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WERNER HURLIMANN, Winterthur

An elementary unified approach to some loss variance bounds

1 Introduction: a financial loss structure

Let ({2, P, A) be a probability space such that (2 is the sample space, P’ the
probability measure, and A the o-field of events of (2. Let £ € A be an
event such that 0 < P(FE) < 1. Then the complement event I € A and
0 < P(E) =1— P(FE) < 1. Consider X : {2 — R a real random variable
on this probability space with finite mean p and variance o2, which one
endows with a structure of “financial loss” as follows.

One assumes that 0 < Pr(X > 0), Pr(X < 0) < 1. Since the random
variable X takes both non-positive and positive values (and by assumption
on the probability of the event F), it can be written (in a way depending
on F) as difference of a positive random variable, representing financial
liabilities, and a non-negative random variable, representing financial assets.
Any such difference can be interpreted as a financial loss. This intuitive
notion can be modelled by a precise mathematical object. Let I : A — {0, 1}
be the indicator function and define

X(E):=X-I(FE) : the amount to be paid if the event I
occurs, called E-loss, or simply loss if F
is clear from the context

X(E):=-X(E)=(-X)-I(E) : the amount gained if the event E
occurs, called E-gain, or simply gain

Since I(E) +I(E) =1one has X = X - [(E) + X - [(F) = X(E) — X(E),
which as a difference between loss and gain justifies the interpretation of
X as a financial loss. The negative value G := — X = X(F)— X (FE) is called
financial gain.

Example 1.1. Let £ = {X > 0}, E = {X < 0}, a situation often
encountered. Let ['(x) be the distribution function of X. Then P(E) =
Pr(X < 0) = F(0) is the no loss probability and P(FE) = F(0) =1 — F(0)
1s the loss probability. By assumption X takes both negative and positive

values. The random variable X (E) = X is the loss, X(F) = G-I(E) = G4
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is the gain. Clearly one has X_ = G4, G_ = X, that is the negative part
of the loss equals the gain, and the negative part of the gain equals the loss.

In general one has the following loss and gain identities of any order
e 12 .

X(E)" + (-1)" X (B)" = X7, (1.1)
X(E)" + (-1)" - X(E)" = G™. (1.2)

The second set of relations is obtained from the first just by changing signs.

Example 1.1 (continued). In Section 5 (a brief outlook on applications) it
is argued that the first-order gain identity G+ X = G4, that is the relation

financial gain + loss = gain,

is of fundamental importance for both Actuarial Science and Finance. Its
general study has been named “AFIR problem” by Bithimann(1995).

2 Loss and gain variance bounds

At an elementary level one is only interested in first and second order
moments. The following notations are used:

M(E) = E[X(F)] : mean loss

My(E) = BE[X(E)?] : mean squared loss
V(E) = My(E)— M(E)*> = Var[X(E)] : loss variance
M(E) = E[X(E)] = E|[G(E)] . mean gain

M,(E) = E[X(E)?] = E[G(E)?] : mean squared gain
V(E) = Var[X(FE)] = Var|G(E)] : gain variance

Besides the loss and gain random variables, it appears very useful to
consider the same conditional quantities given that the events £ and E
have occurred:
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Xc(F) = (X|F) : amount paid given that the event
E has occurred, called conditional
loss

X:(E) = (-X|E) = (G|E) : amount gained given that the

event E has occurred, called con-
ditional gain

The corresponding first and second order conditional moments are:

m(E) = E[X|E] : mean conditional loss
my(E) = E|X?|E] : mean squared conditional loss
w(E) = my(E) - m(E)?

= Var[X|FE] : conditional loss variance
m(FE) = E[G|E] : mean conditional gain
my(E) = E[G?|E] : mean squared conditional gain
v(E) = Var|G|E] : conditional gain variance

The conditional and unconditional values are related as follows:

V(E) = P(E) - (v(E) + P(E) - m(E)?) (2.2)
M(E) = P(E) -m(E) (2.3)
My (E) = P(E) -mp(E),

V(E) = P(E) - (4(E) + P(E) - m(E)*) (2.4)

The fundamental identities (1.1), ( 1.2) imply “loss and gain parity relations”
of any order n = 1,2,... For the first two orders one has:

M(E) - M(E) = (2.5)
My(E) + My(E) = (i + 0”
E

V(E)+ V(E) =0* —2M(E) - M(E)
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The latter relation expresses the fact that the second order fotal loss and
gain variance depends on the variance 02, which 1s often assumed to be
known, and on M(E), M(FE), which are first order quantities.

