Zeitschrift: Mitteilungen / Schweizerische Aktuarvereinigung = Bulletin / Association
Suisse des Actuaires = Bulletin / Swiss Association of Actuaries

Herausgeber: Schweizerische Aktuarvereinigung

Band: - (1997)

Heft: 1

Artikel: Le nombre de sinistres nécessaires pour en estimer valablement le colt
moyen, dans le cas lognormal

Autor: Simar, Thomas / Paris, José

DOl: https://doi.org/10.5169/seals-967334

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-967334
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

49

THOMAS SIMAR et JosE PARIS, Louvain-la-Neuve

Le nombre de sinistres nécessaires pour en estimer
valablement le colit moyen, dans le cas lognormal”

1. Dans une conversation avec Hans Schmitter, le second auteur avait appris
que dans les milieux professionnels, on considérait que 25000 sinistres
¢taient nécessaires pour en estimer valablement le colt moyen. Il n’est
pas possible de vérifier une affirmation aussi générale. Aussi, a-t-1l proposé
au premier auteur, pour son travail de fin d’études, d’examiner la question
lorsque le montant du sinistre suit une loi lognormale. Cet article présente
les résultats obtenus.

2. Nous considérons d’abord le cas de la variable aléatoire (v. a.) lognormale
4 deux parametres, X ~ A(u,0) ou ce qui est équivalent, Y = In X est
N(u,0%). La fonction de fréquence de X est

1 __(In ;z:——u)z
flz)=—=e 2¢* | 250 (1)
roV 2w
et ses moments sont donnés par
1 2 2
TU+-TC
Y =BX =6 * (2)
En particulier, en introduisant les parametres ¢ et ¢, on a
/L+102
g= X =g 2 (3)
2 2
var X = e2#to (e —1)= Q2(p2
ou
2
p=1e" —1 (4)

vvar X

est le coefficient de variation de X égal a 7

* Ce travail a été soutenu par le contrat “Projet d’Actions de Recherche Concertées” (PARC

No. 93/98-164) du Gouvernement Belge, auquel nous adressons notre grande gratitude.
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A partir des valeurs de ¢ rencontrées en pratique, on peut déduire celles de
o2 correspondantes. Le fait que ¢ ne dépend que de ¢ nous permettra dans
la suite un choix intéressant d’unités pour traiter le probleme considére.

La méthode usuelle pour estimer les parameétres ;o et o2 est la méthode
du maximum de vraisemblance. En passant aux v.a. Y, elle fournit les

estimateurs

i=Y=-> Y,
=V =02
T
o (5)
f=i]

Ces deux estimateurs jouissent de propriétés bien connues. Rappelons que

2
1) [ est ]V([L,L)

T

2) et 5% sont indépendants

3) — est Xz(n—l,)

ou ce qui est équivalent

_— o n n-1
3 ) o est [ (ﬁ ; —2““>

En plus la matrice d’information de Fisher pour un échantillon de taille n

- B
In(p,0°) = .
0 2

Le probleme considéré ne conduit pas a la recherche d’une estimation
optimale du vecteur (1, ¢%) mais se concentre plutdt sur la recherche d’un

1 2
. Z . . . -
estimateur adéquat d’une fonction de ses composantes a savoir p =e 2

ou ce qui est équivalent Inp = u+ 502. Ainsi, par la propriété d'invariance
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de I'estimateur du maximum de vraisemblance (théoreme de Zehna) (Zacks
(1971) p 223), l'estimateur du maximum de vraisemblance de ¢ est donné
par

=)
I
~
=
+
o | —
(3]

(6)

Pour le probleme analysé, 'usage d’intervalles de confiance est plus appro-
pri¢ que des raffinements de I'estimation ponctuelle. Toutes les méthodes
basées sur I'estimateur du maximum de vraisemblance ne présentent pas
la méme facilité d’application, ni la méme efficacité. Ainsi, par exemple,
Finney (1941) a obtenu l’estimateur sans biais de variance minimale de p
sous la forme

. % n—1 (n—12 ,
=e gF \
op=¢ oF] ( R (7)
dans laquelle
] mn
% T\2
$y = —=> (Yi-Y) (8)

est I’estimateur sans biais de o2 et ¢/ est une fonction hypergéométrique
généralisé¢e définie par

