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FraNCoI1s DUFRESNE, Lausanne

An extension of Kornya’s method with application
to pension funds

1 Introduction

Kornya (1983) suggested a method to compute the aggregate claims distri-
bution of a life insurance portfolio. His algorithm gives an approximation
as close as desired to the exact distribution under the so called individual
model. It can be applied when there is only a single death benefit (no dou-
ble indemnity or the like). Later on, De Pril (1986) derived an algorithm
for the exact calculation of the same distribution. De Pril (1989) modified
his algorithm in order to achieve a greater efficiency. Recently, Waldmann
(1994) found a way to considerably reduce the number of arithmetic opera-
tions of De Pril’s exact algorithm.

The aim of this paper is to extend Kornya’s method to the case where there
are two amounts at risk. Such a situation occurs in the risk analysis of a
pension fund when (only) the death and disability benefits of the active
members are taken into account. The net amounts at risk are assumed
nonnegative. This case can be handled by the algorithms of De Pril (1988)
for arbitrary positive claims but our derivation of the algorithm will be
along the lines of Kornya and will focus on pension funds applications. An
alternative approximation has been proposed by Hipp (1986).

2 The Individual Model

In the individual model of Risk Theory (see, for example, Chapter 2 of
Bowers et al. (1986)), the aggregate claims random variable S is defined by

»S' — _le + )(2 + T + /an (1)

where Xy, X5..... X,, are mutually independent random variables. The
random variable X, gives the total claim amount of the insured number £
of the portfolio for a given period of time.

In theory, the distribution of S can be obtained recursively by convolution

of the distribution of the partial sum Zi:ll X; with the distribution of Xy,
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k = 2,...,m. This can be extremely time consuming, even if the X}’s are
distributed on the integers.

From now, we consider the risk induced by the death and disability benefits
of active members of a pension fund. In this context, it 1s natural to use
the individual model.

Accordingly, the number of active members of the pension fund is denoted
by m. For the k-th such member, let d and e; denote the net amounts
at risk under the death benefit and disability benefit, respectively, for the
considered period of time. (The net amount at risk is the value of the
benefit less the corresponding reserve.) The probability that this individual
dies in the period of time is ¢, and the probability that he or she becomes
disabled is i;. Then, X; is defined by

0 with probability p;
X = ¢ di. with probability ¢ (2)
e, with probability i,
where pp = 1 — g — ig, for & = 1,2,...,m. The distribution of X, 1is
triatomic if d;, and e¢; are not equal and different from zero.
We further assume that dp and ep are positive integers'. In practice,
this would result from an appropriate rounding and change of monetary

unit (scale). It follows from this last assumption that S is distributed on
{0,1,2,...}. The probability function of S will be denoted by

fo=PlS=g], ==01,2,... (3)

Occasionally we will also write fg(0) instead of f;. We also assume that
qr. + 1 < 1/2 for all k. This last assumption will be motivated later.

3 Probability Generating Functions

The probability generating function (p.g.f.) ¢y (t) of a (discrete) random
variable Y is defined by

oy (t) = E[t"]. (4)

Insection 6, we explain how to deal with net amounts at risk which are equal to zero.
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The p.g.f. of S will be denoted ¢g(t) and for simplicity we shall write ¢, (1)
for the p.g.f. of X. It is well known that the p.g.f. of a sum of independent

random variables is the product of the individual probability generating
functions.

For the triatomic distribution of X, we find that
L.Qk(t) = Pk T thdk + ,ijtffk
= p;‘ (1 _|__ q_ktdk + _ktci\>
Pk Pk
= (1 + Gt + 75 1%) (5)

where g, = qi/py, and i = iy /py.
From (1) and (5), it follows that the p.g.f. of S is

T

ps(t) = ][ on(t)
k=1

e

- H pe(1+ f(jktd"' + %ktek)
k=1

= fo+ it + fot? oo fot® 4o frt (6)
where L (a constant) is the maximal aggregate claim and the last equality
comes from the definition of the probability generating function. According

to (6), if one wants to determine the probability that S equals «, the problem
reduces to finding the eoeificient of t*, ¢ =0,1,..., L.

