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B. Wissenschaftliche Mitteilungen

Frangois DUFRESNE and ERriCc NIEDERHAUSER, Lausanne

Some analytical approximations of stop-loss premiums

1 Introduction

Evaluation of stop-loss premiums is an important application of Risk
Theory. It requires the determination of the distribution of the aggregate
claims, a random variable that we will denote by S. Historically, the normal
approximation was the first attempt at the evaluation of this distribution,
motivated by central limit theorems. It has been promptly recognized
that this approximation was not satisfactory. «Statistical> approaches
were then used: one postulates that S has a properly chosen analytical
probability density function with parameters ensuring a (hopefully) good
fit. Other analytical approximations were developed, such as the Edgeworth
expansion, Esscher and Normal power approximations, etc. Later on, with
the widespread use of computers, recursive algorithms have been developed
and become very popular. For a treatment of these methods see, for
example, Beard et al. (1984), Seal (1969), Gerber (1979) or Daykin et al.
(1994).

The aim of this paper is two-fold. Firstly, we present some analytical ap-
proximations for the net stop-loss premium. Some of them are not widely
known, namely the inverse Gaussian approximation with or without trans-
lation. The more usual normal and gamma approximations are presented
mainly for comparison purposes. Secondly, we suggest a technique to 1m-
prove the performance of these approximations when the portfolio is small.

2 Models for S

The two most important models for the aggregate claims random variable
S are the so-called individual model and collective model (see, for example,
Bowers er al. (1986) for more details than what is provided below).
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2.1 Individual model

In the individual model, the aggregate claims are the sum of the claim
amounts of each individual policy of the portfolio. The risks are assumed
to be independent. The following definition then results:

S:AX'I+X2+"'+AX'7]- (1)

Here X; is the claim amount of policy i and X;. X». ..., X, arec mutually
independent random variables. Since the X;’s are independent, the moments
of S are easily found:

ES] = S EIX), 2)
=1

Var[5] = Z Var[X;] (3)
1=1

and
E[(S — E[S Zu X; — E[X:])?]. (4)
=

Furthermore, if 7, 1s the probability that policy A& has no claims, the
probability 7 that there are no claims in the whole portfolio is

= H T - | (5)
k=1

When negative claim amounts are allowed, this probability may be different
from the probability that S is equal to zero. The probability = will be used
later to refine the approximations presented in the following sections.

2.2 Collective maodel

When one uses the collective model, one assumes that the portfolio is
a mass of risks generating a number N of claims during the considered
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period of time. The amount of the i-th of these claims is a random variable
X;. The random variables' X, X5, X5,..., are assumed to be mutually
independent with common distribution function P(-) and independent of
N. The aggregate claims is the sum of the individual claim amounts and is
defined by

S:X1+X2+“-+XN. (6)

The distribution function (d.f.), £(-), of S is obtained by conditioning on
N and is given by the so-called convolution formula:

= Z Pr[N = k| P*¥(z) (7)
where P*¥(z) is the k-fold convolution of P(-) with itself. The first two
moments can be easily obtained by conditioning. One finds that

E[S] = E[N] - BX] (8)
and
Var[S] = E[N] - Var[X] + E[X]? - Var|[N] (9)

where X has the same distribution as X. The third central moment is most
easily found on a case basis using of the cumulant generating function:

: P . &’
E[(S - E[S])?] = = InE[e!S]] = oKy (Kx(t 10
(5~ EIS) = GamELS)| = TKnGx®)| 00
where Ky (t) = InE[eY] and Kx(t) = InE[e'*] are the cumulant

generating functions of N and X respectively (assuming that they exist).
In the collective model, the probability that there are no claims is

m = Pr[N =0]. (11)

' Here. the X;’s are different from the ones in the individual model; the symbol X is reused to
simplify the notation.
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It 1s also possible to use models which are hybrids. For example, Kaas er
al. (1988) have suggested to split portfolios to separate the <dangerous>
risks from the standard risks. One would then use an individual model for
the riskiest part and a collective model for the other. Independence of the
risks 1s, as always, assumed.

In the rest of this paper, we will sometimes use the following symbols to
simplify the notation:

pu=FES], (12)

= Var[S] (13)
and

v=E[(S - p)?, (14)

whatever the model for S is.