Example 1.1 (continued). In this main special situation the unconditional
quantities are the mean loss M+ = E[X ], the mean squared loss ﬂ-I; =
E[X%_}, the loss variance V™ = Var[X ], the mean gain M~ = E[X_] =
E[G4], the mean squared gain M, = E[X2] = E[Gi_}, and the gain
variance V'~ = Var[X_] = Var|G4]. Without the obvious names the
conditional values are m* = E[X|X > 0], m¥ = E[X?|X > 0], v =
Var[X|X > 0], m~ = E[G|X <0}, m; = E[G*|X <0],v™ = Var[G|X < 0].
The relations (2.1) to (2.7) specialize to

M™T =F(0) -m™ (2.17)

M; =F(0)-mf,
VT =F(0) (v + F(0) (mT)?) (2.2)

M~ = F(0) m~ (2.3")

M, =F(0) -m, ,

VT =F(0) (v +F(0)(m™)?) (2.4)
Mt M~ =y (2.5
M+ My =p?+0° (2.6")

VI 4+ VT =02 —2MT M (2.7

The considered elementary notions imply immediately the following loss
and gain variance bounds.

Theorem 2.1. If the loss probability P(E) is unknown, one has the upper

bounds
V(E) < 0% —2M(E) - M(E) (2.8)
V(E) < o* —2M(E) - M(E) (2.9)
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Proof. Since variances are non-negative this is an obvious consequence of
(Zed s

Theorem 2.2. If the loss probability P(F) is known, one has the lower and
upper bounds

fg% M(EY < V(E)

< o — 2M(E) - FI(E) - fPE[E; () (2.10)
f% (B < V(8)

<¢?-2M(E) M(E) - ;% - M(E)? (2.11)

Proof. From the relationships (2.1), (2.2) one gets

_ 1 o M(E)?
v(E)=my(F) — 'm,(E)z = PE) , (ibfz(E) - P(E) ) :
Since v(F£) > 0 one obtains
V(E) = My(E) — M(E)? > % . M(E)?,

which is the lower bound in (2.10). The lower bound in (2.11) is shown
similarly. The upper bounds follow from the identity (2.7) using the lower
bounds.

Because of their practical importance, the special cases obtained when
E = {X > 0} are stated separately.

Corollary 2.1. If the loss probability 7(0) is unknown, one has the upper
bounds

Vt<o?—2MtM~ (2.8)
V™ <o?-2MTM™ (2.9)



78

Corollary 2.2. If the loss probability F(0) is known, one has the lower and
upper bounds

FO) o2 <« vt < o2 _opgtpr— - O —y2 /
70 (MT)Y?<vt< DMt M 7(0) (M) (2.10")
igg% (MY <V <o —2MTM™ - f-% A(MT)? (2.11")

Remarks 2.1.

(a) Up to an obvious location or shift transformation, the inequality
(2.8’) has been mentioned in Hiirlimann(1993a) (see also Birkel(1994),
Hesselager(1993), Sundt(1993), Exercise 10.1).

(b) Birkel(1994) considers a loss random variable X = 7 — p(Z), Z
a non-negative claims amount, ¢ some non-negative transformation, and
interprets the loss X | as claims amount of a “general” reinsurance contract.
If ¢(z) = d is a constant deductible, one recovers the stop-loss contract. If
©(z) i1s not constant one has

0% = Var[Z] — 2 Cov|Z, ¢(Z)] + Var[p(Z)]
= Var[Z] —=2Cov[Z — p(Z), ¢(Z)] — Var[p(Z)]
In case ¢(z) and the function f(z) = z — ¢(z) are non-decreasing, one
has Cov[f(Z),¢o(Z)] = 0 because the pair (Z.Z) is positively quadrant
dependent. Recall that a pair of random variables (X, Y') is called positively
quadrant dependent, a relation written PQD(X,Y), if Pr(X > z, YV >
y) > Pr(X > x)Pr(Y > y) for all z, y. It is well-known that the relation
PQD(X,Y) is equivalent with the property Cov[f(X),¢(Y)] > 0 for all
nondecreasing real functions f and g for which the covariance exists. For
appropriate references consult Jogdeo(1982). The second equality implies
the upper bound o2 < Var[Z]. In case only ¢(z) is non-decreasing, one
has Cov|Z,¢(Z)] = 0 (for the same reason) and the first equality implies
the upper bound o2 < Var[Z] + Var[g(Z)]. Inserting these bounds into
(2.8"), (2.10"), one recovers Birkel’s main result. These simple examples
illustrate the fact that in more general applications of the loss and gain
variance bounds, the difficulty will be to calculate or at least to estimate

