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GERARD Parumi, Lausanne

A study of a family of equivalent martingale measures
to price an option with an application to the Swiss market

1 Introduction

In this paper we consider the problem of pricing a European option in the
context of incomplete markets.

Let us first consider a complete market, i.e. a market where every contin-
gent claim is attainable. Black and Scholes (1973) have shown that under
some ideal conditions, it i1s possible to create a hedged position, consisting
of a long position in the stock and a short position in the option. Moreover
it is possible to maintain the hedge continuously and as a consequence the
return on the hedged position becomes certain. Hence the unique rational
price of a contingent claim can be obtained as if it existed in a risk-neutral
world, this price being equal to the expected value of the discounted payoff
according to an appropriate probability measure (). This probability mea-
sure is equivalent to P', the physical probability measure and such that it
makes the discounted price process {e~"*S(t)};>( a martingale. This mea-
sure () is called the equivalent martingale measure.

Let S(t) denote the price of a non-dividend paying stock at time ¢ > 0. We
assume that there is a stochastic process, { X (t)};~q, with stationary and
independent increments, X (0) = xy = In S(0), such that

Sty=eX® >0, (1)

We may interpret the random variable X(¢) — z( as the continuously
compounded rate of return over the time interval [0,f]. We suppose
throughout this paper that there exists a risk-free asset whose rate of return
is known and constant through time, and we denote this risk-free rate by r.
The Fundamental Theorem of Asset Pricing tells us that the absence of
arbitrage opportunities implies essentially the existence of an equivalent
martingale measure. However this equivalent martingale measure 1s unique
if and only if the market is complete. So, when considering incomplete

"ie wehave P(A) =0 & Q(A)=0
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models for the stock price process, there exist many equivalent martingale
measures. In that sense the price of a European option i1s not unique.

We place ourselves in the context of incomplete markets and we are
interested in studying the effect of changing the martingale measure when
taking the discounted expected value of the payofl. In order to achieve
this goal, we consider the pricing of a European option in an incomplete
market.

We can describe a European option by a payoff function //(s) = 0 and a
maturity date 7. At time 7', the holder of the option receives the amount
I[I(S(T)). We know from financial theory that the price at time 0 <t < T
is calculated as a discounted expected value of the payoff. The rate used
to perform the discounting is the risk-free rate and expectation is taken
according to an equivalent martingale measure. Thus the price of the option
at time ¢ 1s

T TOEGI(S(T)) | 5], 0<t<T. 2)

Here L[] denotes expectation taken with respect to the equivalent
martingale measure (). This measure must be such that the pricing formula
(2) 1s compatible with the observed price of the stock, i.e. we require that

S(t) = e "TDEG[S(T) | Fel, 0<t<T. (3)

2 An incomplete model

[ntuitively, to have a model for the stock price process that implies an
incomplete market, more than two outcomes must be possible in an
infinitesimal time interval.

As before let S(/) denote the stock price at time ¢. Here we will assume
that {S(1)};~¢ is a geometric compound Poisson process with two possible
jump heights, i.e.

X(t)=axp+ A‘li\rl(f) + ka No (1), t>0. (4)
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Here, {N{(t)}:>0 and {N,(t)}+>0 are independent Poisson processes with
respective parameters A(k;) and A(ky), k; and k, are two constants and
xq is the initial value of the process {X (¢)};~o. The initial stock price is
S(0) = e™. It is the simplest incomplete model we can think of. To avoid the
existence of arbitrage opportunities, we assume that at least one of the two
constants %y or k; is positive. Otherwise, selling short the stock and investing
the proceeds in the risk-free asset yields S(0)(e"t —eF1 N1 (1) +k2N2 (1)) which
1s positive whether a jump occurs or not at any time ¢. In order to shorten
the notation in what follows, we will write \; for A(k;).

Let ;, o2, v and 7 denote the first four cumulants per unit time of the
process { X (¢)};>0. Thus

E[X(t)] = kit + ky ot = ut,
Var[X (t)] = kit + k3 M\t = ot
E [(X(t) - ,ut)3] = B3\t + k3ot = 1t
and

E [(X(t) - ,ut)4] —3(Var[X (B)])% = kMt + kot = nt . (5)

Since k| and k; are observable parameters of the process, they must remain
unchanged under any equivalent measure. Only the Poisson parameters A\
and A\ can be modified. We denote those modified parameters by A} and
A5. Writing down the martingale condition, we obtain

S(0)=Eg [e7*S(1)]
= e“”EQ [S(¢)] -

By (1), the parameters A] and A3 are solutions of the equation
0=—p4 M {e¥ =1) % 23" — 1) (6)

At that point, we propose to study the following family of methods to price
an option: Set (for i =1,2)

ecki — 1
)\f:exp{h< ﬂ/\i, 0<c<l. (7)

G
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Taking the limit as ¢ — 0 in (7), we obtain the modified Poisson parameters

Af=elRiy, =12, (8)

2

For the case ¢ = 1, we have
A=l Dy =12, 9)

For a reason that will be made clear in section 6, we are motivated to
study whether pricing an option according to the two different measures
corresponding to (8) and (9) leads to two significantly different prices for
this one. We want to determine, for every value of ¢, the value of h, written
h*(c), such that the process

{e7™"S(t)} >0

is a martingale with respect to the probability measure corresponding to
h*(c). That is h*(c) solves (6). We obtain so the following family of implicit
equations for 2™ (c):

ec‘k'l 1 eCk2 1

0=—r+eh e MM -1+ M -1), 0<c<1.(10)

Now the question arises what value for ¢ should we use, when pricing an
option in this incomplete model? What 1s a “good” value for ¢? Because
this question cannot be answered directly in a theoretical way, we propose
to explore this question by means of real data. In that order, we examine
observed prices of European calls. Hence, we have payoff functions of the
form I1(S(T)) = (S(T') — K)4+, where K denote the strike price. In that
case, formula (2) becomes

e " EQ[(S(T) — K)+ | S(0)], (11)

or, in our model,

eN " (" — K) g2, T), (12)

T>K

where we have considered ¢ = 0, and defined x = In (%) q(z,T) is the

probability that kN (T') + k,N>(T') = x, under the equivalent martingale
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e(_'kz' s ]

measure (). The distribution of N; is of parameter eh*(c)( c ),\i for
¢ = 1,2. Here c i1s considered to be fixed. ky, ky, Ay and X\, are the
parameters of the physical probability measure and are determined by
solving (5) with y, o2, v and 7 replaced by their estimates.

