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B. Wissenschaftliche Mitteilungen

JAN DHAENE, MARLEEN VANNESTE and HENK WOLTHUIS,
Leuven, Gent, Antwerpen and Amsterdam

A note on dependencies in multiple life statuses

1 Introduction

A traditional assumption in the theory of multiple life contingencies is that the
remaining life times of the lives involved are mutually independent. Computa-
tional feasability rather than realism seems to be the major reason for making
this assumption. Indeed, a husband and his wife are more or less exposed to the
same risks. The “broken heart syndrome” causes an increase of the mortality rate
after the mortality of one’s spouse. Such effects may have a significant influence
on present values related to multiple life actuarial functions.

Carriere and Chan (1986) investigated Fréchet-bounds for pricing joint-life and
last-survivor annuities. Frees, Carriere and Valdez (1996) observed a portfolio of
annuities on coupled lives and concluded that the time-of-death of the paired lives
were highly correlated. Carriere (1997) presents alternative ways for modeling the
dependence of the time-of-deaths of coupled lives and applies these to a data set
from a life annuity portfolio. These papers use copula functions to build bivariate
survivorship functions. For a general introduction and a historical overview of the
development of the theory of copula functions, we refer to Dall’ Aglio, Kotz and
Salinetti (1991). The article of Frees and Valdez (1998) introduces actuaries to
the concept of copulas.

The situation where the dependence of lives arises from an exogenous event that is
common to each life, can be described by a "common shock™ model. A reference
to this kind of models is Marshal and Olkin (1988).

To the best of our knowledge, the first actuarial textbook explicitly introducing
multiple life models in which the future life time random variables are dependent
is Bowers, Gerber, Hickmann, Jones and Nesbitt (1997). In Chapter 9 of this
book, copula and common shock models are introduced to describe dependencies
in joint-life and last-survivor statuses.

Also other models can be used to incorporate dependencies between life times,
e. g. the frailty models described by Oakes (1989) or Markov models as described
by Norberg (1989). For a more extensive overview of dependency models, we
further refer to Frees, Carriere and Valdez (1996) and the references in that paper.
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Given a certain copula or frailty model, determining the direction and the extent of
over/underpricing by taking the independence assumption is straightforward. This
paper allows the reader to determine this direction for a general class of models,
where the only restriction is that the marginals are given. The assumption of given
marginals is crucial here since our focus will lie on comparing dependencies
only.

We want to compare the riskiness of several dependency relations. More precisely,
we want to compare bivariate distributions with given marginals, but with different
dependency structures. Although there is an extensive actuarial literature on the
theory of ordering of univariate risks, see e. g. Goovaerts, Kaas, van Heerwaerden
and Bauwelinckx (1990), the theory of ordering of multivariate risks has only
recently been considered more extensively in the actuarial literature, see e. g.
Denuit, Lefévre and Mesfioui (1997), Miiller (1997), Dhaene and Goovaerts
(1996), Dhaene, Wang, Young and Goovaerts (1997), Wang and Dhaene (1997).
A general reference to the theory of ordering of multivariate risks is Shaked and
Shanthikumar (1994).

In this paper, we will use some results from Dhaene & Goovaerts (1996) which
were obtained for portfolios where the risks involved are not necessarily mutually
independent. We will see that we can use some of these general results for eval-
uating the effect of dependencies in case of multiple life functions. We introduce
a partial ordering in the class of all bivariate lifetime distributions with given
marginals. It 1s shown that this ordering is preserved (or reversed) when pric-
ing certain multiple life insurance and annuity contracts. In particular, we estab-
lish conditions that provide information on the phenomenon of over/underpricing
when the usual assumption of mutual independency of the life times involved is
made. Combining our results with the Fréchet bounds, we establish lower and
upper bounds for the single premiums of insurances and annuities on multiple
life statuses. We will restrict our discussion to situations involving two lives.
Generalisations to situations with more than two lives involved are possible.