4 Extension of Kornya’s Method

Inspired by Kornya (1983), we rewrite the p.g.f. of S in the following way:

T

ps(t) = ] pr(l +qut® + ixt®*)
k=

T

™
— (H p}g) exp (ln H (1 +Ejktdk 4 %ktek))
k=1

k=1

= fg(0) - exp{ Z In(1 + Gt + Ektek)} : (7)

k=1
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(It is interesting to note that Kornya did not extract fg(0) in his original
paper. This introduces a very small additional error? in his method and is
the reason for the difference between the approximation of De Pril (1988)
and Kornya’s approximation.)

Following again Kornya, we use the MacLaurin series expansion of In(1+z)
and notice that, this time, =z 1s a binomial that we expand according to the
binomial formula; it follows that

st = f5(0) e 3 3 CU

k== =1

n+l _
(Gt + ig,t% )”}

mo oo rr+ N di L7 penyn—l1
<(0) GXP{Z Z . Z <l> (qrt™ )" (igt™) }
k=1n=1 1=0

(8)

The expansion of In(1 + z) is allowed since we assumed that ¢ + 15 < 1/2.
We note that the argument of the exponential function in (8) is simply a
power series in t. Let B(¢) = Inpg(t). From (8) it follows that

T TL—FI T
B(t) =In fs(0) + Y Z 3 (’J’) (Gt Gyl (9)
k=1n=1 =0
Then we can write

s (t) = B, (10)

The desired algorithm is a consequence of the following theorem which is
essentially due to Euler:

Theorem: If A(s) and B(s) are power series given by

o - oo
A(s) = Z a;s" and B(s)= Z birs? (11)
i=0 =0

and if, furthermore, the following relation exists between A(s) and B(s),
A(s) = eB(3) (12)

ﬁ
“In a later stage of the development.
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then
A(0) = ag = exp(by) (13)

and
1 T
Un = ;I- Z k;bkanm}\? 3 n = 112:37 v w (14)

Proof: For the proof, one considers the identity A’(s) = B’(s) A(s) and
compares the coefficients of s~ ! on both sides.

The algorithm results from the truncation of the infinite power series B(t).
Let B(T) (¢) be the polynomial obtained by truncating B(¢) after the r-th
term in the infinite sum:

m i ﬂ_+_[ n n S
BO® =1n fs0)+ Y 3 TS () (et ey 1)
k=1n=1 ! =0
We say that B(")(¢) is the approximation of order r of B(t).

In summary, to find the distribution of 5, one has to ...

L. Choose r, the order of the approximation.
2. Compute fg(0) =[], pk. the initial value.
3. Determine the coefficients of t* in BU )( t), say b( ).
4. Compute recursively
Z e for «=1,2,3,... (16)
k=1
5 Computational Remarks

For most pension funds, it is useless to classify the risks according to
their individual claim distributions: they would be (almost) all different. Of
course, this depends on the monetary unit used in the calculations, but in
the current practice that would be the case. As a consequence, the preferred
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way to construct the polynomial B()(#) would be given by the following
pseudo-code:

For k=1 tom
Forn=1tor
Fori=0ton
Accumulate in position dy, - [ + ep(n —1)
of a one-dimensional array, say B, the quantity

L})”_Jrl(n)q “n—1

as 1
7 / Ik " 'k

The outer loop in the preceding pseudo-code means that the polynomial
should be constructed while reading the data from the pension fund. The
calculation of fg(0) would be performed at the same time.

It can be shown (see, for example, De Pril (1988)) that, if ¢, + ;. < 1/2 for
all &, then

m -
S e = £ <0 -1 (17)
=0
where

M. . r41

1 Pk <Qk +?-k) +
glr) = . . 18
) ’f”+1kz_lpk(1k% Pk (18)

This last result means that it 1s possible to determine the order r of the
approximation that will provide the desired degree of accuracy.

If the initial value fj is very small, the algorithm can be unstable. To avoid
such problem, one can use a rescaling strategy as suggested, for example,
in Waldmann (1994).

