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D. Kurzmitteilungen
OLE HESSELAGER, Copenhagen

Recursions for a class of compound Lagrangian distributions

1 Introduction

We consider compound random variables

N
X=3%, (1.1)

=1
representing the aggregate claims amount. The severities Yy, Y5, ... are

assumed to be non-negative integer-valued independent and identically
distributed (iid) random variables which are independent of the number
N of claims.

For a discrete random variable Z we denote by

fz(2) =P(Z = z), z2=0,1,...,

the probability function (pf), and the probability generating function (pgf)
1s denoted by

¢ (u) = Eu? Zfd . (1.2)

We also remind that the pgf of a compound random variable (1.1) is given
by

P (u) = WN(SOY(U)) . (1.3)

2 Lagrangian distributions and a recursive algorithm

A simple probabilistic description of the evolution of an infectious disease
(or the spread of a fire) specifies that a diseased person will infect a random
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number of individuals, and the numbers of infections caused by different
individuals are mutually independent and identically distributed. We are
interested in the total number NV of individuals who are eventually infected,
or in fire insurance, the total number of risk units destroyed by the fire.
The distribution of N is determined by the distribution of the number of
individuals infected by one diseased person. With A being the number
of infections caused by the first diseased, and N, being the total number
of individuals who will eventually catch the disease via the ith individual,
including the ¢th individual himself, we may write

M
N=1+> N;. (2.1)
=
It follows from the assumptions above that Ny, N,, ... are independent of

M and iid with the same distribution as N, whence, evaluating the pgf on
both sides of (2.1) yields

o (1) = oy (o () 22)

We observe that any counting distribution with pgf ¢, defines a new
counting distribution with pgf ¢, via (2.2), and the class of such counting
distributions is known as the Basic Lagrangian distributions (BL) (see
Johnson et al., 1992, p. 97).

For the class of BL distributions determined by (2.2) it holds that fx (0) = 0,
which most easily is seen from (2.1), since N > 1, and also that fy(1) >0
when f37(0) > 0. The first three moments v = EN and v; = E(N — 1),
1 =2, 3, can be expressed in terms of the corresponding moments i = E M
and p; = E(M — py)%, i =2.3, of M as

vy =1/(1 = py)
vy = ;Lzy?

Vg = 1131/6 e B,w% z/?

when 4 < 1, and the pf can in general be expressed as
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Some simple examples of basic BL distributions are given below.

(a) The Borel distribution. For M ~ Poisson()\) and ¢, (u) = A1)
we obtain the Borel distribution with pf

DY Lt
Tl = wg-f—)—'m«(f"‘w‘ ; z21.
!
(b) The Consul distribution. For M ~ Binomial(n,p) and ¢, (u) =
(pu+1—p)™ we obtain the Consul distribution with pf

Far () 1 R D mﬁlﬂ yna -
fnvlz) =— 1 —p)™*, % :
A x\x—1 1—0p B e

(¢) The geometric distribution on {1, 2, ...} corresponds to the special
case where M ~ Binomial(1l,p).

(d) For M ~ Negative Binomial(«a,q) with pgl o, (u) = ( Ja' )a we
obtain

Doz +1)—1) , 4 |
T 1 _ oz L q
I'lox) x! ¢ (1—a)™, r

Jn(x) = %
A general Lagrangian distribution (GL) is obtained by compounding a BL
distribution, and a notable example is the generalized Poisson distribu-
tion, which is the distribution of a Poisson sum of Borel distributed vari-
ables. This distribution has been considered in the actuarial literature by
Goovaerts & Kaas (1991) who derived a recursion for the distribution of
the total claims amount (1.1), and by Sharif & Panjer (1995) who improved
this recursion. Also Ambagaspitiya & Balakrishnan (1995), who investi-
gated the tail behavior of compound generalized Poisson distributions and
gave an alternative algorithm for calculating the compound distribution. If
a recursion is available for the compound BL distribution, it is also possi-
ble to calculate the distribution of aggregate claims for a great variety of
compound GL distributions by a two-step procedure, where the second step
involves a standard recursion with the BL distribution as a severity distri-
bution. This was used by Goovaerts & Kaas (1991) and by Sharif & Panjer
(1995) for the generalized Poisson distribution, where the second step in-
volves the Panjer recursion for compound Poisson distributions. In relation
to recursive calculation of aggregate claims distributions, the passage from
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BL distributions to GL distributions does not bring about any essential new
structure, and we focus here attention on the BL distributions.

Sharif (1995) has derived recursions for compound BL distributions for
the case where the distribution of M belongs to Sundt’s (1992) class of
counting distributions, which in particular contains the familiar (a, b)-class
with pf satisfying the condition

far(m) = (a + T—Z)fM(m - 1), m>1. (2.4)
The condition (2.4) is fulfilled by the Poisson distribution (¢ = 0), the
Binomial distribution (¢ < 0) and the Negative Binomial distribution
(0<a<).