> ]

oFi (o 2) =) -

.al

(9)

Ce résultat a permis a Hoyle (1968) d’obtenir pour p un intervalle de
confiance du type

01 Tt 1 1—a 2V Var o (10)

dans lequel

- v n‘~l n=1n=2)
varp; = 0% — e o F} ( 5> ( 2)£L )5%,> (11)

En plus de sa difficulté de mise en oeuvre, cette méthode présente des
inconvénients importants relevés par Land: possibilit¢ de borne inférieure
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négative et convergence, en fonction de n, du niveau de confiance réel, soit
la valeur de la probabilité

P @1 —+ tn—l,l—a/ZV VEII@] ]

vers le niveau de confiance nominal «, extrémement lente. Cette procédure
ne semble donc pas adéquate pour I'objectif poursuivi. Ce qui nous intéresse
particulicrement, c’est de trouver le plus facilement possible un intervalle
de confiance de coefficient de confiance donné et de longueur satisfaisante
pour les besoins du praticien. Pour ce faire, nous serons amenés a analyser
d’une part la méthode exacte et deux méthodes approchées pour comparer
les résultats de celles-ci a ceux de la méthode exacte.

3 Méthode approchée 1

Contrairement a la méthode de Finney, I'estimateur du maximum de
vraisemblance p ne donne pas un estimateur sans biais mais fournit im-
médiatement un intervalle de confiance asymptotique pour p, de niveau
1 — «, sous la forme

ou z . est le quantile de la v.a. normale réduite. Ce résultat, non
2

exploité par Land, se déduit facilement du fait que ¢ est asymptotiquement
2
N (o, %9202(1 + %)) Il se démontre par les techniques habituelles. L'une

de celles-ci est développée dans Zacks (1971) p 248. La longueur de cet
intervalle est aléatoire et égale a

Vol 172
L=2e * z oV (13)
Par le théoreme de Zehna,
- L
i, = Y (14)

T
221__53_

2
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est 'estimateur du maximum de vraisemblance de la quantité

W2 [ 2
l:h(p&,az):eu 2 g }+% (15)

Puisque L est une fonction de estimateurs Y et V2, la méthode delta
(Bishop, Fienberg, Holland (1975), p 486) montre que

A loi -

V(e = 1) = (0,1 (4, 0%)) (16)
ou

I;l(,u,az) = H(p, o) (. 02V H (11, 0% (17)
dans laquelle

2
1 2 g 0]
I {5 = ( 0 204) (18)
%, 0
AN 2 2
{0, 0% = (—@hm,o ) gehlne?)
2 1 ) 1—|'— 0’2
= | Alwo?) Shipo?) +o——T— (19)
2, /0% + g
2
On en déduit que
2\ 2 2 22
1
I (p,0%) = ¢ 04(1+a—> +04(1+02)+J—(—+—# (20)
2 2 o
(1+2)

Pour que la longueur L de T'intervalle de confiance soit inférieure a une
quantité 6 avec une probabilité 1 — &, on impose la restriction

PIL<§=1-¢

Mais pour que cette restriction fournisse des résultats utilisables en pratique,
1l faut faire un bon choix des unités en lesquelles on va exprimer ¢. Celui-ci
résulte du fait que

P[Lgé}:Pling%}:l—g (21)
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et puisque L, est asymptotiquement normale, on trouve

e (3'?%@) (z\/ﬁﬂl_g\/f};l(ﬂ,ﬁ) (22)

Il est capital de noter que le terme o peut €tre mis en évidence dans
le second membre de cette derniere relation et des lors g représente le
quantile de niveau 1 — ¢ de la v.a. longueur de l'intervalle de confiance
quand celle-ci est exprimée en des unités “colt moyen de sinistres™. Il en

résulte que, de ce fait, ce quantile ne dépend plus que de o2 ou encore du
coefficient de variation ¢ de la v.a. X mesurée.