3 Esscher transforms and equivalent martingale measures

In an incomplete model, there are many equivalent martingale measures.
A priori, it is not clear which martingale measure should be chosen to
calculate the price of an option. Gerber and Shiu (1994) suggested that, in
order to obtain a unique answer, the choice of the equivalent martingale
measure could be limited to the family of Esscher transforms (see Esscher
(1932)). A justification in term of minimal relative entropy with respect to
the physical probability measure P has been given by Chan (1997).

Let M(z,t) = E[e*X(!)] denote the moment generating function of X (¢).
Because M(z,t) is continuous at ¢t = 0, it can be proved that

M(z,t) = M(z,1)t, t>0. (13).

The process
{ehx(t)M(h, 1)“t}

1s a positive martingale and they used it to define a change of probability
measure. That is, it is used to define the Radon-Nikodym derivative dQ)/dP,
where P denotes as before the original probability measure and () is the
Esscher measure of parameter h. They call the risk-neutral Esscher measure
the Esscher measure of parameter h = h* such that the process

{750}

is a martingale with respect to the probability measure corresponding
to h*.

Gerber and Shiu (1994) apply the Esscher transform (parameter h) to the
process {X(t)};>0. Let M(z,t;h) denote the moment-generating function
of the modified distribution of X (¢). It is easily verified that

M(z+ h,t)

Mz, th) = =

(14)
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Writing down the martingale condition, we obtain

S(0) = Eg e " S(t)]
=e "t EQ[S(1)].

By (1), the parameter ~™ is the solution of the equation
1=e " Eg {eX(t)—X(O)] ,
or, using (14),

ot _ x)-x©0)] _ M1 +ht)
B =g {P } T T MMt (15)

From (13) we see that the solution does not depend on ¢, and we may set

t=1:
o M1+ h,1) (16)
- M(h,1)
or
o M1 +h,1)
fll’]( M) ) (17)
For the model given by (4), (14) becomes
Ep [€(z+h)X(t)]
Mzt by =
Azt ) Ep [ehX(®)]
exp {:13() + At (e<z+h)kl - 1) + Mot (e(z+h)k'z _ 1)}
B exp {CL‘() + A\t (ehkl - 1) + Aot (ehkz - 1)}
After simplification, we obtain
M(z,t; h) = exp {/\lehk‘lt (ezkl - 1) 1 gehke (ezkz . 1)} . (18)

Hence, the Esscher transform (parameter h) of the process {X(t)};>q is
again a compound Poisson process, with the same two possible jump heights
k and k, but with modified Poisson parameters A\;e"*i, i = 1,2. From (17)
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and (18) we see that the parameter A* of the risk-neutral Esscher measure
is implicitly defined by the equation

r= Atk (ek‘ . 1) + dgeh R (h2 — 1) . (19)

Then the risk-neutral Esscher parameters are given by A} = )\leh*ki and

5 = )\zeh* %2 Hence, we see that in section 2, the case ¢ = 0 corresponds
to applying the method of Esscher transforms.

4 Two other incomplete models

In order to make numerical comparisons, we present in this section two
other incomplete models: the shifted gamma process and the shifted inverse
Gaussian process. The modeling of the stock-price movements by means of
these two models was first introduced by Gerber and Shiu (1994, section 4).
For these two incomplete models, we use the method of Esscher transforms
in order to get a unique answer for the price of an option. Hence, the price
of an option is defined to be the discounted expectation of the payoff where
expectation is taken according to the Esscher transform of parameter A",
where h = h™ is determined so that (17) is satisfied. Remember that in
section 2, the case ¢ = 0 corresponds to applying the method of Esscher
transforms.

4.1  The shifted gamma process
Here it is assumed that
X)) =Y{t) ~ vty
where {Y(¢)} is a gamma process with shape parameter a and scale

parameter 3, and the positive constant » is a third parameter. The moment
generating function of X (¢) is

at
M(z,t) = (ﬁfJ o P, g, (20)
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For given values of y, ¢ and ~, the three parameters are chosen to match
the first three cumulants per unit time, 1.e., to solve

o
X)) =5 -v=p,
(87
Var[X (1)] = 7 o,
1 3L2CKJ
EUX()W@]Ej s
Hence we set
46 22 24
a=22. g2 T 1)
Y i i

From (14) and (20), we obtain

. o ﬁ—h, ot —vtz
Mzt B = (ﬁ—h—z) e , z<fB—h, (22)

which shows that the Esscher transform of { X ()} is again a shifted gamma
process with unchanged values of o and v but g replaced by

B(h)=08—h.
From (16), we obtain the following condition for the martingale measure

B 1
1 g—iptr)ie

B=p(h")

4.2 The shifted inverse Gaussian process

Here, it is also assumed that
X(@t)=Y(t) —vt,

but with {Y'(#)} being an inverse Gaussian process with parameters a and
b. The moment generating function of X () is

M(z,t) = et (Vb—vb=z)—vtz (23)
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Again, for given values of p, o and -y, the three parameters are chosen to

match the first three cumulants per unit time, or to solve

EX(D)] = 57 v =1,
Var[X (1)] = 4;% = o2,

B(x() - wt] = 7 =

0—355.]8 b:ﬁ 30
;o 27 Y

From (14) and (23), we obtain

M(z,t;h) = exp [at(\/b—h—\@~h—z)—z/tz :

(24)

z < (3—h,(25)

which shows that the Esscher transform of {X (¢)} is again a shifted inverse

Gaussian process with unchanged values of a and v but b replaced by

b(h) =b—h.

From (17), we obtain the following condition for the martingale measure

rza(\/b—h*—\/bﬁh*_l)—y,

or equivalently

V) = b =1 = 2T

a

which is an implicit equation for b* = b(h).
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S Numerical examples

In this section we examine the family of equivalent martingale measures
given implicitly by equation (10). We are interested in examining the
option’s price sensitivity to the change of measure involved by a change
in the parameter c.