3 The net stop-loss premium

Under a stop-loss reinsurance contract with deductible d > 0, the amount
assumed by the reinsurer is a random variable /; which is the excess of the
aggregate claims over the deductible or zero if S is less than or equal to d.
Then, we can write:

0 if §<d,
Ig=(8—d)s = ~ 15
G {S~dif5>d. (15)
The net stop-loss premium is the expected value of 7, that is
o0 o0
E[l4] = / (x —d)4+ dF(z) = /(:t —d)dF(x). (16)
—00 d
An alternative expression for the net stop-loss premium is
e
Blla] = /{l — F(z)] dx (17)

d

which can be obtained by integration by parts.
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4 Approximations

In this section, we present five approximations for the distribution of the
aggregate claims. The first three are well-known: the normal approximation
and the approximation by a gamma distribution with or without translation.
The last two, the approximation by an inverse Gaussian distribution with
or without translation are not as well known but we show that they can be
of value especially when the distribution 1s <dangerous=>. In Section 6, we
present a simple technique to improve on these approximations when the
insurance portfolio is small.

4.1  Normal approximation

The oldest approximation for the distribution of the aggregate claims
is the normal approximation. It is justified by the Central Limit The-
orem: if the portfolio grows without bounds then the distribution of
(S — E[S])/(Var[$])}/2 tends to the standard normal distribution. The ap-
proximation consists in assuming that S has a normal distribution with ex-
pectation £[S] and variance Var[S]. The normal probability density function

(p.d.f.) is

1 _1
oz p, o) = e 2° o —00 < < 00, (18)
2ro

where —oo < pu < oc and ¢ > 0 are location and scale parameters,
respectively When ;o = 0 and ¢ = 1, we have the standard normal
distribution and we simply write ¢(x) for its p.d.f. The standard normal
distribution function is denoted by

€Z
- ,
Bl = / eV 2y, 19
o= | == / (19)
— 00
Under the above assumption, the expectation and the variance of S are
ElSl=u, (20)

and

Var[$] = o7 . (21)
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Obtaining the net stop-loss premium is a simple exercise of integration
requiring only an appropriate change of variable; starting with the definition
(16), one finds that

E[Id}*o-gp(d;li>+(,ud)- {1@(‘““’)]. (22)

a

If the moments of S are given, the parameters of the normal distribution
are obtained immediately from (20) and (21). The normal p.d.f. being
symmetric, its third central moment vanishes. Thus, it is then not possible
to take into account the typical asymmetry of the distribution of S.

4.2  Gamma approximation

The gamma distribution with shape parameter « > 0 and scale parameter
3 > 0 has the following p.d.f.:
ﬁa

gt Bz 0. (23)

) = o) )

The corresponding d.f. will be denoted by G(x; o, 3). If we assume that S
has a gamma distribution then we have

Sl = — . 24
E[S] ik (24)
o
Var[S] = 7 (25)
and
. n 3 2«
E[(S — E[S)]® = 7; . (26)

It should be noted that the third central moment is always positive.
The formula for the net stop-loss premium is readily obtained from formula
(16):

(@4

Elly] = 5 1-G(d;a+1,8)] —d]l —G(d;a, 3)] . (27)
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When the first two moments of S are given, one finds the parameters of
the approximating gamma distribution to be, according to (24) and (25):

_ E[S)?
“= Var[S] k=
and
. E[S] )
b= Var[S] (29)

4.3 Translated gamma approximation

If a random variable Y has a gamma distribution then Y -+ has a translated
gamma distribution. The density function of ¥ | xy, denoted here by ¢'(-),
is, of course, given by

gf’(:l:) = g(:lr — .’T/'()) ) T >, (30)

The associated distribution function is simply G(x — xgy; «, (3). The first three
moments of this distribution are given by

E[S] = % + 1z, (31)
: v
and
i 2av
Bl(S - BIS))] = 5 - (33)

Of course, the central moments have not changed, only the expected value
is modified by the translation of the gamma distribution.
Since the gamma distribution is only translated to the right by «(, then, for

d > xp, the net stop-loss premium in the translated case is, according to
(27),

?