appropriately the financial loss variance function o2.
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(c) Equivalent statements can be made for the second-order moments:

A}/[j((‘?)z < My(E) < pi* +0* - 2((?)2 (2.12)
fﬁ((%z < Mo(B) < i + 0% - "‘“}ﬁ((’;)f (2.13)
(‘g(ziz < Mt < p?+o* - (]g(;))z (2.12')
U;f(;iz <M, <pf+ot - (]g(zf (2.13')

To derive (2.12) insert V(E) = M, (E) — M(E)? into (2.10). The left hand
side is then obtained by noting that P(F) + P(E) = 1. For the right hand
side add and subtract M(FE)?, and then use that M(E) — M(E) = p by
(2.5) and also P(FE) + P(F) = 1. The bounds (2.13) are derived similarly
from (2.11) while (2.12) and (2.13’) are restatements for the special case
E={X>0}.

(d) There is a “dual” or “conjugate” property relating all these inequali-
ties, which render them easy to remind of. To pass from one inequality to
the other, it suffices to regard loss quantities without a “bar” (resp. with a
plus sign) as conjugates of gain quantities with a bar (resp. with a minus
sign). The “algebraic” bar reflects the property that £/ and E are comple-

mentary events. In case /¥ = {X > 0} one adopts a formal “bar” mathemati-
cal operation such that M~ = 3, M; = My, V- =V, Flz) = 1-F(a).
One makes the further conventions M+ = MT, ﬁ; = M;, vVt = v,
?(:z:) = F(z), T = o, i = —p. Then the pairs (2.10), (2.11), resp. (2.107),
(2.11"), and (2.12), (2.13), resp. (2.12/), (2.13’), are conjugate pairs, while
the relations (2.5) to (2.9), resp. (2.5") to (2.9") are self-conjugate. In case

E = {X > 0} the dual counterparts have been derived and applied in
Hirlimann(1994a).

3 Sharpness and extremal variance bounds

It is natural to ask when the obtained variance bounds are sharp, that
is attained for some financial loss random variable. In Lemma 3.1 below,
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one shows this is the case for diatomic financial losses. In practice one
often knows the mean loss M(FE) or equivalently by (2.5) the mean gain
M(E). In this situation one asks for extremal bounds over the space
D := D(p,o, M(E)) of all financial loss random variables with fixed mean,
variance and mean loss. In the special case X = Z — d, Z a random
variable, d a constant, with £ = {X > 0}, X(F) = X3 = (Z — d)4 the
stop-loss transtorm, the present problem has been posed and tackled by
Schmitter(1993/95). Since his proof appears to be somewhat complicated,
our aim is to present a simpler and also more general probabilistic proof
in the spirit of Hiirlimann(1994b) but much simplified, more rigorous and
shedding some additional insight.

From (2.7) and Theorem 2.2 one observes that the loss variance V(F£) =
o2 —2M(E)M(E) — V(E) is maximum over the space D if the following
condition can be fulfilled:

(C) The lower bound of the inequality V(£) > -}‘ig—% - M(E)? is attained
and this quantity is a minimum.

The set of all diatomic financial losses with fixed mean and variance is
denoted by 1, := Dy(p,o). It is well-known that a diatomic random
variable with fixed mean and variance 1s uniquely determined by the one-
parametric family of supports {x,z*} such that

1‘]) K P
p Vi1-p

, (3.1)

T=WU—a

where p, later set equal to P(L), is the probability at the mass point x, and

¥ =pu+ 2
n—x

(10— z)(z* — p) = o’

is an involution mapping reflecting the equation of variance

Lemma 3.1. Let X = {z,2"} € D,, be a diatomic financial loss of the form
(3.1). Then the following equalities hold simultaneously:

V(E) = (rp_) M(E?, V(E)= (1 _p> M(E)?. (3.2)

L—p P
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Proof. Since X is endowed with the financial loss structure, one has by
assumption = < 0 < z*. For arbitrary p one has M(F) = (1 — p)a*,
My (E) = (1 —p)(z*)?, V(E) = p(1 — p)(«*)?, hence the equality V(E) =

(1—_%)—) . M(E)? holds. The other equality is similarly obvious.

