Intervall (—*[';,0) existieren, die wir
mit r§0) bezeichnen. Fir R — —oo geht po(R) gegen —oo und somit gilt

’f‘éo) < —z%. Um nun zu zeigen, dass réo) im Intervall (15) liegt, muss also

Do (_% _ a/ﬁ) < 0 gelten. Dies fiihrt auf die Bedingung

5 . 3 232
e +(EH> Teo—ar ~ ! (20)

Um ihre Giiltigkeit zu beweisen, setzen wir ¢ — a := x A (mit einem festen
x > 0) in (20) ein und erhalten

4y — V/adx
I+ Vaxr

Wegen a > 0 gilt ¢ > A3 und somit gilt (20) genau dann, wenn fiir alle x > 0

&> A0 21

dr — v/Ax
— R
1 + vézx

erfillt ist, was eine Kurvendiskussion dieser Funktion bestitigt.
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2) Induktionsannahme: obiges gelte fiir &

3) Induktionsschritt: £k — &’

Die Stufe &’ bildet sich aus rg-k), wobei j = 2 oder 7 = 3. j sei also im folgenden
0.B.d.A. fest gewihlt. Wir zeigen sukzessive:

a) s¢*) € R: Setzen wir R := Tj(.k) + s(8) — S in (10), so bestimmt sich wegen

(7) s(k) als eine der drei Losungen in S (ndmlich jene mit kleinstem Realteil)
der kubischen Gleichung

(a—c)3*8°
+ (e +s®) =N 2 -2(a- ) (B0 +5P) +1) ) &7
+ (=20 +50) =2 (B0 +5®) +1) 8
Fa—) (B0 +sW)+1)2) 8
+ (c (rl®) 4 54y — /\) (,6 (rl®) 4 5 4 1)2 o o, (22)

Eine weitere der drei Losungen dieser kubischen Gleichung ist aber das schon

bekannte s¥), denn (22) liefert ja alle S, fiir die gilt, das R+ S = 'rj(-k) + 5(F) st

Wir konnen also die Losung s'*) mittels Polynomdivision in (22) wegdividieren

und erhalten eine quadratische Gleichung in .S. In dieser kann nun wegen (10)
s*) durch

k

S(k):— )\ _*_3_67“1()

(k) 2 a a
(Br;" +1)%a

(i =1,2,3) (23)

mit 2 = j ersetzt werden. Im folgenden sei r](-k} durch r; abgekiirzt. Insgesamt

ist also s(*) eine der beiden Losungen der quadratischen Gleichung
(2B8Aa*+2017a* B*A+20a" B ri A+ 10a> By A+ 55 Nar?
+27'jﬂ3)\2a*29[34/\ac7"§—2053)\ac7§—552)\ac7“j
-|—26rjaﬁ4c2 —37‘5’-@23%— 16T§a2ﬁ50+27“j50,2ﬁ6/\
+ 107"? as @ X = 35T‘?a264c+3'r§a66c:2 - 147“?@[55 ?
~407';a263c+24a.ﬁ37";(32+a3+r?a3,66+67'§a3[35
+ 157";@364 +207%a’ B° + 15a3627“§ = = 6a3[37“j — 6037";/6’4

—637’?,6’6—403T§[35 w4(:37"3[3’3 —CBBZT‘; = og —47‘;(1,,366)\
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*187‘?&,@5(3/\—25(12@)27"?64—11aﬁ2Tj c2—8a267"jc
+10AB I =N Bl c— 4N P ric+ X ria+4XN P ria
+2/\[)’67‘§cz—i—8/\,857“j-02 —4/\2,64T’§C+4/\63T32-C2+262BTj a)
/((ﬁﬂr‘j +1)* az) - BB r; —4eriaB —10cr;a
—2c/\ﬁ3'r§ —4(:)\[5’27“j —I—2)\aﬁ3fr§+4)\aﬂz7'j —B8Ber;a
+[J'/\a+2627“§63+402r§ﬁ2+27‘3a2ﬁ3+6a2[32r§+6azﬁrj

