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WERNER HURLIMANN, Winterthur

On best stop-loss bounds for bivariate sums by known
marginal means, variances and correlation

1 Introduction

Though there is a huge of statistical methods dealing with all aspects of bivariate
and multivariate dependency, their actuarial applications have only scarcely been
developed. Various effects of independence assumptions on actuarial calculations
have been noticed among others by Heilmann (1986), Norberg (1989), Kling
(1993), and Dhaene and Goovaerts(1996).

In the present paper, we determine first the maximal stop-loss bounds for diatomic
bivariate sums by given marginal means, variances and fixed positive correlation
coefficient. In Section 2 the required structure of bivariate diatomic couples
is derived. Section 3 solves the problem under a condition of strict positive
dependence. The maximal stop-loss bounds are shown to be strictly less than
the corresponding univariate best bounds by Bowers (1969) unless complete
dependence is assumed. The obtained formulas can be regarded as the bivariate
extension of Bowers” bounds. As Section 4 demonstrates, the independent case
depends upon a biquadratic equation and is mathematically more complex. A
closed formula can be obtained if the stop-loss deductible equals the mean, a
special case known to be important in applications.

In Section 5 one examines if the obtained maximal bivariate diatomic stop-loss
bounds also yield the maximum over arbitrary bivariate sums by known first and
second order moment structure. For this, a method of predilection is the bivariate
version of the widespread univariate quadratic polynomial majorant method,
which has been studied systematically by the author (1997a/97b). The maximal
stop-loss bounds for diatomic bivariate sums by known positive correlation
yield an overall maximum for arbitrary bivariate sums with the same known
characteristics if and only if complete dependence holds. In contrast to this,
the minimal stop-loss bounds are attained, over large ranges of deductibles, by
diatomic bivariate couples under any given negative correlation. As immediate
application, the maximal expected value of an exchange option is discussed in
Example 5.1. Suggestions for further work are also made.

Finally, note that in the present paper random variables are defined on arbitrary
infinite supports (—00,00). In practical applications, supports are often half-
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infinite intervals as [0, 00) or finite intervals [a,b], —oo < a < b < oco. These
more complex situations have been studied in Hiirlimann (1997¢/97d/97e).

2 Structure of bivariate diatomic couples

Random variables are assumed to take values on the whole real line (—o0,00).
Recall the structure in the univariate case.

Lemma 2.1. The set D,(u, o) of all non-degenerate diatomic random variables
with mean s and variance ¢ is described by a one-parametric family of supports
{x,,z,}, , < x,, and probabilities {p,,p,} such that

-
12:M+ — )
A (2.1)

Ty — U U=
pl:<“2 ): p2:( 1)7 :C1</'L<I2:
Ly — Ty Ty — &y

or equivalently

a:[:,u—aﬂ/&, Ty =p+0o &, 0<p <1. (2.2)
Py

Pr

Proof. The following equations must hold:

P+ D= 1,
P1Ty + DTy = b,

Py (2 — ) +p, (2 — p)* =0

The first two equations yield

Tg— H E =
It remains to satisfy the third equation of variance. Inserting the preceding

formulas one finds 0* = (p —x,) - (x, — it). Taken together this shows (2.1). The
rest is immediate and left to the reader. Ed
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To clarify the structure of bivariate diatomic couples consider the set

BD2 == {(X7Y)X € D2(,U/$,O'$), ¥ DQ(«“’yJO—y):
Cov[X,Y] = go,0,} . (2:3)
The marginal X has support {z,z,}, z; < x, and probabilities {p,,p,}, and Y’

has support {y,,%,}, y; < y, and probabilities {q,,¢,}. By Lemma 2.1 one has
the relations

Py /P
Ty =Wy —Opn|— Top=l, +0,,/—,
1 x x D, 2 x x D

q q
Y =y~ Oy 2 Yo =y oy [

9 /)

The bivariate distribution of a couple (X,Y) is uniquely determined by the
distribution of X and the conditional distribution of (Y|X). Thus one has to
choose a triple (e, 3,p,) such that

(2.4)

a=PY =y | X=m),
B=PY =y | X=mz, O<a+p8<2 0<p <l (2.5)
pl = P(X = 371)7

Then the joint probabilities p,; = P(X =z, Y =y;), 1,j = 1,2, are given by
pyp=ap;, pp=(1-a)p, (2.6)
P =8Py, Pnp=(1-08)p,.

An equivalent representation in terms of the marginal probabilities and the
correlation coefficient, that is in terms of the triple (p,q;, ) is obtained as
follows.

The marginal probability of Y satisfies the relation

ap, + sz =4, (2-7)
and the correlation coefficient the relation

(= B)pp; = 0v/P1P2q14; - (2.8)

Solving the linear system (2.7), (2.8) and inserting into (2.6), one gets the
following canonical representation.



