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Michel Hort, Yverdon-les-Bains

Brève incursion dans le domaine du chaos déterministe

1 Introduction

La notion de chaos déterministe est apparue dans la décennie 1970.

Actuellement, une littérature abondante lui est consacrée. Ce sont surtout
les physiciens et les biologistes qui s'intéressent à ce concept. Dès lors, nous
nous sommes posé les deux questions suivantes:

- qu'est-ce exactement que le chaos déterministe?

peut-il présenter un intérêt pour la science actuarielle?

Les considérations et les exemples présentés ci-après n'ont certes pas
la prétention d'apporter des réponses définitives à ces deux questions.
Plus modestement, ils cherchent à proposer quelques éléments pour une

première appréciation.

Première e/zzesfion: t/zz'est-ce t/zze /e.v c/ztzos déterministe?

A grands traits, on peut dire qu'il y a chaos déterministe lorsqu'un
modèle, simple dans certaines conditions, devient, dans d'autres conditions,
extrêmement compliqué et, par là même, perd de sa capacité descriptive.
L'évolution des populations offre des exemples de cette situation. Par exem-

pie, dans son ouvrage P/zéorie mtzt/zémtitie/zze des popzz/tztions, Alain Hillion
commente comme il suit l'évolution d'une colonie d'insectes (p. 37) Lt? tai//e
t/e /tz popzz/taion pezzt tendre vers zz/ze /imite, être «ne /onction /jérzod/c/ize t/zz

temps ozz «voir zzn co/tz/rorte/zzerzt généra/ si dz/t?ci/e « caractériser t/zz'on /e

e/zztz/z/ie z7e „c/taotzr/zze".
Sur le plan de la méthodologie, le chaos déterministe a donné lieu a

d'amples analyses. Il révèle en effet que la modélisation mathématique des

phénomènes peut rencontrer des difficultés imprévues.
Cette situation autorise Olivier Zurchuat à écrire dans le N° 93 de /'/lzzditoi-
/"e (un périodique interne de l'Université de Lausanne) Lez découverte dtzns

/es cznnées septante t/zz c/kjos t/éterzzz/nzste tzc/zevtz t/e re/tztzvzser /es prétentions
t/zz t/éternzizzis/ne /tzp/tzeien; t/es p/zéno/nènes mot/é/isés ptzr t/es ee/zzationx
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/o«/e,v simpkv peuven/ r/om/er //'eu à <7e.v comportements très comp/exes,
/mprév/s/Wes.
Les ouvrages cités dans la bibliographie illustrent divers aspects du chaos

déterministe.
Pour concrétiser notre propos, nous consacrerons le chapitre suivant à la
suite récurrente

•G+l

qui est, selon les auteurs qui ont abordé la question, la plus simple qui
puisse offrir des exemples de comportements chaotiques.

Seconde gnesf/on." m/érê/ pour /a sc/ence flc/«flrze//e?

Déjà dans les années 1970, les premiers auteurs qui avaient traité du
chaos déterministe avaient fait observer que ce concept pourrait être
utilisé avec profit dans la modélisation de l'instabilité et des fluctuations
des phénomènes économiques et démographiques. Or ces domaines sont

proches, à un titre ou à un autre, de la science actuarielle. De fait, le

chaos déterministe apparaît effectivement aujourd'hui dans ces domaines.

Lorsque nous avons préparé ce papier, on nous a signalé que la suite
récurrente étudiée ci-après correspondait à un cas particulier du modèle
de Day d'accumulation du capital et à un cas particulier du modèle de

Pohoja de la dynamique du taux d'emploi (voir G. Abraham-Frois et E.

Berreri /nsta/u/ùé, cyc/es, c/zoos Economica 1995).

2 La suite récurrente i i fccct — Aa;^

Remarquons tout d'abord que l'étude de cette suite récurrente est liée à

celle de la fonction:

/ : a: —» /(;r) A.c - fc/r

Nous ferons donc pour commencer quelques remarques au sujet de cette
fonction.