Ell4] = %U — Gld - zg;a+ 1, 8)] + (xg — d)[1 = G(d — xp; v, F)]

d > zp.- (34)
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The case d < xp cannot happen in practice: the reinsurer would pay
everything with probability one!

For a given portfolio with known first three moments, the parameters of
the translated gamma distribution are obtained by solving the system of
equations given by (31), (32) and (33). This gives the following formulas:

B 4 Var[$)?
“= ElS — B[S’ (33)
. 2 Var|S] -
? 7 Hs BT .
and
rls 2
Ty = E{S] — Zva [b} (37)

E[(S - E[S])’]
To apply this approximation, it is required that the distribution of S be
positively skewed. This 1s always the case in practice.

4.4  Inverse Gaussian approximation

The inverse Gaussian distribution with shape parameter o > 0 and scale
parameter 3 > 0 has the following p.d.f.:

o
3 _(Bz—a)”

Sy 2¢ = # > U (38)

ig(x) = Nz
For « > 1, the shape of this distribution is very similar to the one of
a gamma distribution with the same parameters. But contrarily to the
gamma distribution, its mode is always positive, even when 0 < a < 1. Its
distribution function will be denoted by IG(x:«v, 3) and can be expressed
in terms of the standardized normal distribution function:

IG(z;a,0) = @(\7}%? - [5:1:) 4 6:2(“45(% e \/ﬁ.flf) ;. z>0.4039)

If we assume that S has such a distribution, its moments are as follows:

BlS] = 2, (40)
. ¥
Var|8] = 7 (41)
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and
E[(S—p)]] == (42)

With the current parametrization, comparison of (24)—(26) with (40)—(42)
shows that the inverse Gaussian has the same expected value and variance
as the gamma distribution, but also that it has always a higher third central
moment than the gamma distribution.

If we assume that S has an inverse Gaussian distribution, the basic formula
(16) for the net stop-loss premium yields, after a change of variable and
some calculations,

Ell)] = (g - d) [1 4¢< gd + ﬁ’dﬂ

o B W =8 7
4 (ﬁ —F-d)(. P(\/ﬁ—d \/E> (43)

An alternative proof is based on the verification that the derivative with
respect to d of the expression on the right hand side of (43) equals
—[1 - IG(d; e, B)], see (17).

Formula (43) is difficult to evaluate accurately when « is <larges. The
problem comes from the last summand but it can be easily circumvented
by the use of an asymptotic development for 1 — @(-) (see the appendix for
this development).

For a given portfolio with known first two moments, the parameters of the
inverse Gaussian distribution are obtained from the equations given by (40)
and (41). It results the following formulas which are the same as the ones
for the gamma distribution:

_ BlsP
“= Var|[S] (44)
and
b= bl5] (45)
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4.5  Translated inverse Gaussian approximation

If a random variable Y has an inverse Gaussian distribution, then Y + 2z has
a translated inverse Gaussian distribution. The density function of ¥ + zg,
denoted here by ig!(-), is, of course, given by

ig*(x) = ig(z — x9), T >mp. (46)

The associated distribution function is simply IG(z — xq; v, 3). The first
three moments of this distribution are given by

ﬂﬂ:§+m= (47)

Var[S] = [;—; , (48)
and

E|(S - BISIF) = 35 . (49)

Again, only the expected value is modified by the addition of x.

For the same reasons as in the gamma case, the net stop-loss premium for
the translated inverse Gaussian is, for d > x(, only a translation by z( of
the corresponding function in the non-translated case:

Bl (% +q;0md> |1 —gp(m + ﬁ(d—:lio)ﬂ

+ (% —z0 + d) €2a¢(ﬁ —/B(d - 930)) : (50)

Like in the translated gamma case, d is never less than ).

For a given portfolio with known first three moments, the parameters of
the approximating translated gamma distribution are obtained by solving
the system of equations given by (47), (48) and (49). The formulas for the
parameters are

9 Var[sP?
B[S - ESIPP 51
3 Var[S]

’ = B - EE 2
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and
8] 3 Var[S]? (53)
Ty == 2z v .
E[(S - E[S])%]
5 Numerical illustrations

We present three numerical applications of the approximations discussed in
the previous sections. In the first two examples, a compound Poisson model
is assumed. The third example is based on the pension fund of Held (1982);
an individual model is used for that case.

