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MicHeEL Hort, Yverdon-les-Bains

Bréeve incursion dans le domaine du chaos déterministe

1 Introduction

La notion de chaos déterministe est apparue dans la décennie 1970.
Actuellement, une littérature abondante lui est consacrée. Ce sont surtout
les physiciens et les biologistes qui s’intéressent a ce concept. Des lors, nous
nous sommes pos¢ les deux questions suivantes:

s qu’'est-ce exactement que le chaos déterministe?
- peut-il présenter un intérét pour la science actuarielle?

Les considérations et les exemples présentés ci-aprés n’ont certes pas
la prétention d’apporter des réponses définitives a ces deux questions.
Plus modestement, ils cherchent a proposer quelques €éléments pour une
premiere appréciation.

Premiére question: qu’est-ce que les chaos déterministe?

A grands traits, on peut dire qu’il y a chaos déterministe lorsqu’un
modele, simple dans certaines conditions, devient, dans d’autres conditions,
extrémement compliqué et, par la méme, perd de sa capacit¢ descriptive.
L’évolution des populations offre des exemples de cette situation. Par exem-
ple, dans son ouvrage Théorie mathématique des populations, Alain Hillion
commente comme il suit I'évolution d’une colonie d’insectes (p. 37) La taille
de la population peut tendre vers une limite, étre une fonction périodique du
temps ou avoir un comportement général si difficile a caractériser qu'on le
qualifie de ,,chaotique*.

Sur le plan de la méthodologie, le chaos déterministe a donné lieu a
d’amples analyses. 1l révele en effet que la modélisation mathématique des
phénomenes peut rencontrer des difficultés imprévues.

Cette situation autorise Olivier Zurchuat a écrire dans le N° 93 de I"Auditoi-
re (un périodique interne de I'Université de Lausanne) La découverte dans
les années septante du chaos déterministe acheva de relativiser les prétentions
du déterminisme laplacien: des phénoménes modélisés par des équations
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toutes simples peuvent donner lieuw a des comportements trés complexes,
imprévisibles.

Les ouvrages cités dans la bibliographie illustrent divers aspects du chaos
déterministe.

Pour concrétiser notre propos, nous consacrerons le chapitre suivant a la
suite récurrente

Tpy ) = bzt — ]{T%

qui est, selon les auteurs qui ont abordé la question, la plus simple qui
puisse offrir des exemples de comportements chaotiques.

Seconde question: intérét pour la science actuarielle?

Déja dans les années 1970, les premiers auteurs qui avaient traité du
chaos déterministe avaient fait observer que ce concept pourrait étre
utilis€ avec profit dans la modélisation de l'instabilité et des fluctuations
des phénomenes économiques et démographiques. Or ces domaines sont
proches, a un titre ou a un autre, de la science actuarielle. De fait, le
chaos déterministe apparait effectivement aujourd’hui dans ces domaines.
Lorsque nous avons préparé ce papier, on nous a signalé que la suite
récurrente étudiée ci-aprés correspondait a un cas particulier du modele
de Day d’accumulation du capital et a un cas particulier du modele de
Pohoja de la dynamique du taux d’emploi (voir G. Abraham-Frois et E.
Berreri Instabilité, cycles, chaos Economica 1995).

[ 1 4 ” R — 2
2 La suite recurrente x; ; = kxy — kxj

Remarquons tout d’abord que I'étude de cette suite récurrente est lice a
celle de la fonction:

Fim— flz) =ke— ke

Nous ferons donc pour commencer quelques remarques au sujet de cette
fonction.

[.  f(x) est définie pour tout z.
2. Sa représentation graphique est une parabole qui tourne sa concavité

vers le bas si £ > 0 et vers le haut si £ < 0.
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3. Pour £ = 0, la fonction est constante et égale a 0.

; ; 5 1
4. La fonction présente un extremum pour r = 55 cet extremum est un

maximum si & > 0 et un minimum si k& < 0.
3 La représentation graphique est symétrique par rapport a la droite

verticale d’équation = = % Pour tout k, la parabole passe par les

points de coordonnées (0,0) et (1,0).

Allure de la représentation graphique

|

|

|

|

1 \/1 }
|2 2

} f(=) f(x)

I

Ceci précisé, revenons a la suite récurrente proprement dite.

Chaque terme z; (¢t € N) de la suite est un nombre réel qui se déduit du
précédent, sauf xy qui est une donnée de base, appelée condition initiale.
Selon la valeur du parameétre k et de la condition initiale z(, la suite
peut adopter huit comportements dont le dernier est justement le chaos
déterministe. Nous commentons ci-aprés ces huit comportements, ce qui
permettra de voir ce que le comportement chaotique a de spécifique.