1. /(.!') est définie pour tout rr.
2. Sa représentation graphique est une parabole qui tourne sa concavité

vers le bas si A- > 0 et vers le haut si A < 0.
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3. Pour fc 0, la fonction est constante et égale à 0.

4. La fonction présente un extremum pour x ^; cet extremum est un

maximum si A > 0 et un minimum si A < 0.

5. La représentation graphique est symétrique par rapport à la droite
verticale d'équation x Pour tout A, la parabole passe par les

points de coordonnées (0,0) et (1.0).

/l//tzre Je /a representation grap/ztgne

Ceci précisé, revenons à la suite récurrente proprement dite.

Chaque terme xt (f G N) de la suite est un nombre réel qui se déduit du

précédent, sauf xq qui est une donnée de base, appelée condition initiale.

Selon la valeur du paramètre A' et de la condition initiale xq, la suite

peut adopter huit comportements dont le dernier est justement le chaos

déterministe. Nous commentons ci-après ces huit comportements, ce qui

permettra de voir ce que le comportement chaotique a de spécifique.

2.7 Le comportement .stflfzomza/re

En comportement stationnaire, tous les termes xt de la suite sont égaux.

Ceci se produit, pour tout A: autre que 0 et 1, si xq 0 ou si xq ci 1 —
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Pour A 0 et pour fc 1, seule la valeur initiale xg 0 entre en ligne de

compte et tous les termes de la suite sont nuls.

Ces conditions s'établissent facilement en résolvant l'équation

xt+l -ri fcxt — A;x?

ßcemp/e: A: 1.6 d 0.375

Pour xq 0 : xj X2 • • • xt • • • 0

Pour xq 0.375 : X| x? • • xt • • • 0.375

2.2 Le comportement sfafzorma/re à partir de f T

Considérons dans l'équation

•<'t+l fext - fcxf

x^_|_i comme donné et xt comme l'inconnue, il vient deux racines x£ et x"
soit:

X( 2
+ 2"^ ~ 2

~~ 2^ L>~ 1 - — xj_)_i x£ + x" 1

Si < 0, il n'existe pas, dans l'ensemble des nombres réels, de valeur xt
dont le successeur soit le X344 donné.

Si L>^ 0, on a: x£ x" |

En outre, si x-f ^ ri, les deux racines sont d 1 - ^ et 1 — rf —.
/C rC

Ce qui précède permet de construire des modèles comme celui qui suit:

A: 6.4 d 0.843 75 T 4 X4 d

.X3. :/'2 x 1 et x'o peuvent se calculer selon ce qui vient d'être dit.
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On obtient ainsi huit suites qui adoptent le même comportement station-
naire à partir de f T 4. Soit:

X'o X| X2 au a-, >4

0.850778090

0.149221910

0.969 792 221

0.030207 779

0.807 186 859

0.192813141

0.999385 856

0.000614 144

2.3 Le comportement staf/ormutre à /a /t'mfe

Les valeurs 0 et d peuvent être la limite de la suite des ap lorsque f tend
vers l'infini. Pour qu'il en soit ainsi, les conditions suivantes doivent être
remplies:

Conditions Limite Remarque

— 1 < /c < 0 1 — d < xo < 0 A

0 < fc < 1 (i < xq < 1 — r/ 0 B

1 < fc < 2 0 < xq <1 (i B C

2 < fc < 3 0<xq<1 d AC

0.812510281

0.974 958 879

0.187489 719

0.15625 *• 0.843 75

0.996 071895

0.025 041 121

0.003 928105
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A: le passage à la limite se fait par encadrement

B: le passage à la limite se fait par approche
C: sauf si xp conduit au comportement stationnaire.