5.1 Case: Gamma/Poisson A = 10

For this example we suppose that S has a compound Poisson distribution
with parameter A = 10 and that the distribution of an individual claim
amount has a gamma distribution with parameters « = 2 and g = 2/1000.
It follows that

u=E[S] = AE[X] = /\E—?‘ ~ 10000,

]
0% = Var[S] = AE|X?] = A“(“ﬁ—jl) =1.5x 107

and
Y= B[S — p)?] = AB[x7] = 22T ;)2(0‘ +2) _30x10.

The coefficient of variation is o/u = 0.3873 and the coefficient of skewness
is v/0% = 0.5164.

The parameters of the five distributions suggested as approximations to the
real distribution of S are shown in Table 1. The formulas used are those
found at the end of subsections 4.1 to 4.5.



36

Table I Parameters used in the approximations
Case Gamma/Poisson A = 10

Parameters
Approximations m o’ « J6; g
Normal 10" 1.5 x 10
Gamma 20/3  2/3x107°
Translated gamma 15 0.001 —5000
Inverse Gaussian 20/3  2/3 x 107
Translated inverse Gaussian 33.75 0.0015 —12 500

Table 2 Approximations of the net stop-loss premiums expressed as
a percentage of the «exact> values
Case Gamma/Poisson A = 10

% of exact stop-loss premium

Exact Translated

Stop-loss Translated Inverse inverse

d F(d) premium Normal Gamma gamma Gaussian  Gaussian
13000 0.79071 556.30 87.50 104.57 99.66 109.04 99.39
14000 0.84918 37741 80.29 108.11 99.80 117.19 99.61
15000 0.89435 250.22 71.83 112.73 100.08 128.15 100.05
16000 0.92796 162.25 62.48 118.58 100.51 142.62 100.75
17000 0.95211 102.97 52.70 125.85 101.12 161.52 101.77
18000 0.96893 64.02 43.01 134.79 101.93 186.12 103.15
19000 0.98031 39.02 33.88 145.71 102.99 218.18 104.95
20000 0.98779 23.34 25.72 158.95 104.29 260.05 107.21
21000 0.99258 13.71 18.77 174.97 105.88 315.05 110.00

Table 2 shows the «exact> net stop-loss premiums in column 3 and the
approximate stop-loss premiums from the approximations in the subse-
quent columns. A very fine discretization has been used to compute the
<exact>distribution of S with the so-called Panjer’s algorithm (Panjer
(1981)). Table 2 gives also the values of the distribution function of S at the
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selected deductibles. It can be seen that the normal approximation is very
poor while the (nontranslated) gamma and inverse Gaussian distribution
give reasonable estimates, at least for the smallest values of d presented.
The translated versions of the gamma and inverse Gaussian approximations
are, respectively, within 6 % and 10 % of the true values.

5.2 Case: Gamma/Poisson A\ = 100

This second example is related to the first one. We make the same
assumptions on the distribution of S except for the Poisson parameter which
is now 10 times larger than before, that is A = 100.

The expected value of 9, its variance and third central moment are simply
10 times larger than the corresponding values in the first example:

i = E[S] = 100000,
o = Var[8] = 1.5 x 10°

and
v = E[(S§ - 1)’] = 3.0 x 10!

The coefficient of variation is o/u = 0.1225 and the coefficient of skewness
is v/0> = 0.1633. The latter coefficient indicates that we are getting closer
to normality than in the first example; nevertheless, this value 1s still too
large to let us expect a good performance of the normal approximation.
The normal distribution being a limiting case of both the gamma and the
inverse Gaussian distribution (with or without translation), we can expect
the precision of these approximations to be better than in the first example.
The parameters of the five distributions suggested as approximations to the
real distribution of S are shown in Table 3.
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Table 3 Parameters used in the approximations
Case Gamma/Poisson A = 100

Parameters
Approximations n o’ @ 16 x0
Normal 10° 1.5 x 10°
Gamma 200/3  2/3x 1077
Translated gamma 150 0.001 —50000
Inverse Gaussian 200/3  2/3x 1077
Translated inverse Gaussian 337:5 0.0015  —125000

