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D. Kurzmitteilungen

B1oRN SUNDT, Oslo, and OKECHUKWU EKUMA, Winnipeg

The De Pril transform of a compound R, distribution

1 Introduction

1A. The De Pril transform was defined by Sundt (1995) for probability distributi-
ons on the non-negative integers with a positive probability at zero. He discussed
several properties of the De Pril transform. In particular, he derived a recursion
for the De Pril transform of distributions in the classes R studied by Sundt
(1992). He also derived an expression for the De Pril transform of a compound
distribution expressed by convolutions of the severity distribution and the De Pril
transtform of the counting distribution. Unfortunately, evaluation of this expression
would normally be rather time-consuming. In the present paper we shall consider
the special case when the counting distribution belongs to Ry. By applying the
recursion for De Pril transforms of distributions in Ry and a recursion derived by
Sundt (1992) for a compound distribution with counting distribution in Ry, we
shall deduce a recursion for the De Pril transform of the compound distribution.
When £ is small, this recursion could be less time-consuming than the expression
given by Sundt (1995). This also implies that in this case one would be less
inclined to apply approximations instead of exact evaluation.

1B. In Section 2 we briefly recapitulate some results on the De Pril transform
and the classes Ry from Sundt (1992, 1995) and present our new recursion.
In Section 3 we discuss this recursion in the special case when the counting
distribution belongs to R;. Section 4 is devoted to the question whether to apply
exact or approximate evaluation of convolutions of compound distributions. This
question is further discussed in Section 5 in a special case where we want to
evaluate the aggregate claims distribution of a heterogeneous portfolio.

1C. In the present paper we shall represent a distribution by its probability
function, and hence we shall normally mean its probability function when talking
about a distribution.
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2 General theory

2A. We shall say that a probability distribution on the non-negative integers with
a positive mass at zero is Ry [a,b} if there exist functions a and b such that its
probability function p satisfies the recursion

() |
p(n) = ; (a(&) - " )p(n 1) (n=12,...)

with p(n) = 0 for all n < 0. For simplicity we shall always let a(i) = b(i) = 0
for all 2 > k. We shall call the class of all such distributions with a fixed k Ry.
These classes were introduced by Sundt (1992), who discussed several of their
properties.

We obviously have that Ry | C Ry for all £. The class R, consists of all
distributions on the non-negative integers with a positive mass at zero.

2B. For any distribution f € R, there exists a unique function ¢y on the
positive integers such that f can be represented as R [0, ¢f]. This is seen by
solving the recursion

:%thf(y)f(-’%y) (x=1,2,...) (2.1)

. =]

for py(x) to obtain

L1
|
cpf(a:):—( Z«,,fy r—y)); = 12....] (2.2)

it |

in this paper we shall interpret Zfﬂ v; = 0 when s > {. Sundt (1995) called ¢y
the De Pril transform of f. He studied its properties and argued that it can be a
useful tool for recursive evaluation of distributions in R ..

The De Pril transform is additive in the sense that if fi, f>,..., fin € R, then

m

gy = Z% (2.3)

Sundt (1995) showed that if p is Ry[a, b, then

i
wp(n) = na(n) + b(n) + Za Dop(n—1) (n=12,...) (2.4)
i=1

with ¢, (n) = 0 for all negative n.
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2C. Let P, denote the class of distributions on the positive integers. The
compound distribution pVh with counting distribution on the non-negative integers
and severity distribution h € P, is given by

(pVh)( an s (2=001,200s)

We immediately see that if p € R, then pV h € R.
Sundt (1992) showed that if p is Rg[a,b], then pV h is Roo[c, d] with

k

Za y)hY* (a

b= (x=1,2,...) (2.5)

y=1

In particular, with k = 0o, a = 0, and b = ¢, we obtain that for every p € R
we have that

wpvn(z) = Z *(QZE—U)}L'U*(I) (= 1,25.0) (2.6)
y=1

as h¥*(x) = 0 for all y > x. The relation (2.6) was shown by Sundt (1995).