£xemp/e;
fc -0.8 0.25 1.6 2.5

d 2.25 -3 0.375 0.6

xo 2 3 0.2 0.9

Xl 1.6 -1.5 0.256 0.225

,T2 0.768 -0.937 5 0.304 742 0.435 937

£3 -0.142 540 -0.454102 0.338 999 0.614740

X4 0.130287 -0.165 077 0.358 526 0.592 086

Limite 0 0 0.375 0.6

2.4 Le comportement périodique

Il peut se faire que xt présente un comportement périodique de période p,
c'est-à-dire que

xt dr pour tout f mp + r avec 0 < r < p

Pour p 2 par exemple, les deux valeurs do et s'obtiennent en résolvant
l'équation du 4® degré

,2i2
xj_|_2 — fcxj] — fc[fcxt — fcx^]

0 et d sont, de façon évidente, deux racines de cette équation. Les deux
autres sont dp et d]. On trouve

^0=4 1
1

L> «=! L» D 1

fc jfc2

On note que si — 1 < fc < 3, do et d^ ne sont pas des nombres réels. De plus,
si fc 3, on a dp d| d ce qui conduit au comportement stationnaire.
Des considérations semblables peuvent être faites pour p > 2.
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Lxemp/e: /c 3.835

P 2: do 0.892 344 810 di 0.368411 382

d'où: IQ 29 24 • • 22m, 0.892344810

xi 23 25 • • • 22,„+I • 0.368411382
(On peut naturellement partir aussi de 20 dj)

p 3: do 0.152074266 di 0.494514368 d2 0.958634596

d'où: 2q 23 • • • 2'3„j • • 0.152074266

2 ] 24 • • 23^4. J 0.494514368

22 25 • • 23„J_|_2 • • 0.958 634596

(On peut naturellement partir aussi de 29 di ou de 20 d2).

2.5 Le comportement perzod/gne à parf/r de t T

Ce cas n'est pas sans analogie avec celui étudié sous chiffre 2.2. Ainsi nous
nous bornerons à présenter un exemple, soit L 6 avec:

2 1

fc=-1.5 p 2 ^0=3 ^1 -3

Il vient: 2q 1.665992 23 1.637 889

21 1.664306 24 1.567187

22 1.658415 25 1.333 333

et pour t > 6:

^6 ^8 ' " ' ^2m * * "

^

1

27 2g — • • • — 22m+l — ' ' ' ~ "3

2.6 Le comportement pérzod/gne à /a //mz'te

Les 2t peuvent tendre vers un comportement périodique pour /, tendant

vers l'infini comme le montre l'exemple suivant:

fc 3.2 p 2 f 2m + r 29 0.6

do 0.799455 490 dj 0.513 044509
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t m F Xt x't - do Xf - d[

0 0 0 0.6 0.086 955 491

1 0 1 0.768 -0.031 455 490

2 1 0 0.570 163 2 0.057 118 691

3 1 1 0.784 246 801 -0.015 208 689

4 2 0 0.541452 019 0.028 407 510

5 2 1 0.794 501536 -0.004 953 954

6 3 0 0.522 460304 0.009 415 795

7 3 1 0.798 385 711 -0.001 069 779

Limite 0 0.513 044 509 0

1 0.799 455 490 0

Un des points les plus importants de la théorie que nous exposons a été la
découverte d'une suite infinie de valeurs

Fi, Fj. F3. F4,

telle que
si 0 < .!(] < 1 et pour autant qu'il ne s'agisse pas d'un xq conduisant à un

comportement stationnaire ou à un comportement périodique (immédiat
ou à partir de f — T) et si

F, < A- < F,+i

alors .17 tend vers un comportement périodique de période p 2®.

Nous ne développerons pas ici le calcul des F mais dirons simplement que
F[ 3 et que lim Fs F 3.569 945 6

S—»OO

F est appelé "point de Feigenbaum" du nom du physicien américain qui
a été le premier à le calculer. Ce point montre que l'on peut rencontrer
des cycles de p valeurs périodiques pour p de plus en plus grand, sans se

heurter à une borne supérieure.
En outre, signalons que l'on donne le nom d'uttracteur au p-uple constitué
par les valeurs formant un comportement périodique limite. L'attracteur
peut donc être regardé comme une généralisation de la notion de limite.
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2.7 Les comportement non bornés

Jusqu'à maintenant tous les comportements dont il a