In section 2, we will give some basic definitions and results. In section 3 these
results will be used for deriving ordering relations between single premiums of
multiple life insurances and annuities on two lives. In the sections 4 and 5 we
derive lower and upper bounds for multiple life single premiums. In section 6,
we will discuss dependency between stochastically ordered remaining life times.
Finally, in section 7 we will give some numerical illustrations of the results
obtained in the previous sections.
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2 Correlation order and positive quadrant dependency

Let R(F, ) be the set of all bivariate distributed random variables (7'(z), T'(v))
with given marginal distribution functions F' and G for T'(z) and T'(y) respec-
tively. We will interpret 7'(xz) and 7T'(y) as the remaining life times of persons
of age x and y respectively. Consequently, they are assumed to be nonnegative
random variables.

Definition 1 Let (7'(xz),7(y)) and (S(x),S(y)) be elements of R(F,G).
Then (T'(x),T(y)) is said to be less correlated than (S(x),S(y)), written as
)

(T(2), () <o (5(2), S(&), i
cov[F(T(@)), 9(T())] < covlf(S(x)), g(Sw))]

for all nondecreasing functions f and g for which the covariances exist.

The correlation order is a partial order between the joint distributions of the
remaining life times in R(F, ). It expresses the notion that some elements of
R(F, @) are more positively correlated than others.

The following theorem gives an alternative definition for correlation order in terms
of bivariate distribution functions.

Theorem 1 Let (T'(z), T (y)) and (S(x), S(y)) be elements of R(F,G). Then the
following statements are equivalent:

() (T(x),T(y)) <c (S(x),S(y)).
(b) Pr[T(z) <t,T(y) <s] <Pr[S(z) <t,S(y) <s] forallt,s>0.

A proof of this theorem can be found in Dhaene & Goovaerts (1996). References
to the correlation order defined above are Barlow and Proschan (1975) and Tchen
(1980). For economic applications, see also Epstein and Tanny (1980) and Aboud:
and Thon (1993, 1995).

Often certain insured risks tend to act similarly, they possess some “positive”
dependency. In order to describe such situations we introduce the notion of
“positive quadrant dependency”, see e. g. Barlow and Proschan (1975).

Definition 2 Two remaining life times 7'(x) and T( ) are said to be positively
quadrant dependent, written as PQD(T(x), T (y)), if

Pr[T(z) <t,T(y) <s]>Pr[T(z) <t] Pr[T(y) < 9]

for all ¢,s > 0.
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Hence, saying that T'(x) and T'(y) are positive quadrant dependent means that
the probability that 7'(xz) and T'(y) both realize small values is larger than the
corresponding probability in the case of independent remaining life times. In terms
of correlation order (Definition 1), one can say that 7'(z) and T'(y) are actually
more correlated than the corresponding couple consisting of mutually independent
remaining life times. Reversing the inequality in Definition 2 leads to the notion
of negative quadrant dependency (NQD). We will not use this concept in the
remainder of this paper. However, for all results that we will prove for PQD, it
1s possible to prove a NQD version.

The notions of correlation order and positive quadrant dependency can easily be
expressed in terms of Archimedean copula functions. Indeed, let (7'(x),7'(y))
and (S(z),S5(y)) be elements of R(F,(G) with respective copula functions
Cr(u,v) and Cg(u,v). Then (T'(z),T(y)) <. (S(x),S(y)) is equivalent with
Cr(u,v) < Cs(u,v) for all u,v > 0. We also have that PQD(T(x), T(y)) is
equivalent with Cp(u,v) > uv for all u,v > 0.

3 Actuarial functions on two dependent lives

Let the remaining life times of the statuses (x) and (y) as earlier be denoted by
T'(x) and T'(y) respectively.

The joint-life status (zy) exists as long as (z) and (y) are both alive. Hence, the
remaining life time of (zy) is given by T'(zy) = min[T'(z), T(y)|. The survival
probabilities ;p., of the jointlife status are given by

tPzy = Pr[T(zy) > t] = Pr[T'(z) > ¢,T(y) > ¢].