114

Lemma 2.2. The joint probabilities of a diatomic bivariate couple (X,Y) €
BD,, with marginal probabilities

Ty — %) (yz = uy>
P ==y = ;
1 (1’2—% I Y2

variances 0, = (u, — ) - (¥, — i), o5 = (, — ;) - (Y, — p,)» and correlation

coefficient o, are given by

P =Py + oD 4
P = Pi% — oDiP0i s
P2 = P2ty — OVPIP2 1 s
Py = Pty + o/D1P201 G -

For calculations with diatomic couples (X, Y'), it suffices sometimes to consider
a unique canonical arrangement of its atoms.

Lemma 2.3. Without loss of generality the atoms of a couple (X,Y) € BD,
can be rearranged such that z, < x,, ¥, < ¥, ¥, —¥; < ¥, —x,. Then the atoms
of the diatomic bivariate sum X + Y satisfy the condition

Ty <T+p STty <z Y, (2.10)

Proof. By Lemma 2.1 one can assume z, < ,, ¥, < 4. If y, —y, > x, — 1,
then exchange the role of X and Y. O

3 Optimization by strictly positive dependence

In applications, couples (X,Y) show often “positive dependence” (e.g. the
remaining life-times of a husband and his wife). If (X,Y) € BD, “positive
dependence” is always equivalent with 0 > 0. For a fixed o > 0 we solve in this
Section the optimization problem

it 4d) = (X,)rfn)aéxBDz{:rr(d)} , where 7(d)=FE[(X+Y -d),]. (3.1
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In general, given an arbitrary couple (X,Y) with joint probability distribution
H(z,y) and fixed marginals F(z), G(y), one has the identity (e.g. Dhaene and
Goovaerts (1996)):

d
E{(X+Y—d)+]:E[X]+E[Y]—d+/H(:L",d—:c)d:c. (3.2)

By Hoeffding (1940) and Fréchet (1951) (e.g. Mardia (1970), p. 31) one knows
that for all such H(z,y) one has the best bivariate distribution bounds

H, (z,y) = max{F(z) + G(y) — 1,0}
< H(z,y) < H'(z,y) = min{F(z),G(y)} - (3.3)
Therefore it follows from (3.2) that, by fixed marginals, the maximum of 7 (d) is
attained at Fréchet’s upper bound H*(z,y). Varying the marginals under a given
“positive dependence” structure, it is possible to obtain divers maximal stop-loss
bounds.

In the special situation (X,Y’) € BD,, Fréchet’s upper bound is described by the
following joint probabilities :

Pu="r, Pp=0, Pu=¢ P, Pn==0q, ifp <q, (34)
Piu=4y, Prp=DP1 — 4y, p21:0a Py = D2, ifpqul. (3-5)

Moreover, using (2.9)-one sees that the marginal probabilities necessarily satisfy
the following constraint:

\/q—2=9\/& if p, <qp, (3.6)
a, Py
/&:Q | %2 if p; > ¢, . (3.7}
Dy 4

Exchanging p, ¢ in the results, it suffices to consider the case p; < gq,. The
identity

(X4+Y —d), = (X —p) + (Y —p) —(d— )y
fh= gy + Hy

(3.8)

allows one to reduce calculation to the case p, = p, = p =0.
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Using the above facts and summarizing, one can restrict the maximization to the
subset of all (X,Y) € BD, of the form

| |
':Cl:_a-:r'gﬂ L2 :Jm'aa Py :1+92: 8 >0,

] 1 3.9
y1:—QUy'9, Y2 :Uy'ofg~ 4, :W’ 2
Py =0 P, =0, Py =4, — P> Pgy = Pj -

In particular 7(d) will be a univariate function of #, which one denotes with
m(d; #) in what follows. Two situations can occur. One has either
<ty <ty <z,+y, or (3.10)
Ty <zt <zmty <z,+Yy. '
Since p, = 0 (no probability on the mass point x, + y,) only four subcases are
relevant. To see this, one notes that in the first situation the case x, +y, < d <
x, + y, will be included in the case (C3) below while in the second situation
the case =, +y, < d < x; +y, will be included in the case (C2). Omitting the
elementary but tedious calculations, the following subcases must be considered:
d<z +y :
w(d;0) = —d (C1)
Tty Sd Sy ty
m(d;0) = (@) —p )@+ ¥y —d) + a2y + ¥, — d)
6
Tty Sd<z,+y,:
w(d;0) = gy, +y, — d)
00
=(——5 | +o, —dob C3
<1+(99)2) (0o, + 0, — dob) (C3)
d>x,+y, :
widal) = s (C4)
Obviously only (C2) and (C3) can lead to a maximum. Calculation of derivatives
yields the first order necessary conditions and their unique solutions in (0, c0):

d 2 2
—7(d;0) = —(1 +6%)72. {(o, + 00,)8" +2d0 — (o, + gay)}

df
=0, (C2)

0; = (o, +00,)""- {\/(ax + gm,)? + e — d} ,
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iﬂ'(d; 0) = —o(l+ (99)2)—2 . {(Qam - ay)(gé))2 + 2dof — (oo, + O’y)}

do
== ()., (C3)
085 = (oo, + ay)_' - {\/(QUI F @, Jobd? = d} .