The stock prices are obtained from the data base DATASTREAM. Those
prices are closing market prices. We consider daily data. From those daily
prices, we compute the continuously compounded daily rate of return
according to

N S(t)
X(t) = 1n(5(t—_1)) . (26)

The DATASTREAM’s prices are adjusted for operations like splits or increases
of capital but not for the payment of dividend. We had to modify the data
for the days where dividend payments occurred in order to cancel the jumps
(anticipated on the market) due to dividends. DATASTREAM provides us with
dividends series. Hence it is possible to correct the rates of return at the
dividend payment dates.

As examples we have chosen to consider American call options on stocks
ALUSUISSE R (“nominative”) and SWISS BANK CO B (“porteur”). We have
selected derivatives for which the volume of transactions was sufficiently
high, so that the prices are real market prices. We consider times to
maturity between 10 days and 158 days. We made use of observed data
from the SOFFEX (Swiss Options and Financial Futures Exchange). The
options at the SOFFEX are American options. We have considered only
options on stocks for which there was no dividend payment until the date
of maturity. For these options the price is identical to the price of European
options.

On the Swiss Option Exchange, the expiration date is always the third
Friday of the relevant month. Quoted prices for options and traded volumes
have also been obtained from DATASTREAM. The options are quoted in
Swiss francs with the minimum quoted price fluctuations (ricks) given in
Table 1.

We had two kinds of daily quoted prices: last price paid (Ipp) and settlement
price (sp). As a general rule, the settlement price corresponds to the last
price paid, unless there was no exchange during the last hour of quotation or
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Option’s price Tick

From Fr. -.10 to Fr. 9.90 Fr. —-10
From Fr. 10~ to Fr. 19.80 Fr. .20
From Fr. 20~ to Fr. 99.50 Fr. —.50
From Fr. 100.- Fr. 1-

Table 1: Minimum quoted price fluctuation (tick) at the SOFFEX

the last price paid was not anymore corresponding to the current situation
of the market. In those two cases, the SOFFEX determines the option prices.
We have to remember this when making comparisons between observed
prices and theoretical ones. For the risk-free rate, we have chosen EURO-
CURRENCY (SWISS FR.) from London for one, two, six and twelve months.
For time to maturity of four and five months, we have considered linear
interpolation of the preceding rates.

For each case considered, we have first calculated [i, 72, 5 and 7j, estimates
of the first four cumulants per unit time (here one day) of the process
{X(t)};>0- Then we have computed X, X2, ki and ks, estimates of the
parameters of our pure jump model by solving the system given by (5).
See Tables 2 to 5. We have also computed estimates of «, § and v, the
parameters of the shifted gamma process, using (21) and finally estimates
of a, b and v, the parameters of the shifted inverse Gaussian process, using
(24).

To obtain twenty-one different options prices in the first model, we have
computed expression (12) for ¢ = 0, 0.05, 0.10, ..., 1. At this stage, the
computations are time-consuming (we obtained up to 160,000 probability
masses for each distribution given by different values of ¢). We then
computed the option prices for the two other incomplete models (see
formulas (4.1.7) and (4.2.7) given in Gerber and Shiu (1994)). See Tables
A.l to A7 in appendix A. Here because of the high-valued parameters
numerical difficulties arise. For example, in the case 7" = 158 days we had to
calculate a gamma distribution function with shape parameter oo = 1,951.69
and scale parameter 3 = 271.46 or an inverse Gaussian distribution function
with shape parameter a = 305.93 and scale parameter b = 202.78.

In the first model, we see that option prices are monotone functions of the
parameter ¢. Whether it is an increasing or decreasing function of ¢ depends
on the case considered. In every example we observe that the differences
between the prices obtained with ¢ = 0 and the prices obtained with ¢ =1
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~

Ag

o~

k;

2

0.250587820
0.237835455

0.022434177
—0.015715156

Table 2: Estimates of daily parameters for ALUSUISSE R over the period
January 4 — June 30, 1992.

Ag

~

k;

2

2.651383917
6.976036534

0.006081860
—0.002422898

Table 3: Estimates of daily parameters for SWISS BANK CO B over the period
June 29 — November 19, 1992,

-~

Ad

~

k;

0.316605487
0.204049188

0.015705559
—0.011705723

Table 4: Estimates of daily parameters for SWISS BANK CO B over the period
January 4 — June 7, 1993.

o~

Ai

o~

ki

0.849021090
2.422493362

0.011786903
—0.004344630

Table 5: Estimates of daily parameters for SWISS BANK CO B over the period
October 18, 1993 — April 18, 1994.

are very small. Figures A.1 to A.7 in appendix A show for each value of
c the difference between the price obtained with that particular value of ¢
and the price obtained with ¢ = 0 in percentage of this latter. Surprisingly,
we observe in every of our cases that for any given value of ¢, the higher
the strike price, the higher this percentage in absolute value. The maximal
difference computed between those two prices is of 0.245% of the price
given by ¢ = 0 (see Table A.3 and Figure A.3). In fact, it appears that the
range of equivalent martingale measures obtained is in some sense very
narrow in the pure jump model considered.
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6 A more general jump model

In this section we give a justification for section 2. Consider, for the process
{X(t)}+>0, @ more general model, specified as follows. The conditional
distribution of the amount of a jump is of a discrete nature. We use
the symbol At(-) for the measure of the jump frequencies of the process
{X(t)}4>0, 1.€. At(z) dt is the probability of a jump of amount x between
times ¢ and t + dt. We adopt a similar notation for the process {S(t)} >0,

with A;(-) replaced by A:(-). Because {S(t)}+>0. is adapted, the following
equality holds:

At() = A(S(E)(e” - 1)) (27)

We write Xf‘t (-) and )\? t(-) to indicate that we are working with the Esscher
transform (parameter o for {S(t)};>0 and hy for {X(t)};>0). So we have

X?t (y) _ eatyxt(y) — )\?t (3;) - ehtl’)\t(l-) , (28)

where y = S(¢)(e® — 1).