2D. Let us now assume that p is Ri[a,b]. By (2.4) with ¢ and d given by (2.5)
we obtain that for z = 1,2, ...

z—1

‘vah(il) - 1( ‘+‘ d Z (Pp\/h £ — l/)

{j'“'_

that 1s,

Cpvh(a TZ( Y) b‘iy_)) ()

=1

<

k
+Y epunlz =) Y a(2) (2.7)
2=

y=1

By letting & = o0, @ =0, and b = ¢, in (2.7) we obtain (2.6).
We see that in particular for low valueslof k (2.7) is much less time-consuming
than (2.6) as in (2.7) one would need A** only fori=1,... k.
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3 The case £k = 1

3A. Let us now consider the special case & = 1. Then (2.4) gives
ppln) =(@+0)a™ . (n=1,2.::] (3.1)

Furthermore, (2.7) reduces to

B—1
opvr(x) = (a+b)zh(z) + a Z h(y)opvn(z —y), (z=1,2,...)
y=I (3.2)

whereas insertion of (3.1) in (2.6) gives

&L

a
wavilz) = x(a+b) Z

y=1

y—1

Nz, [E=13...) (3.3)
Y

It is well known that R;[a, 0] is binomial if @ < 0. Poisson if @ = 0, and negative
binomial if @ > 0 (cf. Sundt & Jewell (1981)). Let us consider (3.1) and (3.2) in
each of these three cases.

3B. Binomial with parameters (t,7).

t ‘
Pl = ( )Tf”(] —m)t " (n=0,1,...,t;t=1,2,...;0< 7 < 1)
n

Then
T
¢=—7——; b—"(t~§—l)1_7T
71_ T
wp(n) = —t — (n=1,2,...) (3.4)
z—1
wpvh(z) = i i - (f:z'h(;r) = Z h(y)ppvn(x — y)) s lge=1,2 0] 135)

y=1

Any distribution f € R.. can be represented in the form p vV h where p is a
Bernoulli distribution with parameter

m=1-p(0),
(that is, a binomial distribution with parameters (1,7)) and h € P is given by
A= Y 133

T



Insertion in (2.2) gives

T

wr(x) = (;“ch(;z:) —”Zh(y)gaf(;r—y)), (B=1,2,..4)

|l — 7

that is, we obtain (3.5) with t = 1.
In general we can write (3.5) as

wpvh(T) @pvh _ ) B
t _1_77( Zh ), =1, 2, ]

y=1

which immediately follows from the Bernoulli case and (2.3) as the compound
binomial distribution is the ¢-fold convolution of the corresponding compound
Bernoulli distribution.

In the Bernoulli case with t = 1, (3.5) was given in formula (2) in De Pril (1989).

3C. Poisson distribution with parameter .

)\ n

p(n) = ~ " (n=0,1,...; A>0)
Then
a=0; b=\ (3.6)
A (n=1)
#p(n) = {0 (=2 F s ) &)
wpvh(z) = Azh(z); (z=1,2,...) (3.8)

the latter formula is also obtained by inserting (3.6) in (3.3).

3D. Negative binomial distribution with parameters (o, 7).

y+n—1
pn) = ((YJFH )(l—ﬂ)“ﬁ” n=0,1,...;0>0;0< < 1)

n

Q= 1T b=(a— )r (3.9)
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Insertion of
A=—Inp(0) = | In(1 — 7)|

k(z) = Loy (3.11)
AT

in (3.10) and division by Axr gives

@) D S Y hke— ) . (e
k([) = ﬂ'(m +Z (l — ;) h(y)lﬁ(l —y)) . (l = 1.2)

y=I

This is the recursion presented by Sundt & Jewell (1981) (apart from a misprint

in that paper) for the compound distribution ¢ V h, where ¢ is the logarithmic

distribution given by

] ﬂ..T
i3

:m (= 152:0u)

q(x)
Thus & = ¢V h. From (3.8) and (3.11) we conclude that p VvV h = r V k, where r
is the Poisson distribution with parameter A. Thus

pVh=rVv(gVvVh) =(rvqg Vh.