L’expression
B B Tohy 2oEa 1o
6§ 221 1+02 - o, r\/2+3a + 50"+ 500+ g0
s e e s (3T T 2
o \/_T—L 2 \/7_3 }+£

(23)

permet de répondre a la question: lorsque le coefficient de variation est ¢,
combien faut-il faire d’observations pour obtenir un intervalle de confiance
de niveau (I — «) sur le colt moyen du sinistre quand on veut que la
longueur de cet intervalle exprimée en unités o soit dans 100(1 — &) % des

cas inférieure a g. Dans le cas 1 —a =095, 1 — ¢ = 0.99 la réponse peut
étre trouvee a l'aide de 'annexe 1 lorsque le coefficient de variation est
compris entre 3.5 et 12 (valeurs usuelles) et le rapport ® entre 0.04 et 0.10.
A titre d’exemple, notons que si une compagnie d’zfssurances souhaite
obtenir un intervalle de confiance de niveau 0.95 dont la longueur soit dans

99 % des cas au plus égale a 5 % du colit moyen, c’est-a-dire 8 = 0.05, alors
elle doit disposer de 76 320 sinistres, si o2 = 3.9. Le fait de neras connaitre
la valeur exacte de ¢ n’est pas un probléme majeur car, en pratique, la
valeur de n est toujours grande.

Remarques:

1) A priori, il est difficile de se faire une idée de la qualité de cette
méthode puisque deux approximations y sont faites.
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2)  La possibilit¢ pour la limite inférieure de la relation (12) d’étre
négative n’est théoriquement pas exclue. Néanmoins, elle est tres peu
probable si n est assez grand par rapport a V2, ce qui est toujours le
cas en assurance.

4 Méthode approchée 2

Le méme développement peut étre effectué a partir de la méthode de Cox
qui consiste a estimer 3 = In p plutdt que p. Par le théoreme de Lehmann-
Schefté, (Zacks (1971) p 104).

2w
;3:Y+§5§, (24)

est I'estimateur sans biais de variance minimale. Par les propriétés des
estimateurs du maximum de vraisemblance dans le cas normal, rappelées
plus haut,

: V2
(n—1)Sy

o est y*(n—1)

ou ce qui est équivalent

2 n—1 n—1
Sy est F(Zaz’ 5 )

Il en résulte que

ES%/ .
204
Sy =
var v =1
BSh = (522 = 2F -0
n —

Ainsi, la variance de [ est donnée par

2 4

~ T a
var = — + ——
’ n 2(n—1)
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Elle peut étre estimée par

— SZ
var3 = —X

34
+ Y

n  2(n+1) L)

dont on vérifie facilement qu’il est un estimateur sans biais. Des lors, si n
est assez grand,

51
\/var

On en déduit donc les extrémités de I'intervalle de confiance pour p, soit

V+1i8% tz_ns,m [S2 S
e 7Y Zl—a /2 Y+ Y (28)
n  2n+1)

~ N(0,1) (27)

Notons qu’ici les extrémités de I'intervalle de confiance pour p sont toujours
positives. On peut reprendre la méme recherche a propos de la valeur de n
que celle faite au point précédent. Cette méthode demande cependant plus
de temps calcul que la premiere pour fournir des résultats comparables.
Une partie des résultats obtenus a 'aide du logiciel Matlab est reprise dans
I’annexe 2. Elle confirme ceux de 'annexe 1.

5 La méthode exacte

Pour valider les méthodes approchées, il était nécessaire de comparer les
résultats obtenus a ceux fournis par la méthode exacte. Celle-ci proposée

par Land consiste a rechercher directement un intervalle de confiance

1
exact pour p + 502

en utilisant d’'une part la relation bien connue entre
test d’hypotheses et intervalle de confiance et, d’autre part, les propriétés
fondamentales des estimateurs de p et o2 dans les populations normales.
En exploitant les logiciels Matlab et Mathematica, nous avons vérifié les

résultats de Land qui fournissent pour p des intervalles de confiance du
type

B

¥ o™ (0,82, ]2
e 2 (29)

?+m*(o,52,§))
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ol m™* est fourni par la table de Land que nous avons vérifiée. Malheureuse-
ment la forme analytique de m™* n’est pas connue et la méthode delta ne
pourra pas étre appliquée a la longueur de l'intervalle de confiance obtenu.
Des considérations similaires a celles faites plus haut nous ont permis, a
partir de simulations, de déduire la valeur de n pour répondre a la question
posée. Cet effort nous permet de conclure que la méthode approchée
1 fournit des résultats tres satisfaisants pour les besoins du praticien.
Comme son utilisation est beaucoup plus simple que celle des deux autres
méthodes, il pourra donc utiliser I'annexe 1 pour trouver les valeurs de n
qui l'intéresse.