We apply now, as in Gerber and Shiu (1994), the Esscher transform to
the process { X (t)};>o. The condition that the process {e "*S(t)};>¢ is a
martingale resumes to

—r 4+ Z(em = l)eh”"/\t(a:) = I, (29)

Consider now applying the Esscher transform directly to the process {S(t)}.
This is the Esscher method in the sense of Biihlmann (1995). Then, the
martingale condition is

Y gty (y) =0,
Yy

which can be rewritten in term of the “parameters” of the process
{X()}e>00

4.+Z(ea:41)ea’£(em_1))\t(:€) =0, (30)

xT

with of = aS(t).
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In comparing conditions (29) and (30), we see that, unless A;(-) is concen-
trated on one point ¥ (in which case we have to choose a;S(t)(e® — 1) =
hex ), the resulting equivalent martingale measures for {e*'”iS(t)}tz() are
different. For that reason, we are motivated to study whether pricing an
option according to those two different measures leads to two significantly
different prices for this one. Hence, we propose the following interpolation
formula for the modified jump measure:

aC% __1]

—I(z), O<e<l.

M(a) — el

Taking the limit as ¢ — 0, we see that the above expression is the
modified jump measure obtained when applying the Esscher transform
(parameter h;) to the process {X(¢)};~o. The other extreme case where
¢ = 1 corresponds to the modified jumﬁ measure obtained when applying
the Esscher transform (parameter «;) directly to the process {S(t)};~0.
The model given by (4) is time homogeneous, so we can leave the subscript
t. We want to determine, for every value of ¢, the value of h, written h*(c),
such that the process

{e78()},5
is a martingale with respect to the probability measure corresponding to
h*(c). In fact, we obtain a family of implicit equations for h*(c):

T—1

““7""2(6‘1—1)@}1(666 )/\(.T):O, O<CSI (31)

We can rewrite this family of implicit equations for our model (4) of the
process {X(t)};>p and obtain so (10).

b Examination of an approximation formula

In this section, we examine the linear approximation formula introduced by
Gerber and Landry (1997) by means of real data. The examination makes
use, as in section 5, of observed data from the SOFFEX.

They have considered models where ~, the third cumulant per unit time
of the process {X(t)};>0, is different from zero. In order to examine the
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effect of skewness, they proposed to replace the exact density of X (1) by its
first order expansion and obtained a linear approximation for the price of a
European option. It is remarkable that the approximation formula obtained
does not depend on the underlying model, as long as option prices are
calculated by the Esscher method. The interested reader is referred to their
paper for further details. Here is their formula

oo

e "Eg[S(1) - K)4] = e'r/ (eBot* — K) fo(x) da

K

>0
= . o+
+ 3¢ T/ (e™F* — K) fi(z) dz, (32)
where x = In (%) and without loss of generality the maturity considered
is of 1. Here K is the strike price, fo(x) and fi(x) are given by
1 [o—pu*
Jolz) =—¢ (33)
o o
and

—

fl(w)zz(“u (%(fﬁ"(x au ¢< JH*D
)

1 — 1
- 34
o (=), (34)
where p* = r — %(72. Here ¢(-) denotes the standard normal probability

density function. fy(z) is the martingale density of X (1) in the classical
Black-Scholes model. Hence, the approximation consists of the Black-
Scholes price combined with an adjustment for skewness.

The prices obtained by this method are displayed under the heading “Linear
Approximation” in Tables A.1 to A.7 in appendix A. In most of our cases
the difference between the settlement price and the price obtained by this
method is negative. For example (see Table 6) we consider a call option
with strike price K = 400 and 64 days to maturity on a stock (SWISS BANK
CO.) that is selling at present time at 374 Swiss francs. The third cumulant
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per unit time ~ of the stock is estimated at 0.000001 1916643 per day. We
obtain a rate of change at v = 0 of 3632.480. Hence the Black-Scholes price
must be adjusted by 3632.4797 per . The first order effect of the skewness
on the price of this option is given for different strike prices in Figure 1.
We note that this adjustment can be positive or negative, depending on the
strike price K.

Exercise Observed Black Rate of Change Linear
Price K Prices Scholes at v =20 Approximation
lpp / sp
350 3150 33.00 31.596 815.967 31.658
360 27.00  26.50 24.639 1549.226 24.757
370 19.00  21.00 18.671 2325.263 18.849
380 15.00  15.00 13.736 3001.996 13.965
390 11.50  11.50 9.805 3459.197 10.069
400 8.50 8.50 6.789 3632.480 7.066
425 4.00 3.40 2377 2963.007 2.603

Table 6: Call option (on SWiSS BANK CO B) prices with S(0) = 374, T' = 64 days
on August 18, 1994 (v = 0.000 001 191 664 3)

4000

3500 +

3000

2500 +

2000

1500 |

rate of Change

1000

500 +

0

g
-500°

exercise price {K)
Figure 1: Adjustment of the call option price per v (see Table 6)
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8 Implied parameters
and the linear approximation formula

In sections 5 and 7 we computed the Black-Scholes formula and expression
(32) in taking parameter values estimated from historical data and substi-
tuting them into those two formulas. From a practical point of view, the
one parameter in the Black-Scholes formula that cannot be observed di-
rectly is the volatility. By using the historical standard deviation to estimate
the volatility, we assume that the past variability of the stock’s returns is
invariant through time. It is not obvious that volatility is constant for long
periods of time and that the historical volatility is independent of the time
series from which it is calculated. It is therefore difficult to measure directly
the volatility in practice.

However, option prices are quoted in the market. An alternative concept,
implied volatility, consists of estimating the volatility of stock returns
implicitly reflected in current option prices. A call option price increases
monotonically with volatility, so there is a one-to-one correspondence
between the volatility and the option price. The idea is to invert the Black-
Scholes formula from the currently observed price of a call option. In this
way we obtain the market’s opinion of the value of the volatility over the
remaining life of the option. This method was originally proposed by Latané
and Rendleman (1976). The implied volatility derived from several options
written on the same stock will generally not be equal.

Now the problem is to take a suitable weighted average of the individual
implied volatilities. One can think about taking the arithmetic average or
even to weight each option’s implied volatility according to its degree of
price elasticity with respect to the volatility. Here we mention Beckers’
empirical study (1981) of stock returns’ future variability estimates. He
suggests the use of only one call option price, the one whose price is most
sensitive to 0. We measure the sensitivity of an option with respect to o by
the partial derivative of its price with respect to o, that is

'l — K+ %O'ZT
)

(*T + In(S(0)/K) + 22T
= 5(0) % exp(—% 3T 2 ) .

aC ,
= S(OWTP (
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This expression 1s maximal for

e rT+10?T
K = 5(0) 2 :

(35)
Hence the call option whose strike price is the nearest to the one given by
(35) will be chosen.