The results of Sharif (1995) were obtained by setting up differential
equations for the pgf and identifying coefficients in the corresponding power
series. In the following we point out that by considering the shifted version
of the BL distributions, obtained by shifting the BL distributions one step to
the left such that the support becomes x = 0, 1, ..., one may obtain jointly
a set of simple recursions for the compound distributions corresponding to
the shifted as well as the unshifted BL distributions. Thus, let N = N — 1
with pgf

pr(u) =@pn(u)/u, (2.3)
which by (2.2) is determined by the relation
() = ppp (). (2.6)

We introduce the compound variables

Because N = N + 1 we have that X is distributed as X + Y., where Y is
independent of X with pf fy-, such that

¥ x (u) = ‘Py(u)"oj‘{(“) : (2.7)
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Since ¢ (u) = @5 (py (u)) according to (1.3), we also observe from (2.6)
that

o) = o (py (W) E ooy ). (2.8)

Equations (2.8), (2.7) form the basis for a class of recursions for calculating
jointly the pf’s fx(x) and f(x). By comparing (2.8) with (1.3) we observe
that the distribution of X is cast as an aggregate claims distribution with a
counting distribution given by the variable M, and a severity distribution
which is the (compound) distribution of X. When M has a distribution for
which a simple recursive formula for the compound distribution is already
available, we may then use (2.8) to write down a recursive formula for the
pf fy involving fx as a severity distribution, and (2.7) shows that the pf
fx can be calculated by use of the convolution formula when the pf [
is known. Together, this yields a method for calculating recursively the two
pf’s (f}?, fx ) jointly. Below we work out the details when the distribution
of M is assumed to belong to the (a,b)-class (2.4), but first we need to
determine the starting values (f(0), f (0)). By letting « = 0 in (2.8) and
(2.7) we have that

J5(0) = (Fx(0))

F(0) = £y (0)£(0) (2.9)
Whence,
FA0)=0 = () =0, f+(0)=pp(0) = F3y(0). (2.10)

In the case fy(0) > 0 it follows from (2.9) that fx(0) is determined by the
equation

r="h(zx), h(z)=Ffr0)p,,(z),

and it is shown in the appendix that the iterated sequence x; = h(z;_1),
for arbitrary starting value x( € [0, 1], converges monotonically towards the
unique solution fx(0) to this equation. Thus, the initial values in the case
fv(0) > 0 are given by

fX(O) = oy == BILTEIOCIZ Ty = fy( )QM( Ti1) (2.11)

f%(o) = @M(l'oo) :
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The examples (a)-(d) in Section 2 are those where the distribution of M
belongs to the (a,b)-class defined by (2.4). In this case, the corresponding
compound distribution satisfies Panjer’s (1981) recursion, such that (2.8)
gives that

xr

Pt =" ( L ) ) fx( - 1), 2.12)

y=0

and (2.7) gives that

=) fywix@—y). (2.13)

y=0

We note that fx(x) appears on the right-hand side of (2.12) in the term
corresponding to y = 0 and via f(r) also in the term corresponding to
y = x. By separating out these terms we obtain the recursive formula

-1

) = ! :I; a AP Y) s (T —1
Sx (o) = 1—(2a+b)fx(0) { ; ( N i )fX(/)fX (x =)
(@ +b)fy(0 Z Ty () fx(x ~y)} (2.14)
y=1
Fa) = Z fy W) fx(x—y). (2.15)

y=0

To determine the starting values from (2.11) in the case fy(0) > 0 we need
the pgt ¢, ,(u) which for the (a,b)-class is given by

eb(u—1) a =0 (Poisson)
/ N l+b/a ,
earlv) = (f:;;) a # 0 (Binomial, ' (2.16]

Negative Binomial)

In other situations, e.g. when the distribution of M belongs to Sundt’s (1992)
class of counting distributions, one obtains in a similar manner recursions
jointly for the compound shifted and unshifted BL distributions by using
the relevant recursive formula in the place of the Panjer recursion (2.12).
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In general, we observe from (2.8), (2.7) that the computational effort
mnvolved with calculating the compound shifted BL distributions recursively
is of the same order as the recursion available for calculating the distribution
of a compound sum with counting variable M. In particular, the order of
the recursion (2.14), (2.15) is that of the Panjer recursion, which is O(z?),

meaning that the number of computations needed to calculate the values

(fx(2), f5(2)) for z=0,...,x increases as a2,
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Appendix

The function h(x) = fy(0)p,,(x) is increasing and convex on [0, 1] with h(0) =
v (O)far(0) > 0 and A(1) = fy(0) < 1. We therefore conclude that the equation
2 = h(z) has a unique solution fx(0) in the interval [0, 1], and that h(x) > z for
z < fx(0) and h(z) < z for x > fx (0).

Consider the iterated sequence z; = h(x;_;) with starting value zy < fx(0). When

x;_1 < fx(0), because h is increasing,
xi = h(z;—1) < h(fx(0)) = fx(0),

such that the values z; are all bounded by fx (0) when gy < fx (0). Furthermore
& = By 2 B ,

because h(x) > x for & < fx(0). Whence, the sequence z; is monotonically increasing and
bounded by fx (0), such that oo = lim;_, o @; is well-defined, and since h{zog) = Too
it follows that w~c = fx (0). Analogously it is seen that the sequence z; is monotonically
decreasing with limiting value fx (0) for arbitrary starting value zg > fx (0).
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