—20a—|—2a2)8/((ﬁrj—|—1)2a)+(a—c)ﬁ28230. (24)

Die beiden Losungen dieser Gleichung sind genau dann reell, wenn die Diskri-
minante

B2 3262 — 4806 + 12)\a263r‘§c+4cr§ a264)\—4r7}a3ﬁ4)\
—2X@F 7 — 1208 B + 12¢ AP rja’ +48Aa°c >0 (25)

ist, was sich auf folgende Bedingung reduzieren laft:

4(a —c) (Br; +1)° = BA <0 (26)

Y
Chaar ik b L

dies ist aber laut Induktionsannahme fiir 7 = 2, 3 erfiillt.

bzw.

Anmerkung: Bedingung (27) ist die bestmogliche bzw. exakte Schranke fiir r;,
um die Reellheit von s%) zu erreichen.

b) ry{’) € R: Da rgk/) = rék) + (k) — s(¥) ist also wegen der Induktionsannahme
auch r%k/) reell.

c) rgkl) > (): Betrachten wir nochmals Gleichung (10) und ersetzen diesmal S
(k)

durch 73" + 5"} — R, so erhalten wir die kubische Gleichung in R

(c—a) PR+ (af (1 +5P) AP +2(c—a)f) B

+ (Zaﬁ(T'gk) + s —2XB+c— a) R+a (r(k) + S(’“)) =0 (28)

J
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wobei zwei der drei Losungen rj(-m und r%“ sind. Somit muss auch die dritte

(fiir den Algorithmus letztendlich irrelevante) Losung r,, reell sein und man erhalt
nach dem Vieta’schen Satz aus (28)

(k) k
(K)_(k) a(t’ +5()) 29
’l"l Tj 'ru - - (c _ a)ﬁz . ( )

Der rechte Term und 7'*) sind aber nach Induktionsannahme positiv bzw. negativ,

J
somit muss das Produkt rg )fru negativ sein. Da s'*") die kleinere Losung von

(24) war, 1st das zugehorige frgk,) der grofere Multiplikant des obigen Produktes

und also positiv.

d) s*) < s < 0: Wegen st = rj(-k) = T%k’) + s%) und der Negativitit von

fr'j(-k) bzw. der Positivitit von rgk’) ist also (mit s(0 = 0) s*6) < k) <.

e) "rék; ) € R: Um die beiden restlichen Exponenten der Stufe (k') zu untersuchen,

(k")

kénnen wir die nunmehr schon bekannte reelle, positive Losung r aus der

kubischen Gleichung in R
cR(BR+ 12 + as®* ) (BR+ 1) = ABR+ 1) +A=0
wegdividieren und erhalten, wenn wir fiir (k)

(k")
S(k/) o )\ /\ CTl

7 -
(ﬁrgk)—i—l)za a a

einsetzen, die quadratische (bemerkenswerterweise von a unabhingige) Gleichung
in R

! /2
6(4cr§k)ﬁ—,8/\+2c+2cr£k) B R
(B +1)2

e R+

2 ’ N
+cﬂ“;?—A6%$)~25A+2m#)ﬁ+c:
(B rik ) 41y

0. (30)

Diese liefert genau dann zwei reelle Losungen réj), wenn die Diskriminante

i N 2 - 3
D=12cr" ) @A+ BN +48xc+ 12¢rF) B A+dcri) g
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positiv ist. Wegen der bereits gezeigten Positivitdt von r§ ) sowie aller restlichen

auftretenden Parameter ist diese Bedingung aber erfiillt, also sind auch rék ) und
(k')

T3 reell.

(k") L hy 1 (k")
f) ry7 " < =5 bzw. —5 <y

das kubische Polynom mit reellen Koeffizienten

< 0: Betrachten wir zuerst, ausgehend von (10),

p(R) = cR(BR+ 1) 4+ aS(BR+1)> = MBR+ 1>+ \.