In particular, when h is concentrated in one, we obtain that p = r V q.
This representation of a negative binomial distribution as a compound Poisson
distribution with a logarithmic severity distribution was presented independently
by Ammeter (1949) and Quenouille (1949).

3E. To summarise, in the binomial case the recursion (3.2) gives simply a
reformulation of the general recursion (2.2) for the De Pril transform, in the
Poisson case it is trivial, and in the negative binomial case the recursion has
earlier been deduced within another context. Thus, with counting distributions in
Ry (2.7) does not bring much new. However, it gives a unification.

4 Exact evaluation or approximation?

4A. To cover approximations to distributions when the approximations are
not necessarily distributions themselves, Dhaene & Sundt (1998) extended the
definition of the De Pril transform to the class F; of functions on the non-
negative integers with a positive mass at zero. Formula (2.7) is easily generalised
to that situation.
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4B. By combining (2.3) and (2.6) we obtain that if p; € R and h; € P4, then

im
\IJ*;N 1 (piVh;) (‘F) - Z PpiVh; (F)
J=1
m

T l .
=YY e ). (e=12.0) @D

y=1" 71=I

When r gets large, evaluation of this formula becomes rather time-consuming.
Therefore Dhaene & Sundt (1998) suggested as an approximation to replace
©p, () by zero when y is greater than some integer 7. They also discussed error
bounds for such approximations. Such approximations are in particular interesting
when ¢, (y) rapidly approaches zero when y increases. Such approximations
were studied by De Pril (1989) in the special case when the p;’s are Bernoulli
distributions (cf. subsection 3B), and we shall therefore call them De Pril
approximations.

When deciding whether to apply an approximation or an exact method, com-
putation time should be considered against the need for accuracy. Analogous
considerations would be needed when deciding the order r of the approximation.
As pointed out at the end of subsection 2D, (2.7) could be much less time-
consuming than (2.6) when p; € Ry with a small k. Thus, in that case (2.7)
would make exact evaluation more attractive.

4C. Dhaene & Sundt (1998) in particular discussed the case when p; is
Rila;,b;]. Obviously the approximation is interesting only when a; # 0, that
is, when p; is either binomial or negative binomial. However, we also do not
want a; to be too far from zero as we want ¢, (y) to rapidly approach zero
when y Increases.

Sundt & Jewell (1981) showed that we always have a; < 1. Fora; < —1, ¢, (y)
diverges when y | oc. From the discussion on R, in Section 3 follows that it
occurs only in the binomial case with m; > 1/2.

Not surprisingly, the error bounds discussed by Dhaene & Sundt (1998) increase
when |a;| increases. When |a;| T 1, the error bounds go to infinity.

The Bernoulli case has been discussed by De Pril (1989) in a situation where
we consider m independent policies over a specified period. For j = [,... . m,
we let 7; denote the probability that the aggregate claim amount of policy j is
positive and /i; the conditional distribution of the aggregate claim amount of the
policy given that the aggregate claim amount 1s positive. Then the unconditional
aggregate claims distribution of the policy is the compound distribution p; V h;,
where p; denotes the Bernoulli distribution with parameter 7;. The De Pril
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approximation seems reasonable when the probabilities of non-zero claims are
small.
In the following section we shall discuss an application of the negative binomial
case.

5 Modelling heterogeneous portfolios

S5A. We want to evaluate the aggregate claims distribution f of an insurance
portfolio of m independent policies over a specified period. For the moment we
assume that the aggregate claim amount for policy 7 (7 = 1,...,m) has the
compound distribution p; V h;, where h; € P, and p; is Poisson with Poisson
parameter ;. From Theorem 11.1 in Sundt (1999) it follows that

F= _?l(pj Vhj)=pVh,
]:

where p is Poisson with parameter A = Z;’;l A; and

m

1
h = X ;/\th

Thus we can evaluate f by the Panjer (1980) recursion

f) =23 yh) e —y),  e=12)

S y=I
which easily follows by insertion of (3.8) in (2.1).

