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NoUD vAN GIERSBERGEN and DENNIS DANNENBURCG, Amsterdam

An application of the bootstrap method to Biihimann’s
classical credibility model

1 Introduction

After having constructed a theory and transformed it into a mathematical
model one usually wants to estimate and test some of the parameters of
interest by means of an econometric model. The part of econometrics which
deals with the estimation of parameters and testing of hypotheses is called
statistical inference.

As an example, suppose that the data o = (x;.....x),) is considered to be
a realization of a random sample X = (X|,..., X,,) from F(x;5), where
F(x;n) denotes some distribution function. The parameter of interest is 7,
e.g. the mean or some other functional of F(-); it is taken to be a scalar
for sake of simplicity. Since we do not observe this parameter value, we
are forced to estimate it. Let 7j, = (X)) denote an estimator of 1, which is
constructed with the sole aim of providing us with the 'most representative
value’ of # in the parameter space. Given that the estimator 7), is a random
variable any formalisation of what we mean by a 'representative value’ must
be in terms of the distribution of 7, say f,(7),), which is called the finite
sample distribution. An obvious property to require a 'good’ estimator 1,
of 7 to satisfy is that f,(7),) is centred around 7. We say that an estimator
np 1s unbiased for n it E(7),) = n, where E denotes the expectation operator
under the finite sample distribution. What this means is that if we calculate
7 for each sample and repeat this process infinitely many times, the average
of all these estimates will be equal to 7. If E(7,) # 7, then 7, is said to

be biased and we refer to E(7j,) — 1 as the bias. An estimator 7j, 1s said to
: o . .- . ~ P
be (weakly) consistent, when 7, converges in probability to 7, i.e. 1j,——.

If an estimator is consistent, the finite sample distribution collapses at the
population value 7 as the number of observations becomes large. Note that
a consistent estimator can still be biased. Besides an accurate point estimate,
one often wants to obtain a set which covers the true parameter 7 with high
probability. More formally, in interval estimation we construct two functions
g1(Xq,...,Xp) and ¢gp(X},...,Xp) of the sample such that

?

Prob[n € (g1, 92)] = (1 — a)
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for some given probability «a; usually « is small. The interval (g;.g2) 1s
called the (1 — «) - 100% confidence interval. Since 7 is a parameter, the
probability statement is a statement about g; and g and not about 7. In
most of the situations, the construction of the functions ¢, and ¢, 1s far
from trivial. Therefore, we usually employ (large sample) approximations
of these functions, which may be accurate or not.

There exists a close relationship between confidence intervals and testing a
hypothesis. Suppose that we want to test a hypothesis at a 5% significance
level. Then we have to construct a 95% confidence interval for the
parameter under consideration and see whether the hypothesized value is
in the interval. If it is, we do not reject the hypothesis. Otherwise, we reject
the hypothesis.

In this paper we focus on the so-called credibility factor and its estimator
in the classical Biihlmann model. This factor is important for insurance
companies, because it is a measure for the heterogeneity in their portfolios.
In case it is high, the individual premium of a contract depends highly
on the mean over time of the individual contract. If the factor 1s low, the
individual premium will highly depend on the overall mean of the portfolio,
which contains all the contracts.

Little is known about the finite sample distribution of a commonly used
estimator of the credibility factor, in spite of its widespread usage. All
we do know is that this estimator is biased in general. Because the large
sample approximations of the finite sample distribution do not take the
finite sample characteristics (e.g. bias) into account, it is expected that these
approximations are inaccurate. The bootstrap, which was invented by Efron
in 1979 and especially designed to mimic the finite sample characteristics
of a distribution, claims to provide a better approximation. This claim has
been verified for the sample mean in a number of studies, see inter alia
Singh (1981) and Abramovitch and Singh (1985). The bootstrap confidence
intervals can be constructed in several ways. Hence, the aim of this paper
is to investigate how well these various bootstrap procedures perform
in a particular case of Bithlmann’s model. Since theoretical justification
using Edgeworth expansions is rather cumbersome, we use Monte Carlo
experiments to asses the accuracy of the bootstrap approximations.

The structure of the paper is as follows. In section 2 we define Biihlmann’s
model, its parameters and their estimators. Section 3 introduces the boot-
strap, looks at its asymptotic justification, and defines various bootstrap
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methods for constructing bootstrap confidence intervals. The Monte Carlo
design and results are given in section 4. The last section summarises the
results and gives some directions for further research.