The parameters in the linear approximation formula (32) that cannot be
observed directly are the first three cumulants per unit time of the stock
price. Now the idea is to invert this approximation formula by observing
the current call option’s price. In this way we obtain the market’s opinion
of the value for the drift, the volatility and the third cumulant per unit time
over the remaining life of the option. To do this, we apply the following
algorithm. Choose arbitrary initial values for p and ~, say pp and 7 (a
good idea is to choose historical estimates of them). Then compute oy,
the value of o that makes the approximation formula meet exactly the last
observed price. Now use o and -y to compute 1, the value of i that makes
the approximation formula meet exactly the last observed price. Repeat
these steps to obtain v, o2, y2, 72, 03, {3, ¥3, ... until convergence 1is
observed.

Tables B.1 to B.7 in appendix B show the prices obtained using implied
volatility to compute Black-Scholes prices and implied g, ¢ and 7 to
compute the linear approximation formula. For example, consider Table
B.5, which shows the prices obtained for a call option on stocks of the
Swiss Bank Corporation on August 18, 1994, using implied parameters. In
this particular example we found an annual implied o of 0.29321 for the
Black-Scholes formula. For the linear approximation formula, we obtained
the following implied annual parameters: p = —0.18889, ¢ = 0.29122,
v = 0.00043496. In comparing settlement prices and the prices given by the
Black-Scholes formula using implied volatility we see that settlement prices
are overforecasted in almost every of our cases. Except for the prices given
by Table B.6, we observe that using implied parameters with both formulas
leads to differences of identical signs. For both formula and for a particular
choice of S(0) and 7, the largest difference is obtained for the more
out-of-the-money call option. In Table 7 are displayed the mean absolute
differences between the theoretical prices and the settlement prices and the
sum of absolute differences for all of our cases. Both for the Black-Scholes
formula and the linear approximation we remark that the mean absolute
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spread decreases significantly while using implied parameters. However
this effect is the strongest for the Black-Scholes formula. Examining all
our cases together, we remark that 23 times out of 37 the Black-Scholes
formula with volatility estimated implicitly leads to better results than
using the Black-Scholes formula with volatility estimated historically. We
remark also that 26 times out of 37 using implied parameters in the linear
approximation formula leads to better results than without using implied
parameters. Figure B.1 in appendix B shows valuation errors in percent
of the settlement prices for the Black-Scholes and linear approximation
formulas, using for both formula implied parameters. Figure B.2 in appendix
B shows valuation errors in percent of the settlement prices for the linear
approximation formula with and without the use of implied parameters.
Moneyness 1s defined as

5(0)
— 1.
K
Options whose absolute moneyness %92 — 1], 1s greater than ten percent

are not taken into account. These options have little trading activity and
price quotes are generally not supported by actual trades.

Mean Absolute Sum of Absolute
Differences From sp Differences from sp
(in % of sp) (in SFR.)
Black-Scholes 15.52 79.66
BS-iv 10.35 37.67
Linear approx. 15.62 77.06
LA-i 12.18 48.10

Table 7: Valuation errors statistics
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Appendix A
K =475 492 500 525

Observed lpp 49.00 42.50 35.50 22.00

Prices sp 49.00 35.50 33.50 21.50

Black

Salicles 49.382 38.390 33.798 21.871

Linear

Approximation 48.163 37.071 32.465 20.622

Shifted

i 48.172 37.072 32.463 20.619

Shifted

Inverse 48.183 37.083 32.474 20.628

Gaussian
c=20 48.9185 37.688 33.020 21.006
0.05 48.9176 37.687 33.019 21.005
0.10 48.9167 37.686 33.018 21.004
0.15 48.9157 37.685 33.017 21.003
0.20 48.9148 37.684 33.016 21.001
0.25 48.9138 37.683 33.015 21.000
0.30 48.9129 37.682 33.014 20.999
0.35 48.9120 37.681 33.012 20.998
0.40 48.9110 37.680 33.011 20.997
0.45 48.9101 37.678 33.010 20.996
0.50 48.9091 37.677 33.009 20.994
0.55 48.9082 37.676 33.008 20.993
0.60 48.9073 37.675 33.007 20.992
0.65 48.9063 37.674 33.006 20.991
0.70 48.9054 37.673 33.004 20.990
0.75 48.9044 37.672 33.003 20.989
0.80 48.9035 37.671 33.002 20.987
0.85 48.9026 37.670 33.001 20.986
0.90 48.9016 37.669 33.000 20.985
0.95 48.9007 37.668 32.999 20.984
c=1 48.8998 37.666 32.998 20.983

Table A.1: Call option (on ALUSUISSE R) prices with S(0) = 508 and T' = 94 days on

July 13, 1993
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K =240 260 280 300
Observed Ipp 26.50 9.00 2.40 1.00
Prices sp 25.50 8.50 2.40 1.00
?Cli‘;lfes 25.063 9.164 1714 0.148
Linear
Approximation 25.058 9.222 1.808 0.178
?}l:f]t]er;la 25.057 9222 1.808 0.179
Shifted
Inverse 25.057 9222 1.809 0.180
Gaussian
c=20 25.180539 9.267172 1.818309 0.180996
0.05 25.180544 9.267181 1.818315 0.180997
0.10 25.180544 9.267187 1.818319 0.180998
0.15 25.180547 9.267195 1.818325 0.180999
0.20 25.180548 9.267201 1.818330 0.181001
0.25 25.180549 9.267207 1.818335 0.181002
0.30 25.180551 9.267215 1.818340 0.181003
0.35 25.180555 9.267223 1.818346 0.181004
0.40 25.180556 9.267230 1.818351 0.181005
0.45 25.180558 9.267237 1.818357 0.181007
0.50 25.180560 9.267244 1.818362 0.181008
0.55 25.180562 9.267252 1.818367 0.181009
0.60 25.180565 9.267260 1.818373 0.181010
0.65 25.180566 9.267266 1.818378 0.181011
0.70 25.180569 9.267274 1.818383 0.181013
0.75 25.180571 9.267281 1.818389 0.181014
0.80 25.180573 9.267289 1.818394 0.181015
0.85 25.180575 9.267296 1.818399 0.181016
0.90 25.180578 9.267303 1.818405 0.181018
0.95 25.180579 9.267310 1.818410 0.181019
roi—| 25.180581 9.267317 1.818415 0.181020