The last-survivor status (Ty) exists as long as at least one of (x) and (y) is alive.
Hence, the remaining life time of (Zy) is given by 7'(7y) = max[T(x), T (y)].
The survival probabilities ;pz3 of the last-survivor status are given by

ey = Pr[T(Tg) > t] =1-Pr[T(z) <t,T(y) <t.

Let T" be the remaining life time of a joint-life or last-survivor status. We will
consider life insurances and annuities for which the present value of future benefits
(PVFB) is given by f(7') with f a non-decreasing or non-increasing non-negative
function. The expectation of f(7') is the (pure) single premium for the insurance
or annuity under consideration.

Remark that the PVFB of most of the usual joint-life and last-survivor insurances
and annuities can be written as non-decreasing or non-increasing functions of the
remaining life time of the joint-life or last-survivor status involved:
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The PVFB of pure endowments (,Eqz,,»Fz;) and whole life annuities (dqy,
Gz, Ggy, Oz, - - - ) are non-decreasing functions of the remaining life time of the
multiple life status involved. The PVFB of whole life insurances (A, Az, Avy,

Az, ... ) are non-increasing functions of the remaining life time of the multiple
life status involved.

Before stating our main result, we need to introduce the notion of stochastic
dominance.

Definition 3 Let 7" and S be two remaining life times. We say that S
stochastically dominates 7', written 17" <g; S, if one of the following equivalent
conditions hold:

(a) E[f(T)] < E[f(S)] for all non-decreasing functions f .
(b) Pr[T'<t] >Pr[S<t| forallt,

A proof of the equivalence between the two conditions can be found e. g. in
Goovaerts, Kaas, van Heerwaarden and Bauwelinckx (1990).

Lemma 1 Let (T(x),T(y)) and (S(z),S(y)) be two bivariate remaining life
times, both elements of R(F,G). If (T(x),T(y)) <. (S(x),S(y)), then the
following stochastic order relations hold:

T(xy) <o S(zy),  S@Y) <se T(TY) -
Proof From Theorem 1 we have that
Pr[T(z) < t,T(y) < 5] < Pr[S(z) <, 5(y) < s].
This inequality can be transformed into
Pr[T(z) >, T(y) > 5] < Pr[S(x) > £, S(y) > 5.
Hence, we find
Pr[T(xzy) > t] = Pr[T(z) > t,T(y) > t] < Pr[S(x) > t,S(y) > ]
= Pr[S(zy) > 1],

which proves the first stochastic order relation. The other relation is proven
similarly. (I

In the following theorem, which states our main result, we will consider two
bivariate remaining life times in R(F, ) which are ordered by the correlation
order. We will show that a correlation order between these bivariate remaining
life times implies an ordering of the corresponding multiple life single premiums.
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Theorem 2 Ler (T'(x),T(y)) and (S(x),S(y)) be two bivariate remaining life
times, both elements of R(F,G). If (T'(z),T(y)) <. (S(x),S(y)), then the

Jollowing inequalities hold for any non-decreasing function f:

E[f(T(zy))] < E[f(S(zy))],
E[f(T(@y))] =z E[f(S@y))]-

If f is non-increasing then the opposite inequalities hold.

Proof From Lemma 1 we have that S(xy) stochastically dominates 7'(zy) so
that the first inequality is proven.

The proof for the other inequality is similar.