Offensichtlich gilt p(0) = aS < 0, da S = s*') ja negativ ist. Weiters gilt
Rlim p(R) = o, also gibt es mindestens eine positive Nullstelle von p(R). Nun

ist die Ableitung

p'(R) = (BR+ 1) [28cR + c(BR + 1) + 2458 — 2))

ein Polynom zweiten Grades mit den Nullstellen N, =—L und N, =

B
3—)‘-@—_—32-[)%‘51—6—:—9. Da also nur eine Extremstelle positiv sein kann, gibt es genau eine

positive Nullstelle von p(R) und diese muss rgk,) sein. Somit sind 7'&;) .

Setzt man ausgehend von (30)
’ "2
ﬁ(4cr§k )B—ﬁx\+2c+2c7§k ) B*) R
(Bri) +1)2

£ .’2 !
. —)\ﬁz’r’gk)—Zﬁ/\Jrcrgk) ﬁ2+2cr§k)[)’+c
(57‘5“ +1)2

pi(R) :=cB* R +

bl

so sieht man (mit ¢ > 23M), dass pl(—é) = —ﬁ)— < 0 sowie pi(0) > 0

und Rlim pi1(R) = +o00. Das ist aber gleichbedeutend mit

j 1 1 j
rgk) < ——= bzw. — =< 'r*gk)

3 3 S

(k)

g) Monotonie der r;’ (¢ = 1,2,3): Sehen wir noch einmal Gleichung (23) an

A A oert®

(grpf’“) +1)2a a a

(i=1,2,3).
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(k)

i

(k)

Fassen wir nun 7 als Funktion ;" (s(¥)) auf, so kénnen wir (23) implizit nach

sk) differenzieren und erhalten

ﬁrgk) a '
9s(k) — __2BA (i=1,2,3). an

B4

Wegen Tfk) > (0 ist der Ausdruck ([J"rgk) +1)? > 1 und somit (wegen ¢ > 2(3))

(k) , ’ ‘
Z—Z%;T) < 0. Da aber s¥) < (k) folgt Tgk ) > Tgk)‘
o (k)

Wegen rék) < —1 gilt (ﬁrék) +1)? < 0 bzw. % < 0. Analog zu oben gilt
deshalb rék,) = rék) und somit ist auch rék,) wieder im gewilinschten Intervall
(15).

(0)

Setzt man schlieBlich 73 aus (18) in (31) ein, so ergibt sich wegen ¢ > 23\ eine

positive Ableitung und insgesamt mit (16) im weiteren r*) = rgk) fiir beliebige
k' > k.

Die jeweiligen Grenzwerte ergeben sich dann aus (23) wegen klim s(k) = —oo,

h) s 4 'r'fk',) < stk 4 rfk) < 0: Die Monotonie dieser Summe folgt trivialer-
weise aus

g T%k) > 5 T§k> = s*) 4 Tfkl). O

Um das asymptotische Verhalten der Koeffizienten A; ;. zu untersuchen, betrach-
ten wir wieder einen Schritt in einer Bildungskette (k — k') und erhalten wegen

(8)

(k)
|Ajel - 1571 A ] K
|A|,}€’| — ! (kl) / | ’ L (|kf)| ! — qlk"A],kt (32)
ry I
1 1
mit der Konstanten K| = —% — 2 m Die beiden anderen Koeffizienten der

Stufe k&’ ergeben sich dann aus dem linearen Gleichungssystem (6) zu

Ay — (_ Brariry? 4+ 28%rsriry 4 B2rira? 4 Brary
(1 + Ory )(ﬁz’f’_ﬂ"ﬂ'z + Brsry + Brir + ,87’37’2 +7r3+ T‘z)
iz 20rir2+ 1 + /327"37"22 + 2013, + 13 )A] .
(1+ Br1)(Boryryra + Bryry +Brira +Brara+ a1} /7
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bzw.
Az = (11 — rz)Al‘kf)/(ﬁ‘lmzrlzrz + 2831327 + 28337 %,
+ B3 + Bty + 480 rrire + o
+28%r3%r) + BPrsri® 4 2Br3ry + 20117y + Or3
+ 208r3r; + 13+ 12),

wobei r; fiir r(k’) steht. Wegen (17) gilt also

)