2 Biihlmann’s Credibility Model

2.1  The model

Consider a full set of observations for the number of claims concerning a
period of n years for a portfolio consisting of p contracts. Let these obser-

vations be realisations of random variables X, (j =1.....p;t=1,....n).
Further, define the non-observable random variable @; as the so-called
risk-parameter belonging to the j-th contract (j = 1,...,p). The classical
Bithlmann model postulates the following assumptions for j =1,..., 9.

(i) The vectors (Xjp.....- Xin.0;) and (Xyp...., X Op) are stochas-

tically independent for j # &k (k=1,...,p).

(i) For some function u(-), E[X; | O;] = n(@;)-

(iii) For some function o2(-), Cov[X 1, Xjs | O4] = (ngz((-)j), where
bst = 1 if s = ¢ and zero otherwise.

(iv)  The random variables ©; are identically distributed.

Define the following structural parameters:
m= E(6;)]. s*=E[0*©;)] and a= Var[u(O;)]

Bithimann (1967, 1969) shows that the lincarised credibility premium in
the present model is a weighted average of the estimated individual
expected claim size and the expected claim size for the whole portfolio:
Pj = zX,, 4+ (1 = z)m, where Xj,, = 1/n >, Xj; denotes the sample mean
over time of the j-th contract. Here

an

an + 5.2

Z =

is the credibility factor, which only takes values between zero and unity. z
is a measure of the heterogeneity in the portfolio for the insurer.
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2.2 Estimators of the structural parameters and the credibility factor

The mean m is unbiased estimated by the overall mean, denoted by
Xopw = 1/]) Z] ij, and 5‘2 1s unbiased estimated by

1 P on
~2 _ v v\
° mzz()‘at ij) .

j=1t=1
An unbiased estimator for a is
| p

0= e m— 1 Z(Xj’w - X'm’w)z - TE‘?Z/fn'

j=1
From this, a frequently used consistent estimator for z follows:

an

an + 352

W)

Although Z is a consistent estimator of z, it is clearly biased in finite samples
because E[f(X)] # f(E[X]) for any (non-trivial) non-linear function f(-).
This bias does not have any impact at the top-level of the portfolio, because
the total premium income is equal to the number of contracts times the
overall mean, i.e. p Xy, for any z. The estimated value of z does, however,
have influence on the individual premiums.

3 The Bootstrap Methodology

3.1  Introduction

The non-parametric bootstrap, which is applied in this paper, requires
not only that the vectors (X;y,...,X;p,0;) and (Xgy, ..., Xgn,O) are
stochastically independent for j # k, but also identically distributed. The
non-parametric bootstrap may be used when it is hard (or impossible) to
find the exact stochastic properties of an estimator without specifying the
underlying distribution; see Efron and Tibshirani (1993) and Hall (1992) for

recent comprehensive overviews. The idea of the bootstrap method is as
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follows. Let X = (X,..., Xp) € RP*™ be a random sample of size p from
a population with distribution F' and let T'(X,.... X,: F) be the specified
random variable of interest, e.g. z = z(-, F'), possibly depending on the
unknown distribution F'. Let IA?p be the empirical distribution function of
X{,...,Xp, 1.e. the distribution giving probability mass 1/p to each observed

contract. The bootstrap method aims to approximate the distribution of
T(Xq,..., Xp: F) under F' by that of T'(X7...., Xpi Fp) under Fy, where

Klsenms X; denotes a random sample of size p from ﬁp Although the latter
distribution cannot usually be calculated explicitly, it i1s always possible to
approximate it very easily by Monte Carlo simulation, since ﬁ’p 1s available
from the sample. So, we can distinguish the following steps for the non-
parametric bootstrap:

(i)  simulate artificially a random sample X* = (X{,..., X)) from the

empirical distribution function F.

(i) evaluate T at the bootstrap sample to obtain the bootstrap version of
the statistic T = T(X [, ..., X; ﬁ‘p).

(iii) repeat steps (i) and (ii) a large number of times, say B, in order to
get B realisations of 77; T" = T'(X[; I/:“p), T P

Finally, a histogram (or any other estimate of the distribution of T™) is
obtained from T7*, i = 1,.... B; this is the approximation to the distribution

of 7% which in its turn is the bootstrap estimator of the unknown distribution
of T.

3.2 Consistency of the bootstrap

From Hesselager (1988), it follows that under certain mild regularity
conditions the sampling distribution of z can be approximated arbitrarily
close by the bootstrap distribution, when the number of contracts p is large
enough. In other words, the distribution function

Gp(z) = P[/p(Z — 2) £ z]
is approximated by the conditional distribution

Gplz) = P[y/p(z* —2) <z | Xy, .. L Xpl
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such that

Pl lim sup | Gp(x) — G,(x) [=0] = 1.

p—0o0

In this case we say that the bootstrap 'works’, since the asymptotic condi-
tional bootstrap distribution is equal to the asymptotic unconditional distri-
bution.