Table A.2: Call option (on SWISS BANK CO B) prices with S(0) = 263.5 and 7" = 28
days on November 20, 1992
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K = 280 300 320 340

Observed lpp 50.00 26.00 13.00 4.00

Prices sp 45.50 26.00 13.00 4.00

Black

ioress 46.441 27.283 11.764 3.278

Linear

Approximation 46.385 26.884 10.962 2.715

Shifted

Gamma 46.822 27.353 11.276 2.850

Shifted

Inverse 46.557 27.090 11.090 2775

Gaussian
c=0 46.823845 27.3226 11.2974 2.8653
0.05 46.823828 27.3224 11.2970 2.8650
0.10 46.823826 27.3223 11.2966 2.8646
0.15 46.823815 27.3222 11.2962 2.8643
0.20 46.823804 27.3220 11.2958 2.8639
0.25 46.823795 27.3219 11.2954 2.8636
0.30 46.823786 27.3217 11.2950 2.8632
0.35 46.823778 27.3216 11.2946 2.8629
0.40 46.823766 27.3215 11.2941 2.8625
0.45 46.823759 27.3213 11.2937 2.8622
0.50 46.823749 27.3212 11.2933 2.8618
0.55 46.823737 27.3211 11.2929 2.8615
0.60 46.823728 27.3209 11.2925 2.8611
0.65 46.823718 27.3208 11.2921 2.8608
0.70 46.823710 27.3206 11.2917 2.8604
0.75 46.823699 27.3205 11.2913 2.8601
0.80 46.823690 27.3204 11.2909 2.8597
0.85 46.823680 27.3202 11.2905 2.8594
0.90 46.823670 27.3201 11.2901 2.8590
0.95 46.823661 27.3200 11.2896 2.8587
e=1 46.823651 27.3198 11.2892 2.8583

Table A.3: Call option (on SWISS BANK CO B) prices with S(0) = 325 and T' = 37 days
on January 13, 1993
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K =370 380 390 400 425

Observed lpp 19.00 14.00 9.50 6.50 1.40

Prices sp 19.00 14.00 9.50 6.50 1.40

Black _

- 20.346 14.736 10.271 6.884 2.132

Linear

Approximation 20.447 14.901 10.491 7.132 2.344

Shifted

Gamma 20.460 14.913 10.498 7.138 2.349

Shifted

Inverse 20.460 14.913 10.498 7.139 2.350

Gaussian
c=0 20.57149 14.99394 10.55606 7.17867 2.36462
0.05 20.57152 14.99397 10.55608 7.17869 2.36464
0.10 20.57155 14.99400 10.55612 7.17872 2.36465
0.15 20.57157 14.99403 10.55614 7.17875 2.36467
0.20 20.57160 14.99406 10.55617 7.17877 2.36468
0.25 20.57163 | 14.99409 10.55620 7.17880 2.36470
0.30 20.57165 14.99412 10.55623 7.17883 2.36472
0.35 20.57168 14.99415 10.55626 7.17885 2.36473
0.40 20.57171 14.99418 10.55629 7.17888 2.36475
0.45 20.57173 14.99420 10.55632 7.17890 2.36476
0.50 20.57176 14.99423 10.55634 7.17893 2.36478
0.55 20.57179 14.99426 10.55637 7.17896 2.36479
0.60 20.57182 14.99429 10.55640 7.17898 2.36481
0.65 20.57184 14.99432 10.55643 7.17901 2.36483
0.70 20.57187 14.99435 10.55646 7.17903 2.36484
0.75 20.57190 14.99438 10.55649 7.17906 2.36486
0.80 20.57192 14.99441 10.55652 7.17909 2.36487
0.85 20.57195 14.99443 10.55654 7.17911 2.36489
0.90 20.57198 14.99447 10.55657 7.17914 2.36490
0.95 20.57201 14.99449 10.55660 7.17917 2.36492
c=1 20.57203 14.99452 10.55663 7.17919 2.36494

Table A.4: Call option (on SWISS BANK CO B) prices with S(0) = 380 and T = 50 days
on September 9, 1994
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K =350 360 370 380 390 400 425
Observed lpp | 31.50 27.00 19.00 15.00 11.50 8.50 4.00
Prices sp| 33.00 26.50 21.00 15.00 11.50 8.50 3.40
Black
Setioles 31.596 24.639 18.671 13.736 9.805 6.789 2.377
Linear
Approximation 31.658 24.757 18.849 13.965 10.069 7.066 2.603
Shifted
T —— 32.745 25.737 19.703 14.683 10.651 7.523 2.820
Shifted
Inverse 31.656 24.755 18.847 13.963 10.067 7.066 2.606
Gaussian
c=20 31.88106 | 24.93058 | 18.98086 | 14.06309 | 10.13975 | 7.11750 | 2.62631
0.05 31.88109 | 24.93061 | 18.98089 | 14.06312 | 10.13978 | 7.11753 | 2.62633
0.10 31.88111 | 24.93064 | 18.98092 | 14.06316 | 10.13981 | 7.11756 | 2.62634
0.15 31.88114 | 24.93067 | 18.98095 | 14.06319 | 10.13984 | 7.11758 | 2.62636
0.20 31.88116 | 24.93070 | 18.98099 | 14.06322 | 10.13987 | 7.11761 | 2.62638
0.25 31.88118 | 24.93073 | 18.98102 | 14.06325 | 10.13990 | 7.11764 | 2.62640
0.30 31.88121 | 24.93076 | 18.98105 | 14.06329 | 10.13994 | 7.11767 | 2.62642
0.35 31.88124 | 24.93079 | 18.98108 | 14.06332 | 10.13997 | 7.11770 | 2.62643
0.40 31.88126 | 24.93081 | 18.98111 | 14.06335 | 10.14000 | 7.11772 | 2.62645
0.45 31.88128 | 24.93084 | 18.98114 | 14.06339 | 10.14003 | 7.11775 | 2.62647
0.50 31.88131 | 24.93087 | 18.98118 | 14.06342 | 10.14006 | 7.11778 | 2.62649
0.55 31.88133 | 24.93090 | 18.98121 | 14.06345 | 10.14009 | 7.11781 | 2.62650
0.60 31.88136 | 24.93093 | 18.98124 | 14.06348 | 10.14012 | 7.11784 | 2.62652
0.65 31.88138 | 24.93096 | 18.98127 | 14.06352 | 10.14015 | 7.11787 | 2.62654
0.70 31.88141 | 24.93099 | 18.98130 | 14.06355 | 10.14019 | 7.11789 | 2.62656
0.75 31.88143 | 24.93102 | 18.98134 | 14.06358 | 10.14022 | 7.11792 | 2.62657
0.80 31.88146 | 24.93105 | 18.98137 | 14.06361 | 10.14025 | 7.11795 | 2.62659
0.85 31.88148 | 24.93108 | 18.98140 | 14.06365 | 10.14028 | 7.11798 | 2.62661
0.90 31.88151 | 24.93110 | 18.98143 | 14.06368 | 10.14031 | 7.11801 | 2.62663
0.95 31.88153 | 24.93113 | 18.98146 | 14.06371 | 10.14034 | 7.11803 | 2.62664
g=1 31.88155 | 24.93116 | 18.98149 | 14.06374 | 10.14037 | 7.11806 | 2.62666