6 Numerical illustration

We will illustrate the method with the data of Held (1982) as they appeared
in print’. The underlying portfolio consists of 230 active members of a
pension fund; like Held, we will call it PK-230.

Dr. Olivier Deprez told the present author that two probabilities in the data of Held were
misprinted. In order to let the reader reproduce our results, we use the printed data. Of course,
our results are slightly different from those of Held.
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To conform to our convention that di. and e are positive integers, one has
to set ¢ or ig equal to zero if the corresponding net amounts at risk are
zero. Alternatively, one could use the relation fg(0) = exp(bg) where by is
the constant term in the right-hand side of (15).

We suppose that a precision of 10~® on the calculated distribution function
1s desired. The first step consists in choosing the order r of approximation.
Table 1 shows the values of £(r) computed according to (18). It appears
that an approximation of order » = 5 is sufficient to satisfy our requirement
about the precision.

Table 1 Values of (r) for PK-230

r e(r)

I 0.025570
2 9.18495 x 10*
3 426274 x 107°
4 222873 x 107°°
5 1.24694 x 107’
6 7.29702 x 107°
7 441431 x 107"
8  2.74164 x 107"
9 1.74033 x 1072
10 1.12547 x 107"
11 7.39707 x 1077
12 4.93116 x 107"
13 3.32887 x 10
14 227249 x 107"
15 1.56691 x 10~ "
16 1.00010 x 10 %

17 7.64491 x 10~ %

18 5.40011 x 102
19 3.83922 x 10~ %

5

20 2.74544 x 10 °

The second step indicated at the end of section 4 is the calculation of fg(0).
In fact, we can perform steps 2 and 3 at the same time while reading the
data from a computer file (as mentioned in section 5). Table 2 shows the first
31 coefficients of the polynomials BU)(¢), .. ., BO)(¢). For the illustration,
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the only polynomial which is needed is B (t); the other polynomials are
given to show the speed of convergence of the coefficients.

Table 2 The first 31 coefficients of the polynomials B ()

x e yr=2 =3 r=4 =3 T
0 —1.24741404  —1.24741404  —1.24741404  —1.24741404  —1.24741404 0
1 0.17594565 0.17535644 ). 17535965 0.17535963 0.17535963 1
2 0.00637411 0.00637411 0.00637411 0.00637411 0.00637411 2
3 0.00587984 0.00585953 0.00585953 0.00585953 0.00585953 3
4 0.05810848 0.05752379 0.05752976 0.05752970 0.05752970 4
5 0.00000000  —0.00001729  —0.00001729  —0.00001729  —0.00001729 5
6 0.05034425 0.05021945 0.05021984 0.05021984 0.05021984 6
7 0.00000000  —0.00168830  —0.00165425  —0.00165477  —0.00165476 7
8 0.00000000 ).00000000 0.00000000 0.00000000 0.00000000 8
9 0.00000000 0.00000000 (0.00000000 0.00000000 0.00000000 9
L0 0.05588196 0.05541370 (.05548349 0.05548147 0.05548151 10
11 0.00000000  —0.00041944  — 0.00041697  —0.00041698  —0.00041698 11
12 0.05232505 05185679 0.05186117 0.05186113 0.05186113 12
13 0.00541659 0.00541659 0.00541659 0.00541374 0.00541385 13
14 0.02555245 0.02551878 0.02551887 0.02551887 0.02551887 14
15 0.00000000 (0.00000000 ().00000000 0.00000000 0.00000000 15
16 01541074 0.01538750 0.01539279 0.01539275 0.01539288 16
17 0.02515861 0.02509621 0.02509641 0.0250964 1 0.02509641 17
18 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 18
19 0.02058408 0.01927428 0.01929779 0.01929746 0.01929746 19
20 0.09229438 0.09143390 0.09144201 0.09144193 0.09144194 20
21 0.01322054 0.01321352 0.01321353 0.01321345 0.01321345 21
22 0.00888956 0.00888956 0.00888956 0.00888956 0.00888956 22
73 0.01271624 0.01145776 0.01148118 0.01148085 0.01148086 23
24 ).00637896 0.00637896 0.00637896 0.0063789%6 0.00637896 24
25 0.05172377 0.05124084 0.05124523 0.05124519 0.05124519 25
26 0.01111503 0.01109956 0.01109959 0.01109959 0.01109960 26
27 ).00078069 0.00066100 0.00066144 0.00066144 0.00066144 27
28 0.00000000  —0.00003630 0.00000544 0.00000427 0.00000429 28
29 0.02600034 0.02597711 0.02597716 0.02597716 0.02597716 29
30 0.02471478 0.02457585 0.02457680 0.02457680 0.02457680 30
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Table 3 Exact and approximation of order » =5
of the distribution function
(monetary unit: 1000 CHF)