Of course, one could also resample both contracts and observations. Then,
the observations are resampled in time conditional on a contract that has
been drawn. This latter procedure is called compound bootstrapping in Hes-
selager (1988), whereas the former procedure is called simple bootstrap-
ping.

Intuitively, one might expect that compound bootstrapping leads to more
accurate results. However, Hesselager (1988) shows that compound boot-
strapping is not consistent in the number of contracts p only. For consis-
tency, both the number of contracts and the number of years should go to
infinity. In practice, n is often small, whereas p can be very large. A pilot
study showed that the compound bootstrap gives poor approximations to
the finite sample distribution indeed. Therefore, we focus only on the finite
sample properties of the simple bootstrap in the Monte Carlo study.

3.3 Various bootstrap estimators

We denote an estimator of a confidence interval for a particular single
parameter, say 0, by

1(6) = [IL(0). T, (0)] .

where 1t is made clear that the confidence interval is used for inference
with respect to the parameter 6. So, for Biithlmann’s model we have
0 € {m.,a. s> z}. Since z € [0.1], it is convenient and reasonable to take
I (z) = max(0, I; (z)) and Iy (z) = min(1, Iy (2)).

The first method which we will call the standard normal method, is based
on bootstrapping the standard deviation of an estimator. More formally, if
we assume asymptotic normality for z, i.e. /p(Z—2) —,; N(0, (7%), then the
interval given by [Z+¢n0z/ /P, Z+ b1 _q03/+/p] yields a (1 —2a) confidence
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interval for z with equal nominal tail probabilities; here ¢, denotes the «-
th quantile of the standard normal distribution. In general, we do not have
an analytical expression for the estimator of U%. Fortunately, we can always
obtain a bootstrap approximation of this estimator

B

5%, :1/(B~1)§:{2;—}§ZE2‘]2

F=1 i=1

ISR

The bootstrap approximation for the confidence interval based on the
standard normal method is given by

IV (2) = 1Y (2), IV (2)) = B+ ¢abse /B 2+ b1—abze / /P -

A drawback of this interval is the implicit assumption that the bootstrap dis-
tribution is symmetric, so when the finite sample distribution is asymmetric,
inference based on this method can be inaccurate.

We will now discuss two other methods to construct asymmetric bootstrap
confidence intervals. First Efron’s (1979) percentile method, which defines
the following interval

P () = 15 (0, 15 (2)] = [ F_l

where 27, denotes the a-th quantile from the bootstrap sample, i.e. z}, =
?‘E‘Q(BH)] with (B + 1) an integer and {ZE‘L]L = Lewesp By G268 the
corresponding ascending order statistics. Note that this confidence interval
will not be symmetric around the point estimate z in general.

The second method proposed by Efron (1981) is called the bias-corrected
(BC) percentile method. This method makes an explicit correction for
the median bias of the bootstrap distribution. Let F*(¢) = P[T* < t
= #(T* < t)/B denote the approximation of the bootstrap distribution,
where #(c) is the number of occurrences of eventuality c. The confidence
interval is given by

1€ (2) = IE9 (2). 15 (2)]
- [F*‘l (@(220 -+ (b(x)) F*il((p(zz() = gbl—a)”:
where z; = ¢~ 1(F*(2)), and @ is the cdf of the standard normal distribu-

tion. Note that /*(Z) gives the fraction of times that the bootstrap reali-
sations is smaller than the initial estimate Zz. If there is no median bias, then
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F*(Z) = 0.5 and 25 = 0. In this case the confidence interval based on the
bias-corrected percentile method reduces to the confidence interval based
on the percentile method. So, the factors (225 + ¢n) and @2z + 1)
may be interpreted as a correction for the indices v and (1 —«) respectively.

3.4  Rejection frequencies

Let a(]};) denote the fraction of times that the lower bound of the interval
is greater than the true value. In these cases, the bootstrap confidence
interval does not contain the true value. Let Ei([i’}) be similarly defined
with respect to the upper bound of the interval. So, we have

% * (2 2 - T* (2 z
Al (o) = LD Z 2 ang 17y = P <2

where #(c) indicates the number of occurrences of eventuality ¢ over R
Monte Carlo replications. For the (1 — 2«) bootstrap confidence interval
with equal nominal tail probability, a(i*L) and a(ig) should converge to
the nominal size «. If we define G(7*) = a(i*L) - &(f}"j-), then (1 — a(I*))
is a Monte Carlo estimator for the actual confidence coefficient of interval

I*. An estimator for the standard deviation of @(-) over R Monte Carlo
replications is given by

VAL - a(/R.