5B. Often one would expect that there are individual properties of an insurance
policy that affect the risk, but are not reflected by the objective rating criteria
applied. We shall assume that these properties affect only the claim numbers, not
the severities. We assume that to each policy j there is related a positive random
variable ©,, and that ©,,... ,0,, are independent and identically distributed. It
is assumed that the conditional distribution of the number of claims from policy
J given that ©; = 0, is Poisson with parameter #\;. Thus the unconditional
distribution p; is given by
T_L

pi(n) = LEOTe %%, (n=01,...) (5.1)

n! J
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Let us assume that the ©;’s are gamma distributed with density

u(f) = %9”_'6_[39. (@ >0;a,3>0) (5.2)

Then we easily get

'+ n) B
I'(a) (B4 M)t

EQTe %% = (n=0,1,...)

and by insertion in (5.1) and some manipulation we obtain

oa+n—1 J6] ¢ .7 "
- T
p;(n) ( n ) (,r3’+/\j> (;3+/\J-) ’ (2 502

that is, p; 1s negative binomial with parameters | «, Z . By (3.9) this
o N EDY
implies that p; is R;[a;, b;] with

Aj

_ . Aj
4,8-*—)\]‘3

B+ N

b, = (a—1) (5.3)

(I-j

5C. In the situation of subsection 5A it was fairly easy to evaluate the aggregate
claims distribution f of the portfolio. As the policies were independent and the
aggregate claims distribution of each policy was compound Poisson, also f is
compound Poisson. Unfortunately it is not that simple in the negative binomial
case of subsection 5B. In the restrictive case when A; and h; are independent of
g for all j, f would be a compound negative binomial distribution; in the general
situation that would usually not be the case. One possibility would then be to for
each j evaluate p; V h; by the Panjer (1981) recursion

T

(pj Vhj)(x) = Z ((LJ' + bj%) hi(y)(p; VRj)(z—vy), (z=12,...)

y=1

and then find f = +7",(p; V h;) by brute force convolutions. However, it seems
more efficient to evaluate the De Pril transform of f either exact or approximate,
and then find f by the recursion (2.1).

For approximate evaluation one could apply the De Pril approximation in (4.1).
As argued in subsection 4B, this approximation seems reasonable if «; is small,
that is, by (5.3) when A; is small. This could be interpreted as if policy j has
low risk exposure, that is, a small policy.

For large policies it seems more appropriate to apply exact evaluation. In that
case one could for each of the policies evaluate the De Pril transform by the
recursion (3.10) and then sum these De Pril transforms to obtain the De Pril
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transform of f. Numerical evaluation applying this methodology on data from
group life assurance has been carried out by Ekuma (1998). This methodology
is closely related to the methodology discussed in Section 5 of Willmot & Sundt
(1989).

SD. The parameter A; can be interpreted as a measure of the risk volume of
policy j. This interpretation becomes perhaps most clear when considering group
insurances. Let us look at a simplified example. We consider a group life assurance
portfolio. Policy j covers the employees of firm j. At any time during the period
that firm has n; employees (that is, we assume that if an employee dies during
the period, he is immediately replaced with another). Conditional on ©; = 0,
the lives of these employees are independent, and the conditional mortality rate
of each employee is . Then the conditions of subsection 5B are fulfilled with
Aj = nju, and we see that a large value of \; means a firm with many employees.

SE. In the present situation we have for simplicity considered the unconditional
distribution of the aggregate claims distribution of the portfolio. However, it would
be natural to believe that the number of claims of policy 7 from earlier years would
contain information about ©;, so that one should rather apply the conditional
distribution given the claim experience of the individual policies. As the gamma
distributions constitute a conjugate class to the Poisson distribution, one would
under reasonable assumptions obtain that also the conditional distribution of ©;
given the claim experience is gamma (cf. e.g. Section 2 in Norberg (1989)). Thus
the conditional claim number distribution of policy j is negative binomial, and
the discussion of subsection 5C is still valid.
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ErRHARD KREMER, Hamburg