2.1 Le comportement stationnaire

En comportement stationnaire, tous les termes x¢ de la suite sont égaux.1
Ceci se produit, pour tout k autre que O et 1,sizg =0ousizy=d=1- P
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Pour £ = 0 et pour k£ = 1, seule la valeur initiale zy = 0 entre en ligne de
compte et tous les termes de la suite sont nuls.

Ces conditions s’établissent facilement en résolvant I’équation
e e oS 2
Tip1 = Tt = kzt — kxy

Exemple: k=16 d=0.375

POUI’LL‘O:O: Ilzmzz--°i$t:---20
Pour g =0375: =z =--=x4=-+-=0.375

2.2 Le comportement stationnaire a partir de t =T

Considérons dans I’équation
i — ks — b 2
T4+l = R Lt

x; 1 comme donné et z; comme I'inconnue, il vient deux racines = et z}
soit:

” 4
D Dzzl—']{f—_iﬁt+] .I,%”}“’Eg:l

S | 1
ho = &= N:_
a:t—Z-f-ZD TE =5

DO

Si D? < 0, il n’existe pas, dans ’ensemble des nombres réels, de valeur x
dont le successeur soit le z;, 1 donné.
Si D? =0, on a: z} ::1:2’:%

En outre, si x4 | = d, les deux racines sont d = 1 — % etl—d= —}5

Ce qui précede permet de construire des modeles comme celui qui suit:
k=64 d=0.84375 T =4 24 =d

x3,7p, 71 et xy peuvent se calculer selon ce qui vient d’étre dit.
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On obtient ainsi huit suites qui adoptent le méme comportement station-
naire a partir de ¢t =7 = 4. Soit:

) T Z2 L2 Lo

> 0.812510281

0.850778 090

0.149221 910

0.974958 879
0.969792 221
> 0.187489719
0.030207 779
0.15625 —> 0.84375
0.807 186 859
> 0.996 071 895
0.192813 141
0.025041 121
0.999 385 856
0.003 928 105
0.000614 144

2.3 Le comportement stationnaire d la limte

Les valeurs 0 et d peuvent étre la limite de la suite des z¢ lorsque ¢ tend
vers I'infini. Pour qu’il en soit ainsi, les conditions suivantes doivent étre
remplies:

Conditions Limite Remarque
-1 k<0 l-d<zy<d 0 A
0<k<l1 dLegl—d 0 B
l< kX2 O<ag <l d B C

2 k<3 0<zy <1 d A C



52

A: le passage a la limite se fait par encadrement
B: le passage a la limite se fait par approche
C: sauf si zy conduit au comportement stationnaire.

Exemple:

k —0.8 0.25 1.6 2.5

d 2.25 —3 0.375 0.6

1 1.6 —1.5 0.256 0.225

T2 0.768 —0.9375 0.304 742 0.435937
T3 —0.142 540 —0.454102 0.338999 0.614 740
T4 0.130 287 —0.165077 0.358 526 0.592 086
Limite 0 0 0.375 0.6

2.4  Le comportement périodique

I1 peut se faire que x; présente un comportement périodique de période p,
c’est-a-dire que

xt =dr pourtout t=mp+r avec 0<r<p

Pour p =2 par exemple, les deux valeurs dj et d; s’obtiennent en résolvant
I’équation du 4° degré

T4 = Tt = k‘[k’:ltt = kSL%] = k)[k’ﬂ?t = k‘:l?%]z

0 et d sont, de fagon évidente, deux racines de cette équation. Les deux
autres sont dy et di. On trouve

1 1 1 1 2 3
0 2[+k+ ] ! 2[+k D] br=l-1-n
On note que si —1 < k < 3, dj et dy ne sont pas des nombres réels. De plus,

si k=3, o0n ady=d; =d ce qui conduit au comportement stationnaire.
Des considérations semblables peuvent étre faites pour p > 2.



53

Exemple: k = 3.835

p=2: dy=0892344810 dy =0.368411382

dol: zy=ay=ax4=---=2p,, = --=0.892344810
T =T33 =I5 — -+~ :.’Ezm+1 =-..=0.368411382
(On peut naturellement partir aussi de zp = dy)

p=23 dy=0.152074266 d; =0.494514368 dp = 0.958 634596

dol:  zg=a3="---=1u¢3,, =--=0152074266
Tl =4 = -+ = :E3m+1 =...=0.494514368
Ly =5 = = TL3m42 — - — 0.958 634596

(On peut naturellement partir aussi de zg = d; ou de zy = dp).