Table A.5: Call option (on SWISS BANK CO B) prices with S(0) = 374 and T = 64 days

on August 18, 1994
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K =350 360 370 380 400 25 | 448
Observed lpp | 3650 | 3600 | 3300 | 2500 | 1850 | 1050 | 6.00
Prices sp| 4150 | 3600 | 3050 | 2550 | 1400 | 1050 | 6.00
Black
Sl 37.094 | 30714 | 25076 | 20185 | 12.541 | 6410 | 3223
k;;fgximaﬁon 37256 | 30926 | 25336 | 20486 | 12.888 | 6744 | 3.493
Shifted
R, 37255 | 30925 | 25335 | 20485 | 12.887 | 6744 | 3.497
Shifted
Inverse 37255 | 30925 | 25335 | 20485 | 12888 | 6745 | 3.498
Gaussian
e=0 37.77262 | 31.35551 | 25.68760 | 20.77044 | 13.06862 | 6.84087 | 3.54795
0.05 37.77265 | 3135555 | 25.68764 | 20.77048 | 13.06866 | 6.84091 | 3.54797
0.10 37.77270 | 31.35560 | 25.68769 | 20.77053 | 13.06871 | 6.84094 | 3.54800
0.15 3777273 | 31.35563 | 25.68774 | 20.77058 | 13.06875 | 6.84098 | 3.54802
0.20 37.77277 | 31.35568 | 25.68778 | 20.77062 | 13.06879 | 6.84101 | 3.54804
0.25 37.77280 | 31.35572 | 25.68782 | 20.77067 | 13.06883 | 6.84104 | 3.54807
0.30 37.77285 | 31.35576 | 25.68787 | 20.77071 | 13.06888 | 6.84108 | 3.54809
0.35 37.77288 | 3135580 | 25.68791 | 20.77076 | 13.06892 | 6.84111 | 3.54812
0.40 37.77292 | 31.35584 | 25.68796 | 20.77080 | 13.06896 | 6.84115 | 3.54814
0.45 37.77296 | 31.35588 | 25.68800 | 20.77085 | 13.06901 | 6.84118 | 3.54817
0.50 37.77300 | 31.35593 | 25.68805 | 20.77089 | 13.06905 | 6.84122 | 3.54819
0.55 37.77303 | 31.35597 | 25.68809 | 20.77094 | 13.06909 | 6.84125 | 3.54822
0.60 37.77307 | 31.35601 | 25.68813 | 20.77098 | 13.06913 | 6.84129 | 3.54824
0.65 37.77311 | 31.35605 | 25.68818 | 20.77103 | 13.06918 | 6.84132 | 3.54827
0.70 37.77315 | 31.35609 | 25.68822 | 20.77108 | 13.06922 | 6.84135 | 3.54829
0.75 37.77318 | 31.35614 | 25.68827 | 20.77112 | 13.06926 | 6.84139 | 3.54832
0.80 37.77322 | 31.35618 | 25.68831 | 20.77117 | 13.06931 | 6.84142 | 3.54834
0.85 37 77326 | 31.35622 | 25.68836 | 20.77121 | 13.06935 | 6.84146 | 3.54836
0.90 37.77330 | 31.35626 | 25.68840 | 20.77126 | 13.06939 | 6.84149 | 3.54839
0.95 37.77334 | 31.35630 | 25.68845 | 20.77130 | 13.06944 | 6.84153 | 3.54841
ge=1 37.77337 | 31.35634 | 25.68849 | 20.77135 | 13.06948 | 6.84156 | 3.54844

Table A.6: Call option (on SWISS BANK CO B) prices with S(0) = 373 and T = 122
days on June 21, 1994
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K =350 360 390 400 425 448