x F(x) e () F(x) — F® (x)

0 0.287246646  0.287246646  —3.30 x 107"
20 0.417618694 0.417618699 —5.04 x 1077
40 0530181888  0.530181896  —7.78 x 10"
60 0.619778881 0.619778895 ~1.35x 107"
30 0.681769152 0.681769171 —1.82x 107"
100 0.738048814 0.738048838 389 5 10
120 0.787930329 0.787930359 ~3.03 x 107"
140 0.820359133 0.820359169 —3.54 x 107"
160 0.877666394 0.877666437 437 % 16"
180 0.904231654 0.904231701 —4.67 x 1077
200 0.925605502 0.925605554 524 x 107"
220 0.940434174 0.940434231 573 x 107"
240 0.952306117 0.952306178 —6.07 x 107°
260 (0.962297660 0.962297724 —6.42 x 107°
280 0.971451715 0.971451782 —6.67 x 107"
300 0.978431097 0.978431166 —6.87 x 107"
320 0.983247305 0.983247376 —7.04 x 107°
340 0.986852189 0.986882260 ~7.17 x 107%
360 0.989650826 0.989650899 ~ 728 x 1078
380 0.991812331 0.991812405 ~7.36 x 10°°
400 0.993392527 0.993392601 —7.43 x 107"
420 0.994711650 0.994711725 ~7.48 x 107°
440 0.996243118 0.996243193 —7.52 x 107"
460 0.997122071 0.997122147 ~7.56 x 107"
480 0.997817798 0.997817874 758 x 107F
500 (0.998344606 0.998344682 ~7.60 x 107"

The last step is the calculation of the probability function according to (16).
The distribution function can also be computed during this recursion. The
“exact” distribution function obtained by direct convolution is presented in
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Table 3 with its approximation of order » = 5. The errors F'(z) —FO)(z) are
also given in this table.* It is easily seen that the error is always smaller than
the required precision of 107° on the approximating distribution function.

7 Conclusion

For pension funds, this extension of Kornya’s method is much more efficient
than brute force convolution. It is very similar to the alternative approach
suggested by De Pril on page 23 of his 1989 paper but requires less computer
resources. It is also easy to implement.
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Summary

A simple extension of the method of Kornya is derived. The extended method applies
to the convolution of triatomic distributions with nonnegative support while the original
method is restricted to diatomic distributions. This way, the algorithm can be applied to the
calculation of the distribution of the total claims of a pension fund where only death and
disability of active members are considered.

Résumé

On développe une extension de la méthode de Kornya. Cette extension s’applique a la
convolution de distributions triatomiques de support non négatif alors que ['application de
la méthode originale se restreignait aux distributions diatomiques. Ainsi, I'algorithme peut
étre appliqué au calcul de la distribution du montant total des sinistres d’une caisse de
pension ol 'on ne tient compte que des risques de déces et d'invalidité des membres actifs.

Zusammenfassung

Die Methode von Kornya wird verallgemeinert. Die verallgemeinerte Methode kann zur
Berechnung der Faltungen von Dreipunktverteilungen mit nichtnegativem Triger angewendet
werden, wihrend Kornyas Methode urspriinglich auf Zweipunktverteilungen limitiert ist.
Dadurch ecignet sich der Algorithmus fiir die Berechnung des Gesamtschadens einer
Pensionskasse, bei der die Risiken Tod und Invaliditat der Aktiven betrachtet werden.






	An extension of Kornya's method with application to pension funds