6 La lognormale a trois parametres

Cette v.a. X est caractérisée par sa densité

2

q _ ('“($—’Y4)—ﬂi)
Flm) = e 2q T o
() (x —v)ov2n !
ot L2

o0=EX=v4+e 2

2 2
var X = e? o (77 — 1)

. . 2
coefficients de variation = /e — 1

Le cas ou vy est connu se ramene a ce qui précede en supposant que X —
est lognormale. Si v est inconnu, la recherche des estimateurs du maximum
de vraisemblance des trois parametres et les difficultés de calcul correspon-
dantes ont suscité beaucoup de travaux. Ainsi, Hill (1963) a montré que
les maxima globaux de la vraisemblance conduisent a des estimateurs in-
admissibles. Il est des lors indispensable d’utiliser des techniques alterna-
tives. Celles-ci soulévent aussi beaucoup de questions. Pour traiter notre
probléeme, nous avons considéré uniquement la méthode du maximum de
vraisemblance local car la recherche des estimateurs correspondants peut
finalement se réduire a une maximisation unidimensionnelle et de plus,
ces estimateurs jouissent de bonnes propriétés asymptotiques. A I'aide du
logiciel Matlab, nous avons réalisé des simulations qui ont montré leur con-
vergence pratiquement certaine. A partir de ces estimateurs, nous avons
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trouvé un intervalle de confiance pour p en supposant que son estimateur
0 suivait asymptotiquement une loi normale de moyenne p et de variance

h(,u,(fz,'\/) 1;1 h(,u,az?“/)f (30)

dans laquelle A (s, 02,7) est le vecteur des dérivées partielles de 'espérance

1 2
= eu+2{7 et I7! est Iinverse de la matrice d’information de Fisher.
Puisque celle-ci requiert le calcul d’espérances qui dans le cas présent
sont compliquées, on utilisera plutét la matrice J7 ! ot J,, est la matrice
des dérivées secondes de la vraisemblance dans laquelle on remplace les
parametres par leur estimateur du maximum de vraisemblance.
L’intervalle de confiance approché correspondant pour la moyenne est alors

de la forme

OtV hiy ' (31)

Par simulation, nous avons déterminé le niveau de confiance effectivement
atteint par cette procédure lorsque n = 100 et « = 0.05.

Ces bons résultats s’expliquent par une bonne approximation de varg
par h.J. 'h’. Lintervalle de confiance obtenu est déja satisfaisant lorsque
n = 100. Lorsque n = 500, v = 5000, ¢ = 40000 alors le niveau de confiance
atteint est 0.94833 si ¢ =7 et 0.94667 s1 p = 9.

La longueur de l'intervalle de confiance (31) est

221_o o\ hJn R (32)

Elle permet comme plus haut de déterminer la valeur de n nécessaire
pour atteindre un objectif fixé dans 'estimation de o. Des considérations
identiques a propos du choix des unités peuvent étre faites et finalement
les valeurs appropriées de n peuvent encore étre déduites de 'annexe 1. A

titre d’exemple, examinons deux situations:

a) ~ connu (v = 5000, ¢ = 3.5, v + o = 40000), alors la table 1 montre
que n = 105000 si on veut avoir une longueur de I'intervalle de
confiance de niveau 0.95 qui soit inférieure a 3500 dans 99 % des cas.

b)  si -~y est inconnu mais si son estimation laisse supposer qu’une valeur
de 5000 est acceptable, alors a 1'aide de 300 simulations, nous avons
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trouvé que le quantile correspondant a la situation du point a) passait
de 3500 a 3570.7. Ce résultat est logique puisqu'on a utilisé une
estimation au lieu de la valeur exacte.

Nous avons effectué d’autres comparaisons similaires pour arriver a la
méme conclusion.