Threshold Lossreserving™

1 Introduction

Today loss reserving is a most important subfield of nonlife insurance mathe-
matics. Many pages on that topic can be found in the US-book ,,Foundations of
Casualty Actuarial Science™ and several texts are dedicated to it (see e.g. Taylor
(1986), Institute of Actuaries (1990)). Newer approaches to loss reserving are
mostly based on stochastic concepts and models. Of great practical importance
are methods derived with ideas of regression and time series analysis. Examp-
les of papers which describe these methods are Kremer (1984), (1989), (1993a),
(1993b), Renshaw (1989), Verrall (1989) and Dannenburg (1995). Though the yet
existing techniques are already fairly well developed, further significant progress
can be expected for the future. Some methods can still be refined as is shown
with the following contribution. The ideas of threshold autoregression are intro-
duced in the field of (mathematical) loss reserving. As important practical result
a refined chain ladder technique comes out, that gives more realistic results than
the classical procedure for certain development features.

2 The basic model

Denote with the random variable X;; on ({2, A, ) the total claims amount or
burning cost of a (collective of) risk(s) in accident year no. ¢ with respect to its
development year no. j. Then XA = (X5, 7 =1,...,n—i+1,i=1,...,n)
is the so-called run-off triangle of known claims data. For the following suppose
that one has the model:

Xij = a;| + bj1 : Xi_j,] + €ij1/Vl-llj/2, if X; < Ty (2.1)
= a2 + bjg -X‘L"’_-jfl -+ GijZ/‘/z';/zy if X“ > T

with ¢ = 1,...,n, j = 2,....n, where aj;, bj;, { = 1,2 are certain real
parameters, V;; > 0 is a known volume measure, r; the so-called (real) threshold
and e;;;, [ = 1,2 are (real) random variables with the assumptions:

*The paper is a shortened and improved version of a former contribution to the international
ASTIN colloquium at Copenhagen (1996).
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1) E(ei;) =0, Var(e;;;) = 0121 € [0, )
2) e l=12,1=1,2,...,n, are independent (for given j)
3.) e, Xi are independent for all [ = 1,2 and k < j

Models of type (2.1) have been well-known by statisticians for more than ten
years. They are usually called (self exiting) threshold autoregressive models [in
short: (SE)TAR] (see e.g. Petrucelli & Woolford (1984), Tong (1983), and Chan
(1993)). In loss reserving they are fairly new.

Often one is willing to assume in advance that a priori one has:
ajy=0, [=1,2. (2.2)

and furthermore

(ffl e ()’jz ; (2.3)
3 The loss reserving advice

As well-known the basic problem of loss reserving consists in predicting the
unknown values X;;, j =n —:+2,...n of future development from the known
run-off triangle XA of past development. Using arguments similar to those in
Kremer (1984) one obtains the following.

Under the model (2.1) predict X;;, j > n — i+ 2 by )?,;_]-. calculated recursively
according to the rule:

AXU' = aj] + bjl -)&r,;‘j_| 5 if Xil S Ty

= a2 + bjz ; X'i«J—| , 1f X > T

where one puts:

X

Xy, ifl>n—i+1
Xy, fl=n—i+1.

In practice the parameters aj;, bj; and the threshold r; are unknown. One has to
estimate them from the data of the run-off triangle as described in the following
section.



193

4 Parameter estimation

For the sequel define:

n—j+1

p= 3. Vo lag (s (=12,
i=1
with the sets:
M_,; — (*OC.]‘J']. for [ =1
= |15, 80) for =2
and the indicator function:
la(x) =0, forx & A
=1, forze A.

Furthermore declare the following sum of squares:

A 1 n__lj+l r I - 2

*5,11 = (Vﬂ) ' I_Z[ ‘/,'_, : (‘X,'J' - (IJ'[ = bﬂ -,Xiu;_l)k ' l,\[),()(“)

for [ = 1,2 and with them:
Sj=wj - Si +wip - S,

where w;;, [ = 1,2 are certain weights, which are allowed to depend on r; and
satisty:

wq € [0;1], I=1,2.
The ,,natural” choice of weights would be:

ey =i, =12 4.1)
with:

vy = [y + 15s)

in case that (2.3) holds in addition. With the given notation one can define
woptimal™ estimators 7, a;;, bj; of r;, aj;, by (I = 1,2) simply as those values
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that minimize S;. The solution for that optimization problem can be given easily.
It is obvious that one can restrict for 7; on the values out of the set:

7%] :1{)(“ ,12: 1,...,ﬂ/—-j-+ 1}.