The inequalities for a non-increasing function f follow immediately by remarking
that — f is non-decreasing in this case. U

Theorem 2 can be interpreted as follows: Assume that the marginal distribution
of the remaining life times of (z) and (y) are given. If the bivariate remaining
life time of the couple increases in correlation order, then the single premiums
of endowment insurances and annuities on the joint life status increase, while
the single premiums of endowment insurances and annuities on the last survivor
status decrease. For whole life insurances, the opposite conclusions hold.
Remark that Theorem 2 can also be used for ordering single premiums of more
complex multiple life functions. Consider e. g. an annuity which pays one per
year while both (x) and (y) are alive, and « per year while (y) is alive and (x)
has died. The discounted value of the benefits involved is given by

T(zy) T(y) T(zy) T(y)
j vt dt + o f vhdt = (1 — a) / vtdt+a['vtdt.
0 T(xy) 0 0

Under the conditions of Theorem 2, we find from the equality above that

(T'(x), T(y)) <¢ (S(z),S(y)) implies ag) + aafg « aS{Z) + cm(lfz, where the
superscript (77) is used to indicate that the annuity is computed using the bivariate
remaining lifetime (7'(z), T'(y)).

A natural measure of dependency between two random variables is the covariance.
So, one could wonder whether cov[T'(z),T(y)] < cov[S(z), S(y)] is a sufficient
condition for the ordering relations in Theorem 2 to hold. In the following
example, we will show that the ordering of the covariances is not a sufficient
condition.

Let F' be the cumulative distribution function of a remaining life time that can be
equal to 1/2, 3/2 or 5/2, each with probability 1/3. Now, we consider the couples
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(T'(z), T(y)) and (S(z),S(y)), both elements of R(F, F'). Further, we assume
that 7'(x) and T'(y) are mutually independent, while the dependency structure of
(S(x),S(y)) follows from the following relations:

Pr[S(y) = 1/2 | 5(x) /2]—I
Pr[S(y) =3/2| 5(x) =5/2]
Pr[S(y) =5/2 | S(x) = 3/2]

We have that cov[T'(z),T(y)] = 0 and cov[S(z), S(y)] = 1/3. On the other hand,
we find

H

1/9 :t<3/2,
Pr[T(zy) <t]=44/9 :3/2<t<5/2,
1 b > 5/2.

and

pr{sw)sﬂ{iw iiiﬁ

From the distribution functions of 7'(Zy) and S(Zy) we find that | E(T) s 1 B

Ty °?
but , B < E(S).

Although it 1S customary to compute covariances in relation with dependency con-
siderations, one number alone cannot reveal the nature of dependency adequately.
From the example above, we see that the order induced by comparing only the
covariances of (7'(x),T(y)) and (S(x),S(y)) will not imply a consistent order-
ing between the single premiums of endowment insurances on the last-survivor
status. Hence, the results of Theorem 2 cannot be generalized in this way.
Instead of comparing cov[T'(z),T(y)] and cov[S(z), S(y)] one could compare
cov[f(X1), g(X2)] with cov[f(Y]),g(Y>2)] for all nondecreasing functions f and
g. The order induced in this way is the correlation order. As we see from
Theorem 2, this generalization of an order based on comparing covariances
implies a consistent ordering between single premiums of joint life and last-
survivor annuities and insurances.

More generally, we could wonder if there are other bivariate orderings which lead
to similar results as the one obtained in Theorem 2. Remark that the condition
Elf(T(zy))] < E[f(S(xy))] for all non-decreasing functions f is equivalent
with Pr[T(z) < ¢,T(y) <t] < Pr[S(z) <t S(y) <t] forall £ > 0. In view of
Theorem 1, we can conclude that the correlation order seems to be an appropriate
choice as bivariate ordering.
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4 Fréchet lower and upper bounds for the single premiums

In this section we will look at the extremal elements in R(F, (), namely the
one which are smaller or larger in correlation order than any other element in
R(F,G).

Lemma 2 For any element (T(x), T (y) R(F,G), we have that

) in
max(F(t) + G(s) — 1,0) < Pr[T(z) < t,T(y) < s]
< min(F( ):G(S))

with the lower and upper bound being bivariate distribution functions of elements
contained in R(F, Q).