2.5  Le comportement périodique d partir de t =T

Ce cas n’est pas sans analogie avec celui étudié sous chiffre 2.2. Ainsi nous
nous bornerons a présenter un exemple, soit 7 = 6 avec:

Il vient: 2y = 1.665992 23 = 1.637889
2, = 1.664306 4 = 1.567187
2y = 1.658415 x5 =1.333333

et pour t > 6:
2
1
1127:339:...3:1;27%_'_1:...:*3

2.6 Le comportement périodique a la limite
Les z; peuvent tendre vers un comportement périodique pour ¢ tendant
vers I'infini comme le montre I’exemple suivant:

k=32 p=2 t=2m+r =06
dp = 0.799455490 d; = 0.513 044509
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t ™m i Ty T — dy T — dj

0 0 0 0.6 0.086 955 491
1 0 1 0.768 —0.031 455490

2 1 0 0.570 1632 0.057 118691
3 1 1 0.784 246 801 —0.015208 689

4 2 0 0.541452019 0.028 407 510
5 2 1 0.794 501 536 —0.004 953 954

6 3 0 0.522 460 304 0.009 415795
7 3 1 0.798 385 711 —0.001 069 779

Limite 0 0.513 044 509 0

0.799 455 490

0

Un des points les plus importants de la théorie que nous exposons a été la
découverte d'une suite infinie de valeurs

F, B, B Fy, ...

telle que
si 0 <y < 1 et pour autant qu’il ne s’agisse pas d'un .y conduisant a un

comportement stationnaire ou a un comportement périodique (immédiat
ou a partir de t =T) et si

Fy <k < Fyp

alors ¢ tend vers un comportement périodique de période p = 25.

Nous ne développerons pas ici le calcul des Fy mais dirons simplement que
Fi=3etque lim Fy=F =3.5699456 ...

S§— 00

F est appele "point de Feigenbaum™ du nom du physicien américain qui
a ¢te le premier a le calculer. Ce point montre que 1'on peut rencontrer
des cycles de p valeurs périodiques pour p de plus en plus grand, sans se
heurter a une borne supérieure.

En outre, signalons que I'on donne le nom d'attracieur au p-uple constitué
par les valeurs formant un comportement périodique limite. L'attracteur
peut donc €tre regardé comme une généralisation de la notion de limite.
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2.7  Les comportements non bornés

Jusqu’a maintenant tous les comportements dont il a été question étaient
bornés, ce qui veut dire que z; ne tendait jamais vers +0co0 ou vers —oo
lorsque ¢ devenait infinimemt grand.

Mais des comportements non bornés se présentent aussi. Pour cela on a les
conditions suivantes:

1°) pour k<0 si 1—d>xzy ousi d < g
2°) pour O0<k<1 si d>zy oust 1—d<uxg
3°) pour 1<k si 0>zyp ousi 1 <z

Ces conditions sont suffisantes mais pas nécessaires. En effet:

- si k < —2, des comportements non bornés peuvent aussi apparaitre
pour ‘

l-d<zy<d

Exemple: k=-25 1-d=-04 d=1.4

xy = —0.274456 3 entraine un comportement périodique donc borné
zo = —0.274 entraine tlim r+ = —+o0o donc un comportement
— 00
non borné.
- si 4 < k, des comportements non bornés peuvent aussi apparaitre
pour
O gy 1,
Exemple: k =5
rg = 0.8 entraine un comportement stationnaire donc borné
zo = 0.81 entraine lim z; = —co donc un comportement non borné€.
t—o0

2.8 Le comportement chaotique

Le comportement chaotique peut étre assimilé a un comportement perio-
dique avec une valeur de p infiniment grande. La suite présente dans ce
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cas un comportement borné mais qui n’est ni stationnaire, ni périodique -
p étant fini — que ce soit:

des xg (chiffres 2.1 et 2.4 ci-dessus)
des xp (chiffres 2.2 et 2.5 ci-dessus)
a la limite (chiffres 2.3 et 2.6 ci-dessus)

Prenons k& = 3.58 et une valeur initiale xy comprise entre 0 et 1. Faisons
quelques calculs numériques, soit:

t Tt T Lt Tt

0 0.05 0.5 0.6 0.9

1 0.17005 0.895 0.8592 0.3222

2 0.5052561 0.3364305 0.4330918 0.7818260
3 0.894901 1 0.7992172 0.8789734 0.6106552
4 0.3367102 0.5744793 0.3808374 0.851 1644
5 0.799544 4 0.8751411 0.8441650 0.4535272
6 0.5737778 0.3911835 0.4709506 0.887 2682

On remarque que la suite des x; présente pour toutes les valeurs initiales
une alternance de valeurs hautes et de valeurs basses. Dans les trois
premiers cas, les valeurs basses apparaissent lorsque t est pair et, dans
le dernier cas, pour ¢ impair. En outre les valeurs hautes et basses ne sont
pas tres éloignées de

. dy = 0867297013  d; = 0.412032595

Tout cela suggere que I'on pourrait avoir peut-étre a la limite un comporte-
ment périodique avec p = 2.