One can proceed as follows:
For each r; = r € R; one calculates estimators @;;(r), bj;(r) by minimizing S},

(I = 1,2). As optimal estimators 7;, a;;, bj; of r;, aj, bj; one chooses that r,

a;i(r), bj(r) for which S; becomes minimal.
With classical calculus one gets that given r; = r (€ R;):

n—73+1
_ Vi : ,
an(r)= > (*J) (Xig = bju(r) - Xij—1) - Tag (Xa)

=] N
n—7j+1 —9+41
Lé' Lﬁn‘ .
Z (ﬁ) ' (X'ii - Z ( U_{J) 'ij) Xij—1 - L, (Xan)
I =1 J Fri=1 J
bj’(r) == n—j+1 V n—j+1 V
RACY A I X; i1 — ( mj) o XK i ) X L (X,
; (Vﬂ) ( v gz:l Vi A g1 L (Xa)

where M is just Mj with r; = r.
For a priori (2.2) one gets more simple:

n—j+1
Vi
Z (—J> cXij o Xij—1 1 (Xar)

vV,
=1 it

n—j+1
A
ZE: (lﬁ;> ”X?jfl'lﬂh()(“)

e |

u(r) =

as estimator for bj; given r; = r (for [ = 1,2). Obviously the resulting method
is handy though refined significantly.

One can prove that under a priori (2.2) and V;; = 1 for all ¢, j the estimators 7,

B_.,-; of r;, bj; are consistent (for n — 00). A sketch of the proof can be found in
Kremer (1996).

In case of a priori (2.2) and
€ij1 = €ij2, for all i,
one can give an adequate test statistic for testing the hypothesis:

H bﬂ Iibjz,
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against the alternative:
K Qﬂ #ibﬁ.

Similar to what is said in Petrucelli & Woolford (1984), p. 278 one can take a
lower one-sided test with statistic:

T, = (gj(n)/-f"j(n))(n_j)/z

where

?

S,

n—7j+1
Vij

o y " 2
Simy=>_ > v (X-u — bju(75) 'Xi,jw) g, (Xan)

=1 i=I J
with
M;j; = (—o0,7;], forl=
= (rj,00), forl=2
n—j+1

Vi= ) Yy
et
and
n—j41 V.. .
sj(n) = Z (V_LJ) (X5 — by - Xij1)?
i=1 J
with the overall estimator

n—j+1
o M
> (1) % Xism
i

i=1

A

J n—j+1
zi: (‘4J> )(2
Er BRI
= \V, ’
Under certain regularity conditions [~2 - In(7},)] is under H asymptotically -
distributed with one degree of freedom. Consequently a senseful test for [ against
K is:
?= Lireont, o)

with the test statistic 7 = —2 - In(7},) and the a-fractile \i,_, of the xji-
distribution.

In case that the test decides for H, one will take the Bj as estimator of b;; = bj».
This is just the classical procedure.
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5 Numerical example

Take a priori (2.2) and V;; = 1 for all ¢, 7 and consider the run-off triangle XA:

a31.28
60.47
33.77
67.06
29.58

48.98
77.53
49.39
95.49

67.39 79.14 8543
11451  154.47
62.65

With the classical chain-ladder method (s. e.g. Kremer (1984)) one gets the
following completion of the triangle to a rectangle:

Completions 1:

41.69

132.76
57.44

166.83
80.46 86.85
170.50  184.05
74.44 80.36

With the method of section 5 one has clearly more work than with the chain-
ladder technique. One proceeds along the following steps.

7 =2

r = 3128
r = 60.47
7 = 3877
r = 67.06

gives §;=12.75
gives S, = 18.86
givess 9; = 11.53
gives 5; = 20.99

)

<

La

Obviously the third threshold is optimal.