Table 4 shows the approximate net stop-loss premiums expressed as a per-
centage of the exact ones found in the third column. As expected, all ap-
proximations have improved in precision. The precision of the translated
gamma and translated inverse Gaussian approximations is almost spectacu-
lar! This is (partly) due to the fact that the «true> underlying distribution is
not really dangerous. The three other approximations are much less success-
ful in dealing with the very end of the right tail of the distribution. Finally,
one should note the very significant (and positive) effect of the introduction
of the location parameter, xg, on the inverse Gaussian approximation.

Table 4 Approximations of the net stop-loss premiums expressed as
a percentage of the «exact» values
Case Gamma/Poisson A = 100

% of exact stop-loss premium

Exact Translated

Stop-loss Translated Inverse inverse

d F(d) premium Normal Gamma gamma Gaussian  Gaussian
110000 0.79560  1505.50 94.98 102.33 99.97 105.58 99.95
115000 0.88744 728.38 89.65 105.05 100.02 112.40 100.04
120000 0.94438 320.62 82.10  109.23 100.14 123.23 100.24
125000 0.97531 128.36 72.49 115.28 100.35 139.75 100.61

130000 0.99013 46.78 61.29 123.67 100.67 164.45 101.19
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5.3  Pension fund of Held (1952)

In this third example, we utilize the pension fund PK-230 of Held (1982).
We consider only positive amounts at risk, so there are no negative claim
amounts. Therefore, negative risk sums in the data have been set equal
to zero. Further, we assume the use of an individual model. The resulting
<portfolio> can be considered small since its expected number of claims
1s about 1.23.

The moments, computed directly from the adjusted data, are

= E[S] = 66478.19
o? = Var[S] = 7.041421 x 10°

and
v = E[(S - 1)%] = 1.119695 x 10'°.

The coefficient of variation is o/p = 1.2623 and the coefficient of skewness
v/o3 = 1.895. Clearly, the distribution of the aggregate claims is far from
normality.

Table 5 shows the parameters of the approximating distributions. It should
be noted that the shape of the gamma distribution and the one of the
translated gamma distribution are completely different: the mode is zero
for the former and greater than zero (bell shape) for the latter.

Table 5 Parameters used in the approximations
Pension fund PK-230

Parameters

Approximations ! o’ o &) T

Normal 66478.19 7.041421 x 10’

-6

Gamma 0.627622 9.44101 x 10
Translated gamma 1.117463 1.25976 x 107° —22226.5
Inverse Gaussian 0.627622 9.44101 x 107°
Tr. inverse Gaussian 2.514293 1.88963 x 107> —66578.9

Table 6 gives the exact net stop-loss premiums and the approximations, in
addition to the distribution function for six different values of the deductible
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d. The «<trues probability function has been calculated by brute force
convolution. Using the variant of Kornya’s algorithm suggested by Dufresne
(1996) would lead to the very same results.

Not surprisingly, the normal approximation gives very bad results: the (true)
distribution is dangerous. The non-translated gamma and inverse Gaussian
approximations end up with significant estimation errors. Their translated
versions provide satisfactory approximations.

This pension fund being small (from a modeling point of view at least), the
distribution has a substantial (and disturbing) probability mass at zero. The
approximations have a hard time coping with this spike at zero. In the next
section, we suggest a technique to get rid of it.

Table 6 Approximations of the net stop-loss premiums expressed as
a percentage of the «exact> values
Pension fund PK-230

% of exact stop-loss premium

Exact Translated
Stop-loss Translated [nverse inverse
d F(d) premium Normal Gamma gamma Gaussian  Gaussian
280000 0.97145  2230.10 6.56  136.15 102.62 176.16 103.17
290000 0.97523  1963.16 510 139.57 103.05 185.51 104.21
300000 0.97843  1729.71 3.91 142.98 103.38 195.30 105.20
360000 0.98965 314.74 0.61 164.70 104.55 267.35 111.31
370000  0.99070 715.94 043  169.36 105.13 283.29 112.91
380000 0.99181 628.10 030  174.46 105.88 300.81 114.74