Or tel n’est pas le cas! Considérons en effet la limite suivante (écrite pour
les cas ou la valeur basse de x; se présente pour ¢t pair)

) 95 —d
lim 2m-+2 1
Tam—d1 Tom — di

= k2(1 —2dp)(1 = 2dy) .

La limite ci-dessus peut s’établir par la régle de L'Hospital. On prend
alors la dérivée du dénominateur et du numérateur considérés comme des
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fonctions de w5,,. La dérivée du dénominateur est 1. Pour le numérateur,
- o gl S . - TP .

o obtient: x5 = k(1 — 2., )(1 — 2[kxpy, — }m%m]) d’olt ’expression

ci-dessus en faisant z,,,, = d;.

Pour £ = 3.58, la limite ci-dessus vaut —1.6564 ce qui entraine que, lorsque

Zom, est suffisamment voisin de dq, on a:

|z —di| > |22 — dy

donc que 5,1, s’éloigne de d;.
Remarquons que, dans I'exemple du chiffre 2.6 ci-dessus, la méme limite
est de 0.16; d’ott pour x5, suffisamment voisin de d

|Tom+2 — di] < |22, — di]

ce qui entraine la convergence constatée dans cet exemple.

Des lors, on va avoir, pour k£ = 3.58, des séquences de x5,,, qui s’éloignent
de dy. On remarque en outre que la premiere valeur de chaque séquence
est plus proche de d; que la derniére valeur de la séquence précédente.
C’est ce fait qui garantit que 'on reste dans un comportement borné.
L'exemple suivant illustre ce qui vient d’étre dit dans le cas ou k£ = 3.58 et
o — 0.6:

t Tt Ty — d t Tt Ty — dy
lere séquence 3e séquence

2 0.433 0.021 16 0.337 —0.075

4 0.381 —0.031 18 0.574 0.162

6 0.471 0.059 de séquence

8 0.345 —0.067 20 0.390 —0.022

10 0.553 0.141 22 0.452 0.040
2e séquence 24 0.359 —0.053

12 0.365 —0.047 26 0.519 0.107

14 0.506 0.094

Cet exemple est tout a fait typique d’un comportement chaotique. Un méme
genre de variation des x; se présente d’ailleurs pour ¢ impair. Puisque le
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comportement chaotique est 'objet principal de cet exposé, nous allons en
donner un second exemple.

Soit alors k£ = —2; pour xq choisi entre d = 1.5 et 1 —d = —0.5, les x; se
présentent en séquences de valeurs décroissantes, la derniere €tant toujours
négative. En outre, il n’est plus nécessaire, dans ce second exemple, de
distinguer entre valeurs paires et impaires de ¢.

Nous prendrons deux valeurs de zq, soit g = 1.2 et g = 1.21 - ce qui
permet d’illustrer la sensibilité aux conditions initiales qui est tres forte en
comportement chaotique.

Il vient:
pour xp = 1.2 pour xy = 1.21
t Tt T
0 lére séquence 1.2000 lere séquence 1.2100
1 0.4800 0.508 2
2 —0.4992 —0.4999
3 2e séquence 1.496 Ze séquence 1.4995
4 1.4872 1.4978
5 1.4492 1.4914
6 1.302 1 1.4658
7 0.786 6 1.3654
8 —0.3357 0.997 9
9 3e séquence 0.8967 —0.0042
l()’ —0.1852 3e séquence 0.008 4
8} 4e séquence 0.4390 —0.0166
12 —0.4926 de séquence 0.0338
13 Se séquence 1.4704 —0.0653
14 1.3832 Se séquence 0.1392
15 1.060 2 —0.2397
16 0.1276 be séquence (0.594 3

17 —0.2226 —0.4822
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L'étude des exemples précédents, pour étre compléte, devrait montrer
encore qu’il n'existe pas, pour tout p, de p-uple de p valeurs périodiques
de x¢ qui soit un attracteur pour ¢ — oo. Nous ne pouvons cependant pas
développer ce point dans le cadre restreint de cet exposé.