4 Monte Carlo Results

Consider the following data generating process (DGP):

0; ~ Gamma(3, \) LECK
Xt | ©5 ~ Poisson(0) t=15::0:m., (1)

So, we have assumed a gamma distribution for the risk-parameter ©; with
parameters 3 and A, i.e. E(6;) = /X and Var(©;) = $/A%. The number
of claims for the j-th contract in period ¢ conditional on @;, e, Xj; | Oy,
is assumed to be Poisson distributed with parameter equal to ©;. It can be
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shown that in this particular case the unconditional distribution of X, is
Negative Binomial(/3, A/(1 + A)) and that the true credibility factor is given
by

n
n+ A’

o=

This DGP has been chosen in accordance to Dannenburg (1994) and
Lemaire (1985) has used this model specification to estimate claim fre-
quencies for automobile-insurance.

The actual performance of the different confidence intervals is investigated
by Monte Carlo experiments. We generated 4000 (= R) samples according
to the DGP defined by (1) for the parameter values 5 = 10, A = 10,
p = 50, 100 and n = 5, 20. We choose o = 0.2, 0.1, 0.05. The number of
bootstrap replications (7) is taken to be 1999 to guaranty that o(1 + B) is
an integer. The minimum number of bootstrap replications required for
obtaining accurate confidence intervals is B = 1000, so the amount of
replications we have used should be sufficient. All simulations were carried
out on a 486-Personal Computer using the matrix programming language
Gauss 2.2. Random numbers were obtained by using its '/RNDU” function.
Table 1 shows the Monte Carlo results.

From this table, we see that the actual rejection frequencies slowly converge
towards the nominal rejection probabilities as the number of contracts, p,
increases. There is also some improvement when the nominal significant
level « is allowed to increase from 0.05 to 0.20, especially for the standard
normal method. Apparently, the bootstrap approximation of the finite
sample distribution is better at the center than at the tails. However, no
systematic improvement seems to be present if we enlarge the number of
periods, n, from 5 to 20. The percentile method yields confidence intervals
which are extremely inaccurate, i.e. the reject frequencies of the intervals
can be two times as large/small as the nominal rejection probabilities.
The bias-corrected percentile method performs better, which is due to the
correction of the bias. However, most of the actual rejection frequencies
are still significantly different from the nominal rejection probabilities.
Inference based on the standard normal method performs best in all cases
considered. This is surprising because a symmetric interval around a biased
estimator is not expected to perform well. In case p = 100, most of the
actual reject frequencies are not significantly different than the nominal
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Table 1. Monte Carlo results for the rejection frequencies of (1 — 2a) nominal confidence
intervals in model (1) based on: the standard normal, the percentile and the bias-corrected
percentile method respectively (R = 4000, B = 1999, 3 = 10, A = 10).

Standard normal Percentile BC-percentile
v P noa(ly) aly) ady)  adp) ady)  alp)
0.05 50 5 0.055 0.032" 0.028" 0.114" 0.046 0.082"
20 0.051 0.0337 0.0217 0.1317 0.044 0.089"
100 5 0.058 0.044 0.033" 0.093" 0.050 0.075"
20 0.054 0.043" 0.029" 0.094" 0.045 0.0727
0.10 S0 S 0.099 0.081" 0.0617 0.176" 0.105 0.1317
20 (0.093 0.082" 0.055 0.188" 0.104 0.143"
100 S 0.101 0.092 0.072" 0.154" 0.100 0.122"
20 0.101 0.088" 0.068" 0.160" 0.102 0.1217
0.20 50 S 0.182 0.192 0.145 0.285" 0.213" 0.222"
20 0.184 0.192 0.138" 0.295" 0.220" 0.225"
100 5 0.188 0.199 0.156" 0.266" 0.205 0.213"
20 0.195 0.199 0.158" 0.269" 0.2177 0.208
+* = the approximate 95 % confidence interval for the estimated confidence coefficient does

not contain the nominal confidence coefficient.

reject probabilities, so in our Monte Carlo this inference method mimics
the behaviour of an exact inference procedure.