Akl =0 (i=1,2,3). (33)

lim
k—o0

(

Nun lassen sich mit den Monotonieeigenschaften der 'r'ik) bzw. ihren bekannten

Grenzwerten noch folgende Abschitzungen gewinnen:

KyrlA &
| A2 k| < —(1 j|ﬂl(i|)) = ¢,k | A1,k] (34)
Ty
bzw.
KilA
| A3 1| < ]—(m% = ¢3,k) A1 k| (35)
s+ Ksr|

mit Konstanten K; > 0. Wegen der Monotonie von r*) werden die Gy 2 =
1,2, 3) fiir hinreichend grosse k beliebig klein und es existiert beispielsweise ein
ki, sodass fiir alle k > k; gilt: g = max{q1 %, 2.k, 3.1} < 1. Auf diese Weise
kann die Folge A.i,kj innerhalb einer Bildungskette dann mit einer geometrischen
Reihe majorisiert werden.

Die absolute Konvergenz unserer Reihe (4) ergibt sich nun mit folgenden
(groBziigigen) Abschitzungen: Wir betrachten jede der drei Teilreithen

00
Z es(k)b |:|Ai7k€r§k).r:| (’L =1, 2’ 3) (36)
k=0

(k)

7

separat. Aufgrund der Ergebnisse beziiglich der Monotonie der Koeffizienten r
und s*) gilt (0 < < b sind ja fest gewihlt)

o0
(k)
§ s\ b
€ [|A1’k

k=0

er,(k);r] < C’iZ|Az‘,k| (i=1,2,3) (37)
k=0

mit Konstanten C; > 0.
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Nach dem Cauchy’schen Konvergenzkriterium liegt genau dann absolute Konver-
genz vor, wenn fiir jedes € > 0 ein /N, existiert, sodass fiir alle n > m > N,
D hemat [ Aik] < € gilt (i = 1,2,3). Aufgrund der Struktur des Algorithmus
stehen Elemente mit benachbarten Indizes nicht unbedingt in “‘kausalem” Zusam-
menhang (beziiglich der Bildung der Folgenglieder); jedoch kann die Reihe (37)
in Blocke mit 1,2,4,8,...,2™ ! Elementen zerlegt werden; innerhalb des m-
ten solchen Blockes (mit 2”*~! Folgengliedern) gibt es dann also keine direkte
Abhingigkeit zu den Koeffizienten des (m—2)-ten Blockes mehr bzw. anders aus-
gedriickt, erzeugen die Elemente des (m — 1)-ten Blockes simtliche Koeffizienten
des m-ten Blockes. Wegen (32), (34) und (35) gilt

FA'L:k| S qe”l Alsknlflt (k = 2m_27 trt 327n_l; m 2 3; i = 17273)
wobei
[ Atk | = max  [A] und g, = max g
k;e(zrn—?;,”’zrn 2) ke(zm_‘z’ﬂ)z,nﬂm1)

Mit denselben Argumenten kann man dann

Akl < qf, (k=2m"1 ..., 2™ i=1,2,3)

Ak

m—-l‘

bzw. analoges fiir groBere k& folgern und es ergibt sich insgesamt

o0 oo
Dokl < > 2m g,

k;:ku m=imy

Ark

yhmg—1 1

(i=1,2,3)

und dies ist fur ge,, < % eine geometrische Reihe. Da fiir hinreichend grofBe ko

(und somit fiir hinreichend grofle my) das e, (als Funktion der rgk)) beliebig

klein gemacht werden kann, konvergiert die Reihe (4) also gegen eine beschrinkte
Funktion, die auch (3) erfiillt. O