Sur un plan plus général, on peut en revanche remarquer que, pour k
positif mais < F, il n’existe pas de comportement chaotique. En effet, on
a toujours, selon le choix de xq, soit un comportement non borné, soit un
comportement stationnaire ou périodique (des zg, dés ¢ =7 ou a la limite).
Si k est positif, c’est donc seulement pour k& > F' que des comportements
chaotiques apparaissent. Mais cette condition nécessaire n’est pas suffisante.

Pour £ = 3.835 par exemple, on peut vérifier que le 3-uple
dg =0.152074266 di = 0.494514368 dy = 0.958634596

est un attracteur.

3 Trois remarques finales

1. On observe que des regroupements peuvent Etre faits entre les diffe-
rentes catégories de comportements dont nous avons parl€.

Ainsi, le comportement stationnaire peut étre regardé comme un cas
particulier du comportement périodique, celui ot p = 1.

De méme, les comportements traités sous chiffres 2.1 et 2.4 peuvent €tre
regardés comme des cas particuliers des comportements des chiffres 2.2 et
2.5, ceux ou T = 0.

De plus, les comportements des chiffres 2.3 et 2.6 peuvent €tre envisages
comme les cas limites, pour 7' — oo, des comportements traités sous chiffres
2 et 2.5.

Enfin le comportement chaotique n’est que le cas particulier du comporte-
ment périodique pour p — .

2. Notre deuxiéme remarque a trait au niveau de généralité des déve-
loppements présentés.

Nous n’avons en effet considéré qu’'une seule suite récurrente. Mais les
auteurs qui ont abordé ces questions ont montré que les conclusions
obtenues & son sujet peuvent étre étendues a une vaste catégorie de suites
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récurrentes. Ils citent volontiers deux autres suites également trés simples,
soit

Ty — k Sin(.’L't) et Tyl = kx% -1

Par exemple, pour £ = 2.1, la premiere de ces suites a un comportement
stationnaire pour xy = 1.950458 65, valeur qui est également la limite des
xz¢ pour ¢ — oo (Pour la prise du sinus, il faut considérer les x; comme
exprimés en radians).

La seconde suite présente un comportement stationnaire pour k£ = 1.5 et
pour zg = 1.2152504 ou pour zg = —0.548 583 8.

C’est peut-étre le lieu de faire remarquer qu’il existe des suites récurrentes
qui n’adoptent jamais un comportement chaotique. Par exemple

2
Ty + k
Typl = Ezw (k> 0)

a toujours un comportement stationnaire: dés zg si celui-ci vaut +v'k ou
—+/'k ou a la limite pour toute autre valeur de x (sauf 0). On a alors:

lim 24 = +Vk si xg positif  lim 2 = —Vk si zy négatif.

t—00 t—00
3. On peut se demander si, en comportement chaotique, un élément
aléatoire ne s’introduit pas et si le modele ne devient pas une sorte de
machine a fournir des nombres au hasard. En fait il n’en est rien. Chaque
x¢ reste déterminé par son prédécesseur. C’est pourquoi d’ailleurs on parle
de chaos déterministe.
Dr’ailleurs, en cas de comportement périodique avec p tres grand (supérieur
a 500 ou a 1000 par exemple), on est pratiquement aussi en situation
d'imprédictibilité. Dans un tel cas, le modéle mathématique ne délivre plus
une information utile sur le phénomeéne qu’il entend décrire.
Enfin signalons que, dans les exemples présentés, les calculs ont été faits
avec un plus grand nombre de décimales que celles figurant dans les valeurs
transcrites. Si donc on veut refaire les calculs a partir des chiffres cités, de
petites différences peuvent apparaitre sur les derniéres décimales.

Michel Hort
Jordils 13 bis
Yverdon-les-Bains
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Résumé
L'article présente d’une facon qui se veut trés simple le concept de chaos déterministe

apparu dans les mathématiques au cours des années 1970. Chaque notion présentée est
illustrée par un exemple numérique.

Zusammenfassung
Der vorliegende Artikel stellt in einer gewollt einfachen Art das Konzept der Theorie des

deterministischen Chaos vor, deren Entwicklung im Verlauf der siebziger Jahre begann. Alle
vorgestellten Begriffe werden anhand numerischer Beispiele illustriert.

Summary

The paper presents in a simple way the concept of deterministic chaos, that appeared in
mathematics during the seventies. Every notion is illustrated by a numeric example.
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