This result can be found in Fréchet (1951).
Now let (Tr(x),Tr(y)) and (Ty(x),Tr(y)) be elements of R(F,() which

correspond to the lower and the upper Fréchet bound respectively, i. e.
Pr[Tr(z) < t,Tr(y) < s] = max(F(¢) + G(s) — 1,0),
Pr[Ty(z) < t,Ty(y) < s8] = min(F(t), G(s)).

We also introduce 77 (xy) which is the remaining life time of the joint-life status
associated with (7, (z), Tr(y)). After some straightforward computations, we find

Pr[Ty(xy) < t] = min(F(t) + G(¢), 1).

Similarly, we define 7y (xy), Tr(Ty) and Ty (Ty). The distribution functions of
these statuses are given by

Pr[Ty(zy) < t] = max(F(t) + G(t),1) —
Pr[Ty(zy) < t] = max(F(t) + G(t)),
Pr{Ty (zy) < t] = min(F(t) + G(t)) -

From Lemma 1 and Lemma 2, we immediately find the following inequalities
for (TL(:U):TL(Q))’ (TU(x):TU(y)) and (T('x)JT(y)) in R(Fa G)

Tr(zy) <5t T(zy) <s¢t Tu(zy),
Ty (zy) <o T(zY) <o Tr(TY)

Hence, from Theorem 2, we immediately find the following result.
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Theorem 3 Let (Tr(xz),Tr(y)) and (Ty(x),Tu(y)) be elements of R(F,G)
corresponding to the Fréchet bounds. Then the following inequalities hold for
any (T'(x),T(y)) € R(F,G) and for any non-decreasing function f:

E[f(TrL(xy))] < BIf(T(xy))] < E[f(Tu(xy))],
E[f(Tu(zy))] < E[f(T(zy))] < E[f(TL(zy))].

If f is non-increasing then the opposite inequalities hold.

Assume that we are in a situation where we know the marginal distribution
functions of T'(x) and T'(y), but where we have no information concerning the
dependency relation between the two remaining life times. From the theorem
above, we can compute lower and upper bounds for the single premiums of
insurances or annuities on the joint-life or last-survivor statuses involved.

Let us now assume that all elements in R(F,G) are stochastically ordered.
Without loss of generality we can assume that

F(t) = G(t)

for all ¢ > 0. A sufficient condition for this to be true is that the force of mortality
related to F' is always greater than or equal to the force of mortality related to
G, see e. g. Goovaerts, Kaas, van Heerwaarden and Bauwelinckx (1990).

In practice, the condition above could be fullfilled e. g. if we consider a couple
where F'(t) is the distribution function of the remaining life time of a husband
which is older than his wife, who has a remaining life time with distribution
function G(t).

Now, let (Ty(x),Ty(y)) be the element in R(F,G) which corresponds to the
Fréchet upper bound, i. e.

Pr[Ty(z) < t,Ty(y) < s] = min(F(t),G(s)) .

After some straightforward derivations, we find that in this case
Pr(Ty(zy) < t) = F(t)

and
Pr(Ty(z7) < t) = G(t).

This means that Ty (xy) has the same distribution function as Ty (), and Ty (Zy)
has the same distribution function as 7;(y). Hence, we find that, in this special
case, for any function f the following relations hold:

E[f(Tu(zy))] = E[f(Tu(2))]
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and similarly,

E[f(Tu(zy))] = Elf(Tu(y))] -

We can conclude that if £'(t) > G(t) for all £ > 0, or equivalently, T'(z) <4 T'(y)
for all (T'(x),T(y)) in R(F, (), then the single premiums in Theorem 3 which
correspond to the Fréchet upper bound all reduce to single premiums of single
life insurances or annuities.

5 Independent lives versus PQD

In this section, we will again assume that the marginal distributions of the
remaining life times 7'(x) and 7'(y) are given. We will compare the case where
the remaining life times are mutually independent with the case where they are

PQD.