Since the second derivatives of 7(d; #) are negative at these values, these solutions
yield local maxima. The corresponding (local) maximal stop-loss bounds are
Wz(d):ﬂ'(digz):E'{\/(0w+90y) +d —d}. (C2)

mp{d) =mid; ) = %-{\/(gom—l-ay)z—i—dz—d} . (C3)

To show that the obtained local maxima actually yield global maxima, it suffices
to show that the function 7(d; ) is concave over the corresponding domains of
definition.

Lemma 3.1. One has (%zzw(d; #) < 0 for all values of 0 satisfying the following
constraints:

z +y =—(0,+00,)0 <d<z,+y

o, = Q0‘y92
_ C2
: (€2)

o, — oo, 0

$2+y1= 0 Y Sd<$2+y2
00, + 0,

- C3
= (3)

Proof. First calculate the second order derivatives in both cases

%w(d; 0) = —2(1+0*) 72 {(0, + 00,)0(3 — 6°) + d(1 - 36*)} , (C2)
‘d%zﬁﬂ(d; 0) = —20*[1 + (08)%] > - {(Q% +07,)00[3 — (00)?]

+dl1 - 3(e0)]}. (C3)

and then show that the curly brackets are positive by distinguishing between
several subcases as follows:

1-3¢°>0 = {..}>2(0,+00,)0(14+6%)>0 (C2a)
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1-36<0 (C2b)
d<0 = {.}>0 (2bl)
— o0, 0? i
i>0 = {”}2@%+Q%w@~ﬁ%+iLi?&41—wq
2
- 1;9 -{()’H:(l —92)+290y92}
e (C2b2)

I —3(e0)> >0
d>—(eo, +0a,)00 = {..}>20,+ Uy)gf)[l + (08)*] >0 (C3a)

1 —3(00)* <0 (C3b)

d<0 = 40330 (C3b1)

o, -+ a,

A20 = {..} 2 (00, +0,)003 — (06 + L[l = 3(o6)]

Qo-a:+az 4
= TJ“ — (00)*]

>0, 0 (C3b2)

Using this property we show that if o, > &, then 75 (d) is maximal, otherwise
it is 72 (d).

Case l;: o,.> a,

With 6 = 65 the constraints on d in (C2) of Lemma 3.1 are fulfilled. This
follows by using the relation df = %(ax + 0o,)(1 — 6*) and the facts o, > &y
and 0 < p < 1 for the second inequality constraint. Since the function 7(d; 6) is
concave over the feasible set of s, the local maximum is a global maximum.

Case 2: o0,<0,

With ¢ = 673 the constraints on d in (C3) of Lemma 3.1 are fulfilled. This follows
by using the relation dof = 1(oo, + o,)[1 — (¢#)] and the facts 7, < o, and
0 < o < 1 for the first inequality constraint. By Lemma 3.1 the local maximum

is a global maximum.
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The inequality

max {(c,, + 00,)%, (e, + 7’}
< max {(o, + goy)z, (00, + O'y)2} + (1 — ¢*) min {02, 03}
= Ui A 05 + 2QO‘$O'y
=: g%, (3.11)
whose equality holds only by complete dependence ¢ = 1, shows that the
maximum is always strictly less (unless ¢ = 1) than the corresponding univariate

best upper bound by Bowers (1969), which is 1 -{v/o2 + d> —d} (note that z = 0
is still assumed). Let us summarize the obtained result.

Theorem 3.1. The maximal net stop-loss premium of a diatomic bivariate sum
X +Y, (X,Y) € BD,, with deductible d by given marginal means Py s

variances o2, 05,

E[(X+Y —d
.. [(X = )]

— %{\/maX{(U% 5 Qoy)Z, (Qol. + gy)2} i (d _ u)z = (= ‘u)} _ (3.12)

and correlation coefficient o > 0 is given by

The maximum is attained for a diatomic bivariate distribution, which is determined
as follows:

a
Ty = fip = 00, P
Uy
W = p, — 0,00, y2=,uy+;§
{ - (3.13)
P11:1+92= P, =0
(1— )6 (06)?