Suppose now that M(F) is known, and consider a diatomic financial loss

for which (3.2) holds with p = P(E). As a function of (%) only, the first

quantity is monotone increasing, and the second one monotone decreasing.

The maximum of V(F) is thus obtained at the greatest value of (ﬁp),
which solves (2.7):

1 _
(%) M(E)? + ( p) M(E? =% - 2M(E)YM(E).  (3.3)
—p p

If M(E) = 0 then V(E) = o? is maximum, hence condition (C) cannot
hold. Therefore one can assume M (F) > 0. Multiplying (3.3) with (lp )

one obtains a quadratic equation, whose greatest solution is

. | 0? ~2M(E)M(E) + 01/0? — 4M(E)M(E)
( ) T2 M(E)? '

T (3.4)

The “inequality of Bowers” for E-losses (see Theorem 4.2 in Section 4)

M(E) < % (\/“2 + o2 +u) . (3.5)

which implies
4AM(EYM(E) < o2, (3.6)

guarantees a real solution. It remains to show that the obtained diatomic
financial loss belongs to D(u, o, M(E)), that is E[X(E)] equals the given
mean loss M(FE). Since » <0 < z* and by (3.1), one must satisfy

EX(E))=(1-pz*=pl=p)+ovp(l—-—p) =ME), (3.7)

an equation, which in virtue of (2.5), is equivalent to

pM(E) + (1 - p)F(E) = o+/p(1 — ). (3.8)
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Taking squares one sees that p is indeed solution of (3.3). The above con-
siderations show that Kremer’s generalized upper bound for V(£) in (2.10)
is sharp and yields the maximum value of V() over the space of financial
losses D(p, o, M(E)). This is in essence the result of Schmitter(1993/95).
The other extremal values are obtained similarly. The applied method and
the symmetric character of the bounds reveals that V(F) = max. exactly
when V(E) = min., and V(F) = max. when V(£) = min., extremal values
taken with respect to the space D. These facts are summarized as follows.

Theorem 3.1.  Suppose that 0 < p = P(E) < 1. Then the loss and gain
variance extremal bounds over the space of financial losses D(pu. o, M(E))
are attained for diatomic financial losses as follows:

Case I: maximal loss and minimal gain variance

If M(E) > 0 the extremal values

1

max{V(E)} = 5 {02 — 2M(E)M(E) + 0\/(7 — 4M(E)M(E )} (3.9)

min{7(E )}—;{a —2M(E)T(E) - a\/o 2_4m1(F)7(E)}(3.10)

are attained at X = {;zﬁm/ oy T } with

( ) ) | o —2M(E +oy/o? — 4M(E). W(E) -

2 M( )2

1—0p
Case 2: maximal gain and minimal loss variance

If M(FE) > 0 the extremal values

max{V(E)} = —;— {02 —2M(E)M(E) + a\/ = 4M(E)_[(E)} (3.12)

D

mIi)n{V(E)}:;{a —2M(E)M(E) = 01/ 0? — 4M(E)VI(E )}( 13)

are attained at X = {,u — g4 pa ST T } with

(1 _p> | o= 2M(F [\_(E)i—a\/ —AM(E)M(E) -
» 2 M(E)
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Remarks 3.1.

In the limiting case as M (E) — 0, but M(E) does not attain zero, Case 1
still applies. One finds a diatomic maximizing financial loss X = {z, 2"}
such that z — p(<0), 2* — oo, p — 1, max{V(£)} — o2, min{V(E)} — 0.
On the other side V(F) = o2, V(E) = 0 is exactly attained if in Case 1 one
chooses M(E) = 0, M(E) = p > 0. One finds the diatomic maximizing

financial loss X = {0, + %} with p = which is somewhat

o2
u24-o2’
pathological because x = 0 1s not strictly negative, but allowed by our
modelling assumptions. As shown below this is the unique diatomic financial
loss for which equality holds in the weaker inequality (2.8). The conjugate

observations can be made in Case 2.