6 Improving the approximations

When the portfolio is small, there is usually a non-negligible probability
that there are no claims in the given period of time. This implies that the
distribution has a probability mass at zero and it can be expected that
approximations based on continuous p.d.f. would benefit from its removal,
complete or partial. We present such a technique below.
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6.1  Case of non-negative claims

If the claim amounts are non-negative, the aggregate claims amount will be
zero only if there are no claims. The probability of this event is known in
our models:

Pr[S =0] = F(0+) — F(0-) ==. (54)
We can condition on S to isolate the probability mass at zero:

Flz)=Pri§ <z

S=0]Pr(S=0]+Pr[S<z]|S>0]Pr[S>0].

(55)
Let e(x) denote the degenerate distribution at zero, that is
0 if z<0,
E(I):{1 ifxi(): (56)
Using (54) and (56), (55) can be rewritten as follows:
Flx)=me(x)+ (1 —m) Pr[S <z | S > 0]
= me(z) + (1 — 7)F(x) (57)

where F(z) = Pr[S < z | § > 0]. If we denote by S the random variable
S | S > 0, then f() is its distribution function. Formula (57) shows
that the distribution function F'(-) can be written as a mixture of two
distributions functions. The Beekman-Bowers approximation also uses such
a representation in the context of the evaluation of ruin probabilities (see
Beekman (1969)).

The idea now consists in applying the approximations presented in the
Section 4 to F(-) instead of F(). It remains to determine the central
moments of S in terms of those of S.

We first note that dF'(z) = dF(z)/(1 —), for z > 0. The required expected
value Ji, variance % and third central moment 7 of S are obtained by
isolating the probability mass at zero, as described below. We start with the
relation

E[S¥] = 0%r + (1 — m)E[S¥]
= (1 - m)E[S¥], for k=1,2,3,... (58)
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obtained by conditioning on the events S = 0 and S > 0. Then the
expectation of S is

=5 = 2L (59)

We proceed in a similar way for the variance:
o” = Var[S] = E[(S — p)*]
= mp® + (1 - m)E[(S — p)?]. (60)
If we replace S — u by (S — i) + (It — p) in (60), we find that
o =mp’ + (1 - m) {5 — (i — p)*}
which yields, after some manipulations,

2
2=2 a2 (62)

|

Finally, for the third central moment, if we apply the same technique we
see that

7= B8 — )’ = P+ (1= ME[(S - p)?). (63)
Again, we replace S — 2 by (S — i) + (ji — ) in (63) and we find that
v =+ (1= m){F+ 30— p) + (i — 1)) (64)

and, finally, we obtain

¥ = 5 1 — —3mjie” + w1 - 2m)ji’ (65)

Of course, formulas (59), (61) and (64) are sufficient to determine the
desired moments; formulas (62) and (65) are simply more explicit.

We now return to the problem of determining the net stop-loss premiums.
Since

E[(S —d)4] = E[(S —d)4 | § = 0] Pr[§ = 0]
+ E[(S —d)+ | S > 0] Pr[S > 0], d>0, (66)
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it follows that

Ellgl=(1-mE[(S —d)+]
= (1 - m)E[l4] (67)

with E[I4] = E[(S—d)]. The last equality means that the desired net stop-
loss premiums are simply 1 — 7 times the corresponding ones obtained by
using S instead of 5.

6.2 Case of general claims

If negative claim amounts are allowed, the preceding technique can still be
applied. The only fundamental difference is that we would condition on the
claims/no claims events instead of S =0 and .S > 0. The final formulas for
7i, 7 and 7 are the same.

7 Numerical illustrations

The pension fund PK-230 of Held (1982) will be used again, to show the
improvements in the approximations resulting from the application of the
technique presented in Section 6. We consider only positive amounts at risk,
so there are no negative claim amounts.