T )1+ (00 T T+ (P
where one has
(0, +00,) " {\flo, +00,) + (A= w2 = (=)},

if 7, & Ty

loleo, + o, 17" {\J (e, + 0,2+ (d =P = (A=)},

\ if o, <o,.

f = (3.14)
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4 Optimization in the independent case

In the present Section one assumes that ¢ = 0 in the canonical representation
(2.9). As shown in Section 3 one can assume p, = jt,, = 0. Then maximization
of m(d) = E[(X +Y — d)_] must be done over all (X,Y’) € BD,, of the form

1 1
551:*()&‘5’ Q’)z :O'a:-g’ pl :1—’_52’ é— >0,

| 1 (4.1)
=00, %y N T T e ¢ =0,
D11 = ™4 P =114, Py = P4y, Py = P45 -

Therefore 7(d) will be a bivariate function of (£,6) denoted by w(d;&,@).
By Lemma 2.3 and its proof, it suffices to consider the following relevant
cases, as well as any solution obtained by permuting X and Y. Details of the
elementary but somewhat tedious calculations are left to the reader. Three cases
are distinguished:

Tty <d<z +Yy

: _ 1 . (2 P2 4 £2p2
wlh s, @) = {(1 o0 _ng)} {omf—l—ayﬁ &=+ 0+ £°0°)} (C1)
Tty Sd<z,+y

=5\ (o
@6 = (1) - (0 - ) (©2)
Ty +y Sd< Ty + Yy,

oy §0 . -

One proceeds case by case in order of simplicity.
Case (C2):
d
g8 = (1+8)7" - {(1 =)o, —2d5} =0

S—a;'-{\/o;’;—!—dz—d}, (4.2)
i) = nld: &) = 5 {\Jor + @ - a}

To analyze when (4.2) yields a global maximum, one proceeds as in Section 3.
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Case (C3):

a—g(d;f,é’) =TT 52)_2(1 vy } {0,620 + 2dE0 — 20 & — 0,0}

—£
(1+&2)(1+62)?

} {0, £0° +2d€0 — 20,0 — 0, £}

From the first condition one gets

g
b= o &2 +2dE — 0o, 43)

Inserted in the second one, one obtains the biquadratic polynomial condition

2(1+E) = 4. {(am _dey 4 (ays>2} (4.4)

Case (Cl):

0 -1
660 = { (e

} Ao £+ 20,80 + 2d¢ — o,}

= )
9 r(d:€,0) — (0,67 + 20,60 +2d0 — o, }
Y ol _ , _
6"\ %S Are)i+ep W T2 v
== ()
Setting ¢ = ¢, 1 = 5, e = —d, these conditions transform to the system of
equations

axgazw +2epp — 20,0 — 0,9 =0,

. (4.5)
o, +2epyp — 20,9 — o, =0,

which is of the same form as in case (C3) with the variables &, 8, d replaced by
(P’ ,ll[)J e'

In numerical evaluations of case (C3) (which yields case (Cl)), only those
(£,0) € (0,00) x (0,00) derived from (4.3) and (4.4) must be considered,



122

which yield local maxima. As is well-known from standard calculus, a sufficient
condition for this is

82

and
52 52 9 2
SEm(G6.0) - 66,6 - | prmndie0)] >0,

where the functions are evaluated at the corresponding values. If the function
7(d; &,0) is concave over the set of feasible points (£, ), a local maximum will
automatically be a global maximum (two-dimensional analogon of the property
used in Section 3).

Example 4.1: the mean of X 4+ Y as stop-loss deductible

Without loss of generality one can assume that pu, = p, = g = 0. Thus one
has to analyze the above formulas in case d = 0. In case (C3) the solution to
equation (4.4) can be written as

g

T

1
£ =—- -\/205 — o2+ 2\/(05 —02)2 + O’%O’% , (4.6)

and a similar formula holds in case (CI). As illustration, in the most simple
situation of equal marginal variances o, = o, one obtains herewith:

1

& =1, 75 (0) = 5055 Case(C2)
3
& =03=v3, m(0)=3V3o, Case(C3)

f;ZQ;Z

*| S

3
, m(0) = 3 3oy, Case(C1)

One checks that in case (C3) the given solution is local maximal, and that
m(d; &, 0) is concave over the feasible set of points. It follows that the maximum
stop-loss premium to the deductible ¢ = p, +p,, of a diatomic bivariate sum with

2 2

independent components, given marginal means . i,, and variances o = o,

equals %\/gdm This is strictly less than %\/an, which is Bowers’ univariate best
upper bound. This fact has also been mentioned in Hiirlimann (1993), without
details however.
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5 Best bounds from the bivariate quadratic polynomial
majorant/minorant method

It is natural to ask if the previous upper stop-loss bounds for diatomic bivariate
sums are best possible among all bivariate sums with fixed marginal means,
variances and positive correlation. Furthermore one would also like to have best
lower stop-loss bounds.