It may be useful to know when the bounds of Theorem 2.1 are sharp, a
result applied in Hiirlimann(1994c).

Theorem 3.2. The upper bounds in (2.8), (2.9) are attained as follows:

Case I: maximal loss variance

The upper bound (2.8) is sharp provided X = {0,,u 4 7—;}, F= =
M(E)=0, M(E)=p>0,V(E)=0, V(E) = o2,

Case 2: maximal gain variance

2 2

The upper bound (2.9) is sharp provided G = {0, —(p + %)}, b= 7
M(E)=0, M(E)=—u>0, V(E)=0, V(F) = 0.

Proof. Looking at (2.10), one observes that the upper bound in the weaker
inequality (2.8) is attained only if M(F) = 0. The maximizing diatomic
financial loss is found from the Case 1 in Theorem 3.1. Case 2 follows
similarly.

4 A variant of the inequality of Bowers

In Actuarial Science the following result is attributed to Bowers(1969).
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Theorem 4.1. Let Z be a random variable with finite mean p and variance
0. Then the net stop-loss premium at the deductible d satisfies the
inequality

Fl(Z-d)4] < %{\/(d—;1)2+02—(d—u)} : (4.1)

whose upper bound is attained for a diatomic random Variable with Support
{z,2*} such that z = d — Vd = )2 2 =d+\/(d— p)?

In the context of a general financial loss theory, there is a need for further
variants of this result, as for example (3.5), which has been used for a proof
of Theorem 3.1.

Theorem 4.2. Let X be a financial loss random variable with finite mean p
and variance o2, such that X = X(F) — X(E), F an event with probability
0 < P(FE) < 1. Then the F-loss satisfies the inequality

1
N/ &) —_— 2 2
M(E) < 5 (\/u +o +,u) : (4.2)

whose upper bound is attained for a diatomic financial loss with support
{x,2*} such that z = —\/u2 + 02, z* = /p? + o2,

Proof. The verification is done in two steps.

Step 1: The inequality (4.2) holds.

Besides the financial loss X = X (F) — X(E) consider its “absolute” value
X| := X(E) + X(E). Since E, E are complementary events, one has
X(E)  X(E) = 0, hence |X|> = X?. This property justifies in particular
the interpretation of |X| as absolute value of the financial loss. It follows
that

Var|X|] = E[X?] — E[|X]|? = p> 4+ 0> — (M(E) + M(E))*> >0,

and thus

From (2.5) one has M (E) = M(E)— p, which by insertion yields the desired
inequality.
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Step 2:  The upper bound is attained for a diatomic financial loss.

Consider a diatomic financial loss {z, =* } of the type (3.1). The financial loss
structure implies that one has to maximize (with respect to p) the function

fp)=M(E)=(1-p)z" =p(l —p)+ovp(l —p).

A calculation shows that f(pmax) = %{/,/, + vV p2 + o2} with pmax = %{1 -
b

}. This completes the proof.

Remark 4.1

the F-loss X(F) = (Z — d)4 is the stop-loss transform. One recovers the
original inequality of Bowers.

5 QOutlook on some applications

Our aim is to suggest the potential usefulness of the present elementary
approach to various problems dealing with financial losses and gains. As
a general preliminary remark, let us state the first-order gain identity
G + X+ = G4 for use in ALM=Asset and Liability Management. Let
A={A)}, t >0, L ={L(t)}, t =0, be stochastic processes representing
accumulated values of assets and liabilities at a future time ¢ > 0. Then
the stochastic process G = {G(t)}, ¢ > 0, defined by G(t) = A(t) — L(¢),
represent the financial gain, while X = {X(¢)}, ¢t > 0, defined by X(t) =
L(t) — A(t), is the financial loss. As a convention indices will be omitted in
case an affirmation can be made whatever the time parameter is. The gain
identity for ALM can be rewritten as