The probability that there are no claims for this portfolio (under the
preceding assumption) is

m = 0.287247

and can be computed directly from the (modified) data. We use the formulas
of the previous section to calculate the moments of S:

E[S5] = 93269.56
Var[S] = 7.380364 x 10°
5 = 1.074408 x 10V

The coefficient of variation of S is 5/ = 0.9211 and the coefficient of
skewness is v/ 53 = 1.6945. The distribution of S is still far from normality.
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The parameters of the approximating distributions for F (-) are given in
Table 7. The most noticeable changes are the increase in the o parameter.
For the non-translated gamma and inverse Gaussian distributions this
parameter is now greater than one. In the gamma case that means that
the mode is positive (the p.d.f. has a bell shape) while it was zero without

the modification.

Table 7 Parameters used in the approximations of E()
Pension fund PK-230

Paramcters
Approximations L o’ « Ié; 0
Normal 93269.56 7.380364 x 10’
Gamma 1.178698 1.26375 > 10
Translated gamma 1.393012 1.37385 x 107°  —8125.4
Inverse Gaussian 1.178698 1.26375 x 107°
Tr. inverse Gaussian 3.134278 2.06077 x 107° —58822.8

Table 8§ Approximations of the net stop-loss premiums expressed as
a percentage of the «exact» values
(with modification for the mass at zero)
Pension fund PK-230

% of exact stop-loss premium

Exact Translated

Stop-loss Translated Inverse inverse

d F(d) premium Normal Gamma gamma (Gaussian Gaussian
280000 097145  2230.10 20.28 107.51 100.31 140.07 99.99
290000 0.97523 1963.16 16.49 108.09 100.24 145.07 100.40
300000 0.97843 1729.71 13.25 108.56 100.06 150.21 100.74
360000 0.98965 814.74 2.76 110.46 97.93 186.07 102.55
370000 0.99070 715.94 2.05 111.17 97.90 193.91 103.32
380000 0.99181 628.10 1.50 112.06 98.01 202.49 104.28

Table 8 gives the approximations to net the stop-loss premiums as a
percentage of the <exact> premiums which is shown in column 3. We
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observe a general improvement of the precision of the approximations. In
fact, the relative errors (in absolute value) in Table 8 are all less than
the corresponding ones in Table 6. Therefore, all approximations have
benefited from the added parameter 7w and the writing of /() as a mixture.
As a rule, this technique should be applied whenever the considered
portfolio 1s «small> since improvements in precision are expected and
the computational effort is negligible (the moments have to be computed
anyway). Also, it cannot harm even if applied where it is not really
necessary.

Conclusions

We have shown that analytical approximations can be useful to quickly
provide good approximations of stop-loss premiums. Whenever the third
moment of the distribution to be approximated is known, one should
use either the translated gamma or inverse Gaussian approximation. If
the portfolio is small, one should also <«removes (partially or not) the
probability mass at zero. This technique requires that the probability that
there are no claims be known or readily computable. Moreover, this
technique, 1if it can be applied, cannot harm.
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Appendix

If the shape parameter « is «larges, numerical problems arise in the
inverse Gaussian case (with or without translation). Then the following

asymptotic development can be useful to numerically evaluate formulas
(43) and (50):

ol 1 . 1-3.
1*@@“):?(1){1_“—_’_1 3_1 5+

x Lz .IJ4 16
(_1)n 1.-3. ... -(2n~1)
T o
where Rn(J;) = (_])n 13- (2‘7’L+ 1) . j tfﬂ-i-Z dt.
A

From Abramowitz & Stegun (1972).
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Summary

This paper presents and compares five analytical formulas for the approximation of stop-loss
premiums. Two of them, based on the inverse Gaussian distribution, are not widely known.
The authors also suggest a technique which improves the precision of these approximations
for <small> portfolios.

Résumé

L’article présente et compare cing formules analytiques pour 'approximation de primes stop-
loss. Deux d’entre elles, basées sur la distribution gaussienne inverse, sont peu connues. On
y suggere aussi une technique permettant d’améliorer la performance de ces approximations
lorsque le portefeuille d’assurance est <petit>.

Zusammenfassung

Diese Arbeit erldutert und vergleicht fiinf analytische Formeln fiir die Approximation
von Stop-Loss Praemien. Die beiden, welche auf der inversen Gaussverteilung basieren,
scheinen neu zu sein. Ferner schlagen die Autoren eine Technik vor, wie die Prizision
dieser Approximationen fiir “kleine” Portefeuilles verbessert werden kann.
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