In general, one often bounds the expected value of a multivariate risk f(X) :=

f(X,,...,X,,) by constructing a multivariate quadratic polynomial
n n
q(x) =q(x,...,z,) =qy+ Zaixi + Z ;T (5.1)
§=1 i,j=I

such that g(x) > f(x) to obtain a maximum, respectively q(x) < f(x) to obtain
a minimum. If a multivariate finite atomic risk X (usually a multivariate di- or
triatomic risk) can be found such that Pr(¢(X) = f(X)) = 1, that is all mass
points of the multivariate quadratic risk ¢(X) are simultaneously mass points
of f(X), then E[g(X)] = E[f(X)], which depends only on the mean-variance-
covariance structure, is necessarily the maximum, respectively the minimum. In
the univariate case, a systematic study of this approach, which leads to an effective
algorithm for the important situation of a piecewise linear function f(x), together
with numerous concrete examples from Insurance and Finance, has been offered
by the author (1997a/97b). As a next step, we start herewith the analysis of
the bivariate case by considering the concrete special bivariate stop-loss sum
f(x,y) = (x+y—T),, where T instead of d denotes now the deductible.

It will be shown in Subsection 5.1 that a bivariate quadratic polynomial majorant
is of the separating form ¢(z,y) = q(z) + q(y), where g(z), q(y) are quadratic
polynomials, and thus does not contain the mixed term in zy. In particular the
maximum does not depend on the given positive correlation and is attained by
complete dependence. This provides a further elementary proof of the bivariate
version of the inequality of Bowers (1969) given in Hiirlimann (1993). Moreover
the applied method shows that the extremal stop-loss bound for diatomic bivariate
sums of Section 3 for a fixed 0 < o < 1 cannot be a ”global” maximum over all
bivariate sums by given 0 < o < 1. Unfortunately the problem of finding a best
upper stop-loss bound remains unsolved in this situation (possibly a solution does
not exist at all), a question raised by Gerber at the XXII-th ASTIN Colloquium
in Montreux, 1990 (comment after Theorem 2 in Hiirlimann (1993)). In contrast
to this the minimal stop-loss bound over all bivariate sums by known means,
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variances and fixed negative correlation p < 0 exists, at least over a wide range
of deductibles, as shown in Subsection 5.2. However this is less surprising. Our
result shows that the trivial best lower stop-loss bound, which is again independent
of p, is attained by diatomic bivariate sums with any possible negative correlation.

5.1 A bivariate quadratic polynomial method

Without loss of generality one can assume that p, = p, = p =0 (see (3.8)). A
bivariate quadratic polynomial majorant of f(x,y) = (v +y — 7)., as defined
by

q(z,y) = ax’ + by’ + cxy +dz +ey + f, (5.2)

depends on 6 unknown coefficients. From Section 3 one knows that the maximum
of E[f(X,Y)] over arbitrary couples (X,Y) with distribution H(z,y) by given
marginals F'(z) and G(y) is attained at the Hoeffding-Fréchet extremal upper
bound distribution H*(z,y) = min{F(z),G(y)}. A count of the number of
unknowns and corresponding conditions (given below), which must be fulfilled in
order to get a bivariate quadratic majorant, shows that the immediate candidates
to consider are diatomic couples. By Section 3 restrict first the attention to a
Hoeffding-Fréchet extremal diatomic distribution of the form (3.4), that is

Pu=p: Pp=0, pp=q -0, =0, P9,
T Y 5.3
P = = - v 4 = e (5:3)
Ty — T Yo — ¥y

Taking into account that p,;, = p,q, + 0\/P,P,q,¢, by (2.9), one finds through
comparison the constraint (3.6), which expressed in terms of the atoms yields the

relation

Q

1
y=—-—2-2,, 0<p<I. (5.4)
g Oy
On the other side the equations of marginal variances imply the further constraints

T Ty = _0',21-: s = _U;' (5.5)

Thus a possible extremal diatomic couple is completely specified by a single
unknown atom, say x,;. Since p,, = 0, the relevant bivariate sum mass points are
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T, +¥Y;, T, +Y,, Ty +Yy,. Furthermore one can suppose that z,+y, < T < z,+y,
(see Section 3). Consider z = g(x,y) as a quadratic surface in the (z, y, z)-space,
and z = f(z,y) = (x+y —T), as a piecewise bivariate linear function with the
two pieces z = ¢,(z,y) = 0 defined on the half-plane H, = {(z,y):z +y < T}
and z = {)(x,y) = 4+ y — T on the half-plane H, = {(z,y):xz+y > T},
then one must have @Q,(z,y) := q(z,y) — ¢,(z,y) > 0 on H,, and Q,(z,y) :=
q(z,y) — & (z,y) > 0 on H,. To achieve Pr(q(X,Y) = f(X,Y)=1) =1 one
must satisfy the 3 conditions

Q](xay) = O
Q(zy,y,) =0, (z,,y,) inoneof H,, i=1,2 (5.6)
Qx(25,9,) =0

The inequalities constraints Q. (z,y

,y) = 0 imply that (z,,y,) must be tangent at
the hyperplane z = £,(x,y), i = 1,2, hence the 4 further conditions

0
an(x,y) =0, .
) (i) i=1,2. (5.7)
a_Qz(xay) 207
Y (z3,9i)