Theorem 4 Assume that the bivariate remaining life times (T(z),T(y)) and
(T™4(2), T™4(y)) have the same marginal distributions. If PQD(T(z),T(y)),
and T (x) and T (y) are mutually independent, then the following inequali-
ties hold for any non-decreasing function f:

Bf(T™(zy))] < BIf(T(xy))],
E[f(T(zy))] < E[f(T"(xy))].
If f is nonincreasing then the opposite inequalities hold.
Proof The proof follows immediately from Definition 2 and Theorem 2. U

These inequalities have been derived for some specific types of multiple life
insurances and annuities in Norberg (1989).

As an application of Theorem 4 we find that for PQD[T'(z), T (y)], a whole life
insurance on the joint-life status (xy) has a lower single premium than in the
independent case. Similarly, we can conclude that in the case of positive quadrant
dependency, the independence assumption will lead to an underestimation of the
single premium of an annuity on the jointlife status (zy).

From the Theorem above we see that when 7'(x) and T'(y) are positive quadrant
dependent, then the bounds in Theorem 3 which corresponds to the Fréchet lower
bound can be improved by considering the independent case as bound. Remark
that in the independent case we have

Pr [T™(zy) <t] = F(t)+ G(t) — F(t) G(t),
Pr [T™(zy) < t] = F(t) + G(2).
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6 Numerical illustration

In this section we will illustrate the bounds derived in the previous sections by
some numerical examples. The technical interest rate equals 4.75 %. Further,
(z) and (y) are a male and a female. The marginal distribution functions of the
remaining life times of (x) and (y) follow from the Belgian mortality tables M R
and F'R respectively. For the mortality table M R, the Makeham constants are
given by £ = 1000266.63; s = 0.999441703 848; g = 0.999733441 115 and
¢ = 1.101077536030. For the mortality table /'R, the Makeham constants are
given by k = 1000048.56; s = 0.999 669 730966; g = 0.999951440172 and
c=1.116792453830.

We assume that the remaining life times of (z) and (y) are positive quadrant
dependent. In each multiple life status, the first age will be the age of the male
person.

In Table 1 bounds are given for whole life annuities on (zy) and (Zy) with z = v,
for different values of x. The bounds follow from Theorems 3 and 4.

z LB UB LB UB

20 | 1973491  20.16667 | 20.65737  21.08913
25 19.25552  19.75987 | 20.33743  20.84178
30 | 18.66676  19.25966 | 19.9384 20.53131
35 17.94998  18.64924 | 19.44297  20.14223
40 | 17.08711 179114 18.83157  19.65585
45 16.06302  17.03007 | 18.08316  19.05021
50 | 14.86913  15.9929 17.17676  18.30054
55 13.50804  14.79454 | 16.09438  17.38088
60 | 11.9987 13.44083 | 14.82536  16.26748
65 10.38052  11.95296 | 13.37225 14.94469

Table 1: Bounds for pertetuities on (xy) and (T7) with z = y.
Assumptions: (x) ~ M R(4.75%), (y) ~ FR(4.75%), risks are PQD.

The differences between the upper and lower bounds are relatively small. Remark
that the absolute difference between the upper and the lower bound increases with
the age.
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In Table 2 we compare the single premiums for pure endowment insurances on
(25 :20) and (25 : 20) respectively, for varying durations of the endowment.

ndas20 T
n LB UB LB UB

5 | 0.7877 0.78926 | 0.79135 0.79291
10 | 0.61963  0.62223 | 0.62609  0.6287

15 | 0.48632 0.48965 | 0.49513  0.49847
20 | 0.38028  0.38418 | 0.39128  0.39518
25 | 0.29557  0.29998 | 0.30883  0.31324
30 | 0.22746  0.23243 | 0.24321  0.24819
35 | 0.17219  0.17784 | 0.19081  0.19645
40 | 0.12689  0.13333 | 0.14872  0.15515
45 | 0.08945 0.09672 | 0.11458 0.12186

Table 2: Bounds for endowment insurance on (zy) and (7y) with z = 25
and y = 20.
Assumptions: (x) ~ M R(4.75%), (y) ~ FR(4.75%).