A+(L-A,L=L+(A-L)y, (5.1)

and states that the asset value A plus the option to exchange A for L. meets
the liability L plus the option to exchange L for A, which 1s the basic idea
underlying Portfolio Insurance, created by Leland in the night of September
11, 1976 (cf. Luskin(1988)). In a practical meanvariance framework, the
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extremal financial risks of the ALM equilibrium (5.1) depend, by knowledge
of the derivative (future) prices M+ = E[(L — A)4], M~ = E[(A — L)4]
upon the extremal bounds for V™, V~ described by our main results
in Section 3. Note that the exchange option has been first priced by
Margrabe(1978). In the special cases when A or [ are deterministic, one
recovers call- and put-options first priced by Black and Scholes(1973).
Some actuarial hedging models may also be viewed as transformed models
of the ALM equilibrium relationship (5.1). Suppose a risk manager retains
an amount £ on individual contracts with positive gain G, called loss
reserve, to cover potential losses on individual contracts with positive losses
X 4. Then the financial gain G and the positive gain (74 are reduced by the
amount R. The obtained shifted gain identity may be rewritten as

A+{(L-A)4+-R}=L+{(A-L)y —R}. (5.2)

The component A" = R — (L — A), is interpreted as actuarial hedging
model, and D = (4 — L)y — R > 0 plays the role of a dividend to be paid
out by good experience (cf. Hiirlimann(1991a/91b)). One observes that loss
reserves and dividends are invariant with respect to ALM operations made
on the equilibrium relationship (5.1). For the “optimal™ choice of a stable
loss reserve R = min{ 3, G4} such that Var[R] = min. under the restriction
E[R] = M™, B some deterministic process, one has R— X = B—(B—G).
Therefore this stable hedging model may also be obtained from the gain
identity by shifting the financial gain from & to G — B. In this situation the
risk-adjusted gain identity G — B+ (B — G)4+ = (G — B)4+ may be rewritten
as

A4 d{B =)y =B = L% (C~ B, (5.3)

where A" = B — (B — () is the hedging component and D = (G — B) ,
the dividend. These actuarial hedging models have been studied further by
the author(1993b/95a/95b).

References

Birkel, T. (1994). Elementary upper bounds for the variance of a general reinsurance treaty.
Bliatter der Deutschen Gesellschaft fiir Versicherungsmathematik, 309-312.

Black, F., Scholes, M. (1973). The pricing of options and corporate liabilitics. Journal of
Political Economy 81. 637-659. Reprinted in Luskin(1988).



87

Bowers, N. L. (1969). An upper bound for the net stop-loss premium. Transactions of the
Society of Actuaries XIX, 211-216.

Biithimann, H. (1995). Life Insurance with Stochastic Interest Rates. In: Ottaviani, G. (1995).
Financial Risk in Insurance. Springer-Verlag.

Hesselager, O. (1993). An improved elementary upper bound for the variance of a stop-
loss risk: a comment on the article by W. Hirlimann. Bulletin Swiss Association of
Actuaries, 277-278.

Hiirlimann, W. (1991a). Absicherung des Anlagerisikos, Diskontierung der Passiven und
Portfoliothecorie. Bulletin Swiss Association of Actuaries, 217-250.

Hiirlimann, W. (1991b). Stochastic tariffing in life insurance. Proceedings Int. Colloquium
“Life, disability and pensions: tomorrow’s challenge”, Paris, vol. 3, 202-212. CNP
Assurances, Paris.

Hiirlimann, W. (1993a). An (improved) elementary upper bound for the variance of a
stop-loss risk. Bulletin Swiss Association of Actuaries, 97-99.

Hiirlimann, W. (1993b). M¢éthodes stochastiques d’évaluation du rendement. Proceedings 3rd
AFIR Colloquium, Rom, vol. 2, 629-49.

Hiirlimann, W. (1994a). Splitting risk and premium calculation. Bulletin Swiss Association
of Actuaries, 167-197.

Hiirlimann, W. (1994b). From the inequalities of Bowers, Kremer and Schmitter to the total
stop-loss risk. Proceedings XXV. ASTIN Colloquium, Cannes, 226-237.

Hiirlimann, W. (1994c). Experience rating and reinsurance. Proceedings XXV. ASTIN
Colloquium, Cannes, 388-396.

Hiirlimann, W: (1995a). On fair premium principles and Pareto optimal risk neutral portfolio
valuation. Proceedings XXV. Int. Congress of Actuaries, vol. 1, 189-208.

Hiirlimann, W. (1995b). CAPM, derivative pricing and hedging. Proceedings 5th AFIR
Colloquium, Brussels.