Together (5.6) and (5.7) imply 7 conditions for 7 unknowns (6 coefficients
plus one mass point), a necessary system of equations to determine a bivariate
quadratic majorant, which can eventually be solved. To simplify calculations, let
us replace ¢(z,y) by the equivalent form

a(z,y) = a(z —z)* + by —y,)* +c(z — 2 (y — v,
+d(z— ) +ely—y)+ f. (5.8)

The required partial derivatives are

q.(7,y) =2a(z —z;) +cly —y,) +d

g, (z,y) =2b(y —y;) +c(z —zy) te (5.9)

Then the 7 conditions above translate to the system of equations in x,,¥,;, 1 = 1, 2:
qg(z,y) =F=0 (C1)

(2, 3) = (@ — ) + d(zy — 2)) = (@ + 3y — 1), (C2)
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q(z,,y,) = alz, — 9;1)2 + by, — 91)2 + ey — ) (Y, — W)
+d(zy — ) +e(y, —yy)

=z, +y, — T (C3)
g, (z,y) =d=0 (C4)
g (z,y) =€e=0 (C5)
(%2, 42) = 2a(z; — =) +c(y, —yy) = | (C6)
q, (22, 45) = 2b(y, — yy) + c(x, —xy) =1 (C7)

In particular one has d = e = f = 0. The conditions (C6), (C7) can be rewritten
as

ey — 1) = (1 — ey ~ ) (o)

1
by, —y,) = i(l—c($2~x1)) (C7)
Insert these values into (C3) to see that the following relation must hold:

It says that the sum of the two extreme maximizing couple sums equals two
times the deductible. Observe in passing that the similar constraint holds quite
generally in the univariate case (cf. Hiirlimann (1997a), Theorem 3.1, proof for
type (D1), p. 204).

Now try to satisfy (C2). If (z,,y,) € H,, one must have a = 0, hence
c(y, —y;) = 1 by (C6), and

bzl{(yz—yl)—(fcz—wl)}

2 (¥, — yl)z

by (C7). Similarly, if (x,,v,) € H,, one obtains a(z, — z,)* = z, + y, — T,
hence ¢(z, — x;) = 1 by (C6) using (5.10), and b = 0. In the first case,
one has g(x,y) = (y — y;)(b(y — y;) + ¢z — x;)), and in the second one
q(z,y) = (x — zy)(alzx — x;) + c(y — y,)). In both cases the quadratic form
is indefinit, which implies that the majorant constraint g¢(z,y) > 0 on H, or
H, cannot be fulfilled. The only way to get a quadratic majorant is to disregard
condition (C2), that is to set p,;, = 0, hence ¢, = p, (no probability on the
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couple (z,,y,)). Calculations using (5.3) to (5.5), or equivalently invoking (3.9),
shows that necessarily o = 1, which is complete dependence. To get a quadratic
majorant one can set ¢ = (0 in (C6), (C7). Then one obtains

- _l (55_531)2 (?J—%)z
« Jy)ﬂz{(xz_xl)jL(yz_yl)}. G-10)

The discriminant of both Q,(z,y), ¢ = 1,2, equals

1
A= (zy —z1) (v — y1) = 5:12)

and furthermore

o? 1
753 @i(z,v) = >0, i=1,2, (5.13)
Oz (z5,Y4) g —

By standard calculus one concludes that @), (z,y) is positive definite, hence as
required. Solving (5.10) using (5.4) and (5.5), one obtains the explicit maxi-
mizing Hoeffding-Fréchet bivariate diatomic couple (X,Y), obtained differently
in Hiirlimann (1993), Theorem 2. It remains to discuss the form (3.5) of the
Hoeffding-Fréchet extremal diatomic distribution. Replacing in the above proof
the couple (z,,y,) by (z,,y,), one obtains similarly that condition (C2) must
be disregarded, hence p;, = 0, p; = ¢; and thus p = 1. The same maximizing
couple follows. In fact the applied bivariate quadratic majorant method shows the
following stronger result.

Theorem 5.1. (Characterization of the bivariate stop-loss inequality) The bivari-
ate stop-loss sum maximizing diatomic Hoeffding-Fréchet couple (3.13), (3.14),
solves the bivariate quadratic majorant stop-loss sum problem if and only if o = 1.
Its atoms and probabilities are given by (set 0 =0, + 0, = p, + )

o =-2{ T+ - (T-p},

2= 2T+ +(T -},

v = —%i {\/(T—M)2+Uz = (T—#)} , (5.14)
yzz%{\/(T—M)2+UZ+(T—#)},
P11:%(1+\/(Ti;;;+02)= Pp=1-py, pPp=py=0,
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and the stop-loss sum maximum equals

%{\/(T"u)uaz(T*u)}- (5.15)

Proof. The formulas (5.14) follow from (5.10) as explained in the text, while
(5.15) follows from (5.11) by noting that E[q(X,Y)] = max{E[(X +Y -T)_]}.
The elementary calculations are left to the reader. [