Observed lpp 71.50 65.50 44.50 39.50 27.00 18.50

Prices sp 73.50 66.00 45.00 39.00 27.00 18.50

Black

Bl 70.040 61.968 40.813 34.905 22.742 14.643

Linear

Approximation 70.114 62.080 41.063 35.201 23.130 15.067

Shifted

Gamma 70.114 62.079 41.062 35.200 23.129 15.066

Shifted

Inverse 70.114 62.079 41.062 35.201 23.130 15.067

Gaussian
c=10 71.29242 63.12283 | 41.75241 | 35.79294 | 23.51978 | 15.3219%4
0.05 71.29245 | 63.12286 | 41.75246 | 35.79299 | 23.51984 | 15.32199
0.10 71.29249 | 63.12290 | 41.75251 | 35.79305 | 23.51990 | 15.32205
0.15 71.29252 63.12294 | 41.75256 | 35.79310 | 23.51995 | 15.32210
0.20 71.29254 | 63.12297 | 41.75261 | 35.79316 | 23.52001 | 15.32216
0.25 71.29257 | 63.12300 | 41.75266 | 35.793200 | 23.52006 | 15.32221
0.30 71.29260 | 63.12304 | 41.75271 | 3579326 | 23.52012 | 15.32226
0.35 71.29263 | 63.12307 | 41.75276 | 35.79331 | 23.52018 | 15.32231
0.40 71.29266 | 63.12311 | 41.75281 | 35.79337 | 23.52023 | 15.32236
0.45 71.29268 | 63.12314 | 41.75286 | 35.79342 | 23.52029 | 15.32242
0.50 7129271 | 63.12318 | 41.75291 | 35.79347 | 23.52034 | 15.32247
0.55 71.29274 | 63.12321 | 41.75296 | 35.79352 | 23.52040 | 15.32252
0.60 71.29277 | 63.12325 | 41.75301 | 35.79358 | 23.52046 | 15.32257
0.65 71.29280 | 63.12328 | 41.75306 | 35.79363 | 23.52051 | 15.32263
0.70 71.29283 | 63.12332 | 41.75311 | 35.79369 | 23.52057 | 15.32268
0.75 7129286 | 63.12335 | 41.75316 | 35.79374 | 23.52063 | 15.32273
0.80 71.29288 | 63.12338 | 41.75321 | 35.79379 | 23.52068 | 15.32278
0.85 71.29291 | 63.12342 | 41.75326 | 35.79384 | 23.52074 | 15.32284
0.90 71.29294 | 63.12346 | 41.75331 | 35.79390 | 23.52079 | 15.32289
0.95 71.29297 | 63.12349 | 41.75336 | 35.79395 | 23.52085 | 15.32294
a=1 71.29300 | 63.12353 | 41.75341 | 35.79400 | 23.52091 | 15.32299

Table A.7: Call option (on SWISS BANK CO B) prices with S(0) = 410, T' = 158 days

on May 16, 1994
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Figure A.1: Change in price from ¢ =0, S(0) = 508, T" = 94 days (ALUSUISSE)
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Appendix B

Exercise Observed Black-Scholes Linear Approximation

Price K Prices Using Implied Using Implied
lpp  sp Volatility (BS-iv) w,o and vy (LA-1)

475 49.00  49.00 49,447 49.050

492 4250  35.50 38.465 38.093

500 3550  33.50 33.876 33.527

525 2200  21.50 21.952 21.703

Table B.1: Call option (on ALUSUISSE R) prices with S(0) = 508, T = 94 days on July
13, 1993 (v = 0.000 001 906 308 2)

Exercise Observed

Price K Prices Bs-iv LA-1
lpp sp

240 26.50 2550 25.364 25.231

260 9.00 8.50 10.056 9.751

280 2.40 2.40 2.392 2.196

300 1.00 1.00 0.323 0.276

Table B.2: Call option (on SWISS BANK CO B) prices with S(0) = 263.5, T' = 28 days
on November 20, 1992 (v = 0.000 000497 237 5)

Exercise Observed

Price K Prices Bs-iv LA-i
lpp sp

280 50.00  45.50 46.929 46.889

300 26.00  26.00 28.175 28.114

320 13.00  13.00 13.153 13.154

340 4.00 4.00 4415 4.504

Table B.3: Call option (on SWISS BANK CO B) prices with S(0) = 325, T = 37 days on
May 12, 1993 (v = 0.000 000 899 243 8)
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Exercise Observed

Price K Prices Bs-iv LAA
lpp sp

370 19.00 19.00 20.906 20.860

380 14.00 14.00 15.337 15.337

390 9.50 9.50 10.867 10.914

400 6.50 6.50 7.431 7.517

425 1.40 1.40 2.461 2.574

Table B.4: Call option (on SWISS BANK CO B) prices with S(0) = 380, 7' = 50 days on

September 1, 1994 (~ = 0.000 001 191 664 3)

Exercise Observed

Price K Prices Bs-iv LA-i
lpp  sp

350 31.50  33.00 33.963 33.903

360 27.00  26.50 27.381 27.339

370 19.00  21.00 21.649 21.633

380 15.00 15.00 16.783 16.794

390 11.50 11.50 12.756 12.793

400 8.50 8.50 9.506 9.565

425 4.00 3.40 4.191 4.273

Table B.5: Call option (on SWISS BANK CO B) prices with S(0) = 374, T' = 64 days on

August 18, 1994 (v = 0.000001 191 664 3)

Exercise Observed

Price K Prices Bs-iv Lol
lpp  sp

350 36.50  41.50 41.749 38.891

360 36.00  36.00 35.782 32.716

370 33.00  30.50 30.417 27.224

380 25.00 2550 25.647 22.411

400 1850  14.00 17.809 14.716

425 10.50  10.50 10.822 8.226

448 6.00 6.00 6.588 4581

Table B.6: Call option (on SWISS BANK CO B) prices with S(0) = 373, T' = 122 days

on June 21, 1994 (v = 0.000001 191 664 3)
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Exercise Observed

Price K Prices Bs-iv LA-1
lpp  sp

350 71.50  73.50 73.436 73.370

360 65.50  66.00 65.938 65.876

390 44,50  45.00 46.215 46.184

400 39.50  39.00 40.617 40.601

425 27.00  27.00 28.756 28.780

448 18.50  18.50 20.367 20.425

Table B.7: Call option (on SWISS BANK CO B) prices with S(0) = 410,
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Summary

This paper studies a one parameter family of equivalent martingale measures to price
an option in a particular incomplete model. We also examine by means of real data an
approximation formula introduced by Gerber and Landry. We propose to estimate the
parameters in an implicit way in order to compute this formula. The study makes use of
observed data from the SOFFEX (Swiss Options and Financial Futures Exchange).

Zusammenfassung

Der vorliegende Artikel betrachtet eine einparametrige Familie von #dquivalenten Martin-
galmafen zur Bewertung von Optionen in einem unvollstindigen Markt. Uberdies wird
die Naherungsformel von Gerber und Landry anhand von wirklichen Daten untersucht.
SchlieBlich wird eine implizite Schidtzung der unbekannten Parameter vorgeschlagen. Die
Studie stiitzt sich auf Daten der SOFFEX.

Résumeé

Cet article étudie une famille a un parametre de mesures de martingales équivalentes pour
évaluer une option dans un modele incomplet particulier. On examine aussi a l'aide de
données réelles une formule d’approximation introduite par Gerber et Landry. On propose
finalement d’estimer les paramétres de maniére implicite afin d’évaluer cette formule. L'étude
fait usage de données provenant de la SOFFEX.
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