Bemerkung: Fiir o > 2 sind die Koeffizienten rgk) und s im allgemeinen

nicht mehr reell und deshalb kann die vorgestellte Beweistechnik in dieser Form
nicht auf die Fille mit « > 2 {ibertragen werden. Immerhin hat man mit dem
Beweis fiir v = 2 aber die GewiBheit erlangt, dass zumindest fiir einen Vertreter
der Klasse der allgemeineren Verteilungen, fiir welche das obige algorithmische
Losungsverfahren formuliert wurde, dieses auch konvergiert.
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Zusammenfassung

In der Arbeit von Siegl und Tichy [SiTi 96] wird die exakte Losung fiir die Uberlebens-
wahrscheinlichkeit U(xz, b) eines Risikoprozesses S = x + ct — Ei\f:(f )XZ- mit Anfangskapital
x, konstanter Primiendichte ¢ und linearer Dividendenschranke b + at fiir den Fall eines
zusammengesetzten Poisson-Prozesses mit unabhéngigen Gamma(e, B)-verteilten Einzelschadens-
hohen X; (wobei @« € N, 8 € RT,0 < a < ¢ und b > 0) als Reihe dargestellt und ein
Algorithmus angegeben, um die Reihenkoeffizienten zu bestimmen. Wiahrend in [Ger 81] fiir den
speziellen Fall exponentialverteilter Schadenshthen (also @ = 1) und ein entsprechend einfacheres
Losungsverfahren die Konvergenz dieser Reihe gezeigt werden konnte, ist die Konvergenz fiir den
allgemeineren Fall noch nicht behandelt worden.

In dieser Arbeit wird exemplarisch fiir o« = 2 bewiesen, dass das Losungsverfahren nach [SiTi 96]
auch wirklich konvergiert und somit zur Ermittlung von U(z,b) angewendet werden kann.

Résumé

Nous considérons le modele actuariel St = = + ct — Eﬁ__(lt)Xi en présence d’une barriere linéaire
de dividendes b 4+ at, ou x est le capital initial, ¢ Uintensité constante des primes, le nombre
des sinistres posséde une distribution de Poisson et les montants des sinistres X; des distributions
Gamma (o, 3) indépendantes (o« € N, 3 € RT, 0 < a < ¢ et b > 0). Pour ce modele, Siegl et
Tichy [SiTi 96] représentent la solution exacte pour la probabilité de survie U(z,b) sous forme
de série et proposent un algorithme pour obtenir les coéfficients correspondants. Dans le cas de
montants de sinistres qui suivent une loi exponentielle, 1’algorithme peut étre simplifié et Gerber
[Ger 81] a prouvé sa convergence, cependent, la convergence dans le cas général était une question
ouverte.

Dans le présent travail, les auteurs prouvent la convergence de cet algorithme a la solution exacte
U(x,b) pour & = 2 comme représentant de cette classe de distributions plus générale et justifient
I'utilisation de cette méthode pour obtenir la solution exacte U(z,b).

Summary

We consider the classical risk process Sy = x + ¢t — E;V:(lt ) x : in the presence of a linear dividend
barrier b+at, where x is the initial capital, c is the constant intensity of the continous premium flow,
the claim number variable N(t) is Poisson-distributed and the single claims X; are independent
Gamma(cy, 3)-distributed random variables (¢« € N, 8 € RT,0 < a < ¢ and b > 0). For such
a model Siegl and Tichy [SiTi 96] represented the exact solution for the probability of survival
U(xz,b) as a series and provided an algorithm for obtaining the corresponding coefficients. While
in the case of an exponential claim size distribution (v = 1) this solution algorithm simplifies and
Gerber [Ger 81] could prove its convergence, the convergence of this method in the general case
was still an open problem.

In this paper, the authors prove the convergence of this algorithm to the exact solution U(z,b)
for a representative of this more general class of distributions, namely « = 2, and thus justify the
usage of this approach to obtain the exact solution Ul(x,b).
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