Example 5.1: distribution-free upper bound for the price of an exchange option

Setting 7' = 0 and changing Y to —Y, one obtains the maximal expected value
of an exchange option as

max {E[(X -Y),]}

(X, Y)ED(pa 00,10y ,0y)

_ %{\/(aﬁay)“r (#t “y)z‘t(“““y)}'

In Finance Theory the exchange option has been first priced by Margrabe (1978).
To get a distribution-free maximal price over a fixed period, say one-year, discount
at the risk-free accumulated rate of interest r, and set y, =r, pu, =, equal to
the expected accumulated returns of the random assets X and Y. In an arbitrage-
free environment, one would further set v, = r, = r to get the maximal exchange
option price

1 1
(X,Y)ED?:f,)Sfm,ry,gy){U I )1} Sl +0,) v, v=-

This result, which is a bivariate version of the formula (4.4) in Hiirlimann (1991),
is the starting point for an extension of previous work by the author (1991/96) to
more complex random economics environments.

5.2 Best lower bounds for bivariate stop-loss sums
We proceed as in Subsection 5.1 with the difference that q(x,y) < f(z,y) and

the fact that the minimum of E[f(X,Y)] should be attained at the Hoeffding-
Fréchet extremal lower bound distribution H_(z,y) = max{F(z) + G(y) — 1,0}.
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For bivariate diatomic couples with negative correlation coefficient p < 0, two
cases are possible (derivation is immediate):

Case 1: p; +q, <1

Pu=0, Pp=p, Pu=a—-pP, Pp=1-—g (5.16)
Case 2: p; +q, > 1

pn=p+a -1, pp=1-q, ppy=q—-p, pPp=1-q (517)

Taking into account (2.9), the form of p,, implies the following relations:

1o
y; = - -2z, in Case I,
o
f; (5.18)
y, = — 2z, in Case 2.
00,

Clearly (5.5) also holds. We show first that there cannot exist a bivariate quadratic
minorant with non-zero quadratic coefficients a, b, ¢, hence the minimum, if it
exists, must be attained at a bivariate linear minorant. Since possibly p,; = 0 (as
in Case 1), the non-trivial situation to consider is =, +y, < 1T < z, + y,. We
proceed now as in Subsection 5.1. The simplest g(x,y) takes the form

g(z,y) =a(z —z) >+ by — )" +clz —z)(y - v,)
+dx—z)+ely—y)+ . (5.19)

The partial derivatives are

q,(z,y) = 2a(z — 2;) +c(y — y,) +d

q,(z,y) =2b(y —y,) tclx —z)) +e (5.20)

The following 8 conditions must hold (up to the cases where some probabilities
vanish):

Q(l’uy]):a(yz_yl)2+€(yl—yz)+f:0 (C1)

q(zy,9,) =f=0 (C2)
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(2, y1) = azy — 2,)* + b(y, — y1)* + ez, — )y, — )
+d(zy —x)) +e(y) — ¥a)

=(zy+y, —T), (C3)
q(z,95) = alzy — 2)° +d(z, —x,) =2, + 9y, — T (C4)
G (21, 9,) =d =0 (C5)
9, (%1, 9,) =e=0 (C6)
Gz (T2, 4) = 20(x; — 1) = 1 (C7)
q'y(‘TZ’y2) = (2, — ;) =1 (C8)

In particular one has d = e = f = 0. By standard calculus, in order that
Q,(z,y) < 0 on H, i = 1,2, the quadratic form @,(x,y) must be negative
definite. Therefore its discriminant, which is A = 4ab — ¢* for both i = 1,2,
must be positive, and a < 0. But by (C7) one has a > 0, which shows that no
such ¢(z,y) can actually be found. Therefore the minimum must be attained for
a bivariate linear form. Similarly to the univariate case, the candidates for a linear
minorant are {(z,y) =z +y—T if T'<0 and 4(z,y) =0 if T > 0.

Case(l): T <0, l(z,y)=z+y—-T

Let us construct a bivariate diatomic couple with probabilities (5.16) such that

either z,+y, =T <z, +y, <2, +9,, (5.21)
or Z,+y=T<z,+y, <z, +Yy,. o

Then one has Pr ({(X,Y) = (X +Y -T),) =1, l(z,y) <O=(z+y—T),
on H, and ¢(x,y) =x+y—T = (x+y—T), on H, Together this implies that
min{ E[(X +Y —T),]} = E[¢(X,Y)] = —T, as desired. Let us solve (5.21)
using (5.18). Three subcases are distinguished:

-1
o, < (?)02 (hence o, + o, > 0) (A)

Since y, = QZ—z—:cl by (5.18), the equation =, + y, = 1" has the solution

o (o.+ oo
ZEl:(L)T, Iz:_ :z:(z Qy)7
o, + 00, T

yo-Blote) (% )og,
T o, + 00,

(5.22)
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One checks that ' < z, +y; < x, + y,, and that p, + ¢q; < 1 (condition for
pn =0

o (5) ®

Exchange X and Y such that o, > (_?1)%. Since o* < 1 one gets

-1
5 [~ %~ | —DT, = (—)UI,
y < (—0) QZ( ) .
and one concludes as in Subcase (A).
o, +00,=0 (C)

Using (5.18) one gets the relations

|
Y= 5Ty, Y=—I;.
1= 22 2 1

Setting

2
. 0
z, = (—QZH I)T

one obtains z, +y, =717 <0 =z, + ¥y, < x, + y,, which yields a diatomic
couple with the property (5.21).