For the joint-life as well as for the last-survivor insurance, the difference between
the upper and the lower bound is an increasing function of the duration.
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Finally, in Table 3 we compare whole life annuities on (z : 20) and (z : 20) with
x varying from 20 to 55.

x|y LB UB LB UB

20 | 20 | 19.73491 20.16667 | 20.65737 21.08913
25 | 20 | 18.97906 19.25966 | 20.65737  21.00743
30 | 20 | 18.97906 19.25966 | 20.65737  20.93798
35 | 20 | 18.42580  18.64924 | 20.65737  20.88073
40 | 20 | 17.7345 179114 | 20.65737  20.83428
45 | 20 | 16.89073  17.03007 | 20.65737  20.79672
50 | 20 | 15.88407 15.9929 | 20.65737  20.76621
55 | 20 | 14.71068  14.79454 | 20.65737  20.74124

Table 3: Bounds for perpetuities on (zy) and (Zy) with y = 20.
Assumptions: (xz) ~ M R(4.75%), (y) ~ FR(4.75%), risks are PQD.

For the last-survivor annuity the lower bound equals a, and hence is constant.
From Table 3 we see that increasing the difference in age between (x) and (y)
decreases the absolute difference between the bounds.
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Abstract

We introduce the correlation order as a tool for describing and understanding dependencies in
multiple life statuses. This order is well-known in the economical literature. It is a partial order
in the class of all bivariate lifetime distributions with given marginals. It is shown that this
order is preserved (or reversed) when pricing multiple life and last survivor insurance and annuity
contracts. In particular, we establish conditions that provide information on the phenomenon of
over/underpricing when the usual assumption of mutual independency of the life times involved is
made. The results can also be used to establish lower and upper bounds for the single premiums
of insurances and annuities on joint-life and last-survivor statues with given marginals.

Résumé

Nous utilisons l'ordre de corrélation dans le but de décrire et de comprendre les dépendances
des durées de vie dans le cadre d’assurances sur plusieurs tétes. Cette relation d’ordre est bien
connue dans la litérature économique. Il s’agit ici d'un ordre partiel dans la classe de toutes les
distributions & deux variables des durées de vie d’un couple a distributions marginales données. Nous
montrons que cet ordre est conservé (ou renverse) lors de la détermination de la valeur d’assurances
sur plusieurs t€tes. En particulier nous donnons des conditions qui permettent d’évaluer I'erreur
(positive / négative) lorsque I’hypothése habituelle de T'indépendance mutuelle est utilisée. Ces
résultats peuvent étre utilisés pour déterminer des bornes inférieures et supérieures pour la prime
unique d’assurances sur plusieurs tétes.

Zusammenfassung

Wir fiihren die Korrelations-Ordnung als Hilfsmittel ein, mit dem Ziel, Abhingigkeiten der
Lebensdauern im Rahmen von Versicherungen auf mehrere Leben zu beschreiben und zu verstehen.
Diese Ordnung ist in der Wirtschaftsliteratur bestens bekannt. Es ist eine partielle Ordnung
in der Klasse aller bivariaten Lebensdauer-Verteilungen mit vorgegebenen Randverteilungen. Es
wird gezeigt, dass diese Ordnung bei der Bewertung der Versicherungen auf mehrere Leben
erhalten bleibt (oder umgekehrt wird). Im Speziellen leiten wir eine Bedingung her, welche
Information zum Phidnomen der Uber-/Unterbewertung liefert, falls die iibliche Annahme der
paarweisen Unabhingigkeit der zugehorenden Lebensdauern getroffen wird. Die Resultate konnen
auch verwendet werden, um untere und obere Schranken fiir die Einmalprdmie von Versicherungen
auf mehrere Leben zu bestimmen.
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