To shed some light over the different performance of the various bootstrap
intervals, we focus on the Monte Carlo results for p = 50 and n = 10, which
are not reported in Table 1. For a graphical comparison of the estimated
bootstrap confidence intervals, we estimated the regression functions

4
E[I*(z) | 2] =6+ > _ 67 (2)

=1

for T*(z) € {fN*(z).f‘m(z).fﬁc*(z)}. These regression functions are
flexible enough to capture the salient features of these intervals. Figure 1
shows the estimated systematic components of the regression functions.
Since the bounds of the interval /¥ (2) are the 5% and 95 % percentiles
of the bootstrap distribution, we observe that the bootstrap distribution
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Figure 1. Estimated mean based on formula (2) of various bootstrap confidence bounds in
model (1) obtained from 4000 Monte Carlo simulations (p = 50, n = 10).

is negatively skewed in general. This skewness is mainly due to the fact
that z is bounded from above by 1 and it causes the percentile method
to perform very inaccurate. The bias-corrected percentile method is able to
make a correction for the bias. This corresponds to the fact that the bounds
are shifted upwards with respect to the bounds of the confidence intervals
based on the percentile method. However, due to the negative skewness of
the bootstrap distribution, the upper bound has shifted less than the lower
bound. Therefore, a_(jg(/*) is still significantly greater than its nominal
size «v. Figure 1 also shows that the length of the intervals decreases as
Z increases. So, the characteristics of the bootstrap distribution vary with
respect to z, e.g. the standard deviation tend to decrease as z increases.
We tentatively conclude that this phenomenon enables the standard normal
method to produce accurate inference even in the presence of skewness.
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5 Conclusions

In this paper, we have investigated the small sample performance of various
nonparametric bootstrap methods for constructing confidence intervals for
the estimator of the credibility factor in the classical Biihlmann model
through Monte Carlo experiments. The bootstrap methods are: the standard
normal method, the percentile method and the bias-corrected percentile
method. The general conclusion is that inference based on the percentile
method performs worst. This 1s due to the negative skewness of the actual
and bootstrap distribution of the estimator of the credibility factor. The bias-
corrected percentile and the normal method give rise to much more accurate
inference. The accuracy of the former method corresponds to the ability of
this method to correct for the bias. The latter method emerges as the most
promising inference procedure, since in our Monte Carlo experiments most
of its actual confidence coefficients were not significantly different from the
nominal confidence coefficients for a sample size consisting of 100 contracts.
This result 1s somewhat surprising, since the distribution of the estimator
1s negatively skewed and the bootstrap confidence intervals based on the
normal method are symmetric. However, this phenomenon can be explained
by the fact that the characteristics of the bootstrap distribution changes with
the realisation of the estimator.

Hopefully, the present study is a step towards a more general resampling
based inference method. Issues concerning the sensitivity of the results to
the Monte Carlo design, questions like whether we can use the bootstrap to
construct accurate confidence intervals for the individual premiums in finite
samples, and how well performs Hall’'s (1988) recommended percentile-
method, which in this case should be based on a iterated bootstrap, all
deserve further investigation.
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Zusammenfassung

Im Artikel werden verschiecdene Bootstrap-Methoden fiir Konfidenzintervalle fiir den
Schitzer des Credibility-Faktors im klassischen Credibility-Meodell von Bihlmann néher
untersucht. Nach einer kurzen Einfithrung in das Modell von Bihlmann wird dic Idee
des Bootstrap-Ansatzes vorgestellt. Anschliessend geben die Autoren drei Methoden an,
um Bootstrap-Konfidenzintervalle fiir den Credibility-Faktor des Biithlmann-Modells zu
bestimmen. Die Methoden werden anhand von Monte Carlo-Simulationen illustriert.

Abstract

In the paper, various bootstrap methods for constructing confidence intervals for the
estimator of the credibility factor in Biihlmann’s classical credibility model are investigated.
After a short introduction to the model of Biihlmann, the concept of bootstrapping is
presented. In the sequel, the authors give three methods to define bootstrap confidence
intervals for the credibility factor. The methods are illustrated by Monte Carlo experiments.

Résumé

Le présent papier traite de la construction d'intervalles de confiance de l'estimateur du
facteur de crédibilité du modele classique de Bithlmann a 'aide de diverses applications de
la méthode du bootstrap. Apres une breve introduction du modele de Bithlmann le concept
du bootstrap est présenté. Par la suite les auteurs donnent trois méthodes permettant de
définir des intervalles de confiance bootstrap du facteur de crédibilité. Ces méthodes sont
llustrées a l'aide d'expériences de Monte Carlo.
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