Jogdeo, K (1982). Dependence, concepts of. In: Johnson, N.L., Kotz, S. (ed.). Encyclopedia
of Statistical Sciences, volume 2, 324-334.

Kremer, E. (1990). An elementary upper bound for the loading of a stop-loss cover.
Scandinavian Actuarial Journal, 105-108.

Luskin, D. L. (1988) (Editor). Portfolio Insurance: a guide to dynamic hedging. J. Wiley,
New York.

Margrabe, W. (1978). The value of an option to exchange one asset for another. Journal of
Finance 33, 177-186.

Schmitter, H. (1993/95). An upper limit of the stop-loss variance. XXVI. ASTIN Colloquium,
Brussels, September 1995. (Private communication dated 15.7.93).

Sundt, B. (1993). An introduction to non-life insurance mathematics (3rd ed.). Verlag
Versicherungswirtschaft, Karlsruhe.

Werner Hiirlimann
Allgemeine Mathematik
Winterthur-Leben
Paulstr. 9

CH-8401 Winterthur



88

Summary

A structure of financial loss on a probability space is considered. The financial loss is
represented as difference between loss and gain. In this general mathematical framework,
the inequality of Bowers(1969) on the mean loss, as well as inequalities by Kremer(1990),
Hiirlimann(1993a/94a) and Birkel(1994) on the loss variance, are all simple consequences
of the non-negative property of certain variance functions. Similar inequalities for the gain
are obtained via a conjugate operation. Sharpness and extremal properties of the variance
bounds are discussed. By given mean, variance of the financial loss, and fixed mean loss, it
is shown that the loss and gain variance extremal bounds are attained for diatomic financial
losses. In the special case of the stop-loss variance upper bound, this result is originally
due to Schmitter(1993/95). The potential uselulness of our approach for Asset and Liability
Management, including in particular some actuarial hedging models, is briefly mentioned.

Zusammenfassung

Der finanzielle Verlust wird als Struktur auf einen Wahrscheinlichkeitsraum modelliert.
Er wird als Differenz zwischen Verlust und Gewinn dargestellt. In dieser allgemeinen
mathematischen Umgebung sind die Ungleichung von Bowers(1969) iiber den erwarteten
Verlust, sowic Ungleichungen von Kremer(1990), Hiirlimann(1993a/94a) und Birkel(1994)
iber die Varianz des Verlusts, einfache Folgerungen der nicht-negativen FEigenschalt von
gewissen Varianzfunktionen. Ahnliche Ungleichungen fiir den Gewinn werden mit Hilfe
einer Konjugation erhalten. Die Scharfheit und extremale Eigenschaften der Schranken
[lr die Varianz werden diskutiert. Bei gegebenem Erwartungswert, Varianz des finanziellen
Verlusts, und festem erwarteten Verlust, werden die extremalen Schranken fiir den Verlust
und Gewinn durch einen zweipiinktigen finanziellen Verlust erreicht. Im Spezialfall der
oberen Schranke fiir die Stop-Loss Varianz wurde das Resultat von Schmitter(1993/95)
hergeleitet. Die potentielle Nutzlichkeit unserer Methode fir die Verwaltung von Aktiven
und Passiven, insbesondere fiir einige aktuarielle Absicherungsmodelle, wird kurz erwihnt.

Résumé

On considére une structure de perte financiére sur un espace de probabilité. La perte
financicre est représentée comme différence entre perte et gain. Dans cet environnement
mathématique général, l'inégalit¢ de Bowers(1969) sur la perte moyenne, ainsi que des
in¢galités de Kremer(1990), Hirlimann(1993a/94a) et Birkel(1994) sur la variance de la
perte, sont toutes des conséquences simples de la proprieté de non-négativité de certaines
fonctions variance. Des inégalités semblables pour le gain sont obtenues par conjugaison.
Les cas dégalités et les propriétés extrémales de ces bornes pour la variance sont discutées.
Etant donné la moyenne et variance de la perte financiere, ainsi que la perte moyenne, on
montre que les bornes extrémales pour la variance de la perte et du gain sont atteintes
par des pertes financicres biatomiques. Dans le cas particulier de la borne supéricure pour
la variance stop-loss, ce résultat est dit a Schmitter(1993/95). L'utilité potentielle de notre
approche pour la gestion des actifs et passifs. en particulier pour quelques modéles actuariels
de couverture du risque, est brievement mentionnée.
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