Remerciements: Nous voulons remercier le rapporteur dont les remarques
ont sensiblement amélioré la lisibilité du texte.
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Annexe 1

delta/rho
C.V. 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0 075 008 0.085 0.09 0.095 0.1
35 0 6046 04812 03926 03267 02765 02372 02060 0.1806 0.1598 0.1425 0.1280 0.1156  0.1050
4 0.6984 0.5558 04534 03773 03193 02739 02378 02085 0.1845 0.1645 0.1477  0.1334  0.1212
4.5 0.7876 0.6267 05112 04255 03600 03088 02681 02351 02080 0.1854 0.1665 0.1504 0.1366
5 0.8726 0.6944  (0.5664 04713 03987 03420 02969 02603 02303 02054 0.1844 0.1665 0.1512
55 0.9537 0.7588 0.6189 0.5150 04357 03737 03244  0.2844 02516 02243  0.2014 0.1819  0.1652
6 1.0312 0.8204 06691 0.5567 04710 04040 03506 03074 02720 02425 02176  0.1966 0.1785
6.5 1.1053 08793 07171 0.5967 05047 04329 03758 03295 02914 02598 0.2332 02106  0.1913
7 11763 09358  0.7632  0.6350 05371 046007 03998 0.3506 03101 02764 0.2481 0.2241 0.2035
7.5 1.2446 0.9901 0.8074 0.6718 05682 04874 04230 03708 03280 0.2924 02624 02370 02152
8 1.3103 1.0423  0.8500  0.7072  0.5981  0.5130 04452 03903 03452 03078 0.2762 02495  0.2265
8.5 1.3735 1.0926 08910 0.7413  0.6270 0.5377 04666 04091 03619 03226 02895 02614 02374
9 1.4346 1.1412 09306 07742 0.6548 05616 04873 04272 03779 03368 03023 02730 0.2479
9.5 1.4937 11882  0.9688 08060 0.6817 0.5846 05073  0.4448 03934 03506 03147 0.2842  0.2580
10 1.5508 12336 1.0059 08368 07077 0.6069 05267 04617 04084 0.3640 03267 02950 0.2679
105  1.6062 1.2776  1.0417 08666 0.7329 0.6286 05454 04781 04229 03769 03383 03055 0.2774
11 1.6599 13203 1.0765 0.8955  0.7574  0.6495 05636 0.4941 04370 03895 03495 03156 0.2866
LS 17121 13618 11103 09236 07812 0.6699 05813 05096 04507 04017 03605 03255 0.2955
12 1.7628 14021 1.1432 09510 08043  0.6897 05985 0.5246 04640 04135 03711 03351  0.3042
Annexe 2

delta/rho

0.04 0.06 0.08 0.1
C.V.
4 0.7161 0.3310 0.1932 0.1281
S 0.8993 0.4162 0.2433 0.1615
6 1.0668 0.4944 0.2893 0.1923
7 1.2209 0.5664 0.3318 0.2207
8 1.3636 0.6332 0.3712 0.2470
9 1.4965 0.6955 0.4080 0.2717
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Résumé

Dans ce travail, nous montrons comment trouver le nombre d’observations nécesssaires
pour estimer la moyenne d’une variable aléatoire lognormale, avec une précision souhaitée
quand on a fait un bon choix d’unités pour exprimer la longueur de l'intervalle de confiance
correspondant. Nous comparons deux méthodes approchées avec la méthode exacte et nous
montrons que la plus simple fournit d’excellents résultats. Nous étendons les résultats au
cas de la variable aléatoire lognormale a trois parametres. Des résultats numériques sont
fournis.

Summary

The present paper indicates how to find the sample size necessary to estimate the mean of
a lognormal random variable with an adapted precision related to a good choice of units
to express the length of the confidence interval. We compare two approximate methods to
the exact one and we observe that the simplest one gives excellent results. We extend the
solution to the case of a lognormal distribution with three parameters. Pratical numerical
results are given.

Zusammenfassung

In dieser Arbeit zeigen wir, wic dic Anzahl Beobachtungen bestimmt werden kann, die
notwendig sind, um den Mittelwert einer lognormal verteilten Zufallsvariable mit einer
gewlinschten Genauigkeit zu schitzen, falls die Breite des Konfidenzintervalls in gut
gewihlten Masseinheiten ausgedriickt ist. Wir vergleichen zwei Nédherungsmethoden mit
der exakten und zeigen, dass die einfachste Methode ausgezeichnete Resultate ergibt. Wir
erweitern die Ergebnisse zum Fall der dreiparametrig lognormal verteilten Zufallsvariable.
Numerische Resultate sind gegeben.
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