Case (II): T > 0, ¢(x,y) =0
One must construct a bivariate diatomic couple with probabilities (5.16) such
that z, + y, < 7. Then all mass couples belong to H,, which implies that
Pr({(X,Y)= (X +Y —T),) = 1. It follows that min{ E[(X +Y —T),]} =0.
Using that

o

_ "y
Yp =0T,
O-ZII

the equation x, + y, = 7" has the solution

Mty == %(T + \/T2 - 4(—g)ax0y) (5.23)
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provided T' > 2, /(—p)o,,0,. Removing the assumption p, = p,, = 0 (translation
of X and Y'), one obtains the following bivariate extension of the corresponding
univariate result (e.g. Kaas et al.(1994), Theorem X.2.4).

Theorem 5.2. The minimal stop-loss premium for a bivariate sum X + Y with

marginal means j,, i, variances 3,0, and negative correlation o < 0 equals

+ - T rovided 7' < p_. 4+, or T' > 2, /(—p)o_o,. It is attained
o+ 1y —T)y P o T Hy =Ty

by a bivariate diatomic couple with atoms as constructed above in Case (I) and
Case (ID).
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Summary

The maximal stop-loss bounds for diatomic bivariate sums by given marginal means, variances and
fixed positive correlation coefficient are determined. Based on the bivariate quadratic polynomial
majorant/minorant method, it is shown that the bivariate quadratic majorant stop-loss problem can
be solved by a bivariate diatomic couple if and only if its components are completely dependent.
In particular one obtains a geometric more insightful proof of the bivariate stop-loss inequality of
Bowers/Hiirlimann (1993), which provides the best upper stop-loss bound for bivariate sums by
given marginal means and variances. Some best lower stop-loss bounds are also determined, which
in contrast to the upper bounds are attained by bivariate diatomic couples with any possible negative
correlation. As immediate application, the maximal price of an exchange option is determined.

Zusammenfassung

Die maximalen Stop-Loss Schranken fiir zweipiinktigen zweifach verdnderlichen Summen mit
bekannten Randwerten fiir Erwartung und Varianz, und festem positivem Korrelationskoeffizient,
werden ermittelt. Durch Anwendung einer quadratisch polynomial Majoranten/Minoranten Methode
mit zwei Verdnderlichen wird gezeigt, dass das zweifach verdnderlich quadratische Majoranten
Stop-Loss Problem genau dann losbar ist, falls die Summenkomponenten vollstindig abhingig
sind. Insbesondere wird ein analytisch geometrischer Beweis der zweifach verdnderlichen Stop-Loss
Ungleichung von Bowers/Hiirlimann (1993) gegeben, welche die beste obere Stop-Loss Schranke
fiir zweifach verdnderlichen Summen bei gegebenen Randwerten fiir Erwartung und Varianz liefert.
Einige beste untere Stop-Loss Schranken werden ebenfalls ermittelt, welche, im Gegensatz zu den
oberen Schranken, durch zweifach veriinderlichen zweiplinktigen Paaren rnit beliebiger negativer
Korrelation erreicht werden. Als unmittelbare Anwendung wird der maximale Preis einer Austausch-
Option ermittelt.

Résume

On détermine les bornes maximales stop-loss pour des sommes bivariées biatomiques, dont les
valeurs marginales pour la moyenne et la variance, ainsi qu'un coefficient de corrélation positif,
sont données. Par application d’une méthode bivariée de construction de majorantes/minorantes
polynomiales quadratiques, on montre que le probéme de la construction d’une majorante stop-loss
quadratique bivariée est résoluble si et seulement si les composantes de la somme sont complétement
dépendantes. En particulier, on obtient une démonstration géométrique plus ingénieuse de 'inégalité
stop-loss bivariée par Bowers/Hiirlimann (1993), qui fournit la meilleure borne supérieure stop-loss
lorsque les moyennes et variances marginales de la somme sont données. Quelques meilleures
bornes inférieures stop-loss sont également déterminées. Contrairement aux bornes supérieures,
celles-ci sont atteintes par des paires biatomiques bivariées a corrélation négative quelconque.
Comme application immédiate, le prix maximal d’une option d’échange est déterminé.
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