But one has:

T*=179< 354, =2T1

what means that one decides for b,; = by, and has to take the overall estimator

bg = 1.39 for bz = b2| — 523.
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J=3 r=3128 gives S;=2514
r= 6047 gives ;= 26.19
r=33.77 gives S; = 4.65

Again the third threshold is optimal.

Now one has:

IT* =346 271,

One has to take the estimator 531 = 1.32 for b3, and 532 = 1.48 for b3 (# b3)).

Jj=4 r=3128 gives S5;=0

r=106047 gives S; =51.42
Trivially the first threshold is optimal.
Finally one has:

T =00 >2.71.

As estimator of by one gets by = 1.17 and for by> (5 bsy) one has to take the
estimator by, = 1.35.

=3
No optimality calculations possible. In the final step one has to apply the chain-
ladder advice, meaning simply:

Xis = (X15/X14) - Xig = 1.08- Xy .

Choosing in each step the optimal threshold, one gets with the threshold method
as completion of the triangle:
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Completions 2:
166.83
84.58 91.35
141.33  190.80  206.06
41.10 54.30 70.59 76.24

The results of completions 1 and 2 differ considerably. The author judges the
second one as being more reliable.

6 Final comments

The above method can be modified slightly. For each 7 > 2 the comparison with
the threshold can be carried though with X; ;| instead of X;;. In the prediction
phase one does not know X; ;| for j > n — i + 2, one will replace it by the

X j—1 then. With this modification the method might be even more appealing.
The reader is invited to apply this modification to the above numerical example.
In practice one should adjust the claims data for inflation in advance.

References

Chan, K.S. (1993) Consistency and limiting distribution of the least squares
estimator of a threshold autoregressive model. Annals of Statistics. 520-533.
Dannenburg, D. (1995) An autoregressive credibility IBNR model. Bldtter der
Deutschen Gesellschaft fiir Versicherungsmathematik. 235-248.

Institute of Actuaries (1990) Claims reserving manual. London.

Kremer, E. (1984) A class of autoregressive models for predicting the final claims
amount. Insurance: Mathematics and Economics. 111-119.

Kremer, E. (1989) Loss reserving by kernel regression. Mitteilungen der Vereini-
gung Schweizerischer Versicherungsmathematiker. 143—155.

Kremer, E. (1993a) Random coefficient autoregressive loss reserving. Bltter der
Deutschen Gesellschaft fiir Versicherungsmathematik. 237-240

Kremer, E. (1993b) Certain extensions of the chain-ladder technique. Mitteilungen
der Vereinigung Schweizerischer Versicherungsmathematiker. 173—186. Correction
note in the same journal in 1994.

Kremer, E. (1996) Threshold loss reserving. Proceedings of the ASTIN colloquium
at Copenhagen.

Petruccelli, J.D. and Woolford, S.W. (1984) A threshold AR(1) model. Journal
of Applied Probability. 270-286.



199

Renshaw, A.E. (1989) Chain ladder and interactive modelling (Claims reserving
and GLIM). Journal of the Institute of Actuaries. 559-587.

Taylor, G.C. (1986) Claims reserving in nonlife insurance. North Holland,
Amsterdam.

Tong, H. (1983) Threshold models in non-linear time series analysis. Lecture
notes in Statistics. Springer, New York.

Verrall, R.J. (1989) Modelling claims runoff triangles with two-dimensional time
series. Scandinavian Actuarial Journal. 129-138.

Erhard Kremer

Institut fiir Mathematische Stochastik
Universitit Hamburg

Bundesstr. 55

D-20146 Hamburg



200

Errata

«Les premieres tables suisses de mortalité»
de Philippe Chuard, Bulletin 1/1999

Malheureusement de génantes erreurs sont contenues dans le texte de I'article ci-
dessus. Les renvois aux tableaux de la page 88 sont inexacts, il s’agit de renvois
aux tableaux 5et 6. A la page 97 les probabilités de déces sont désignées par des d

et non par des q. i 3 )
P q Le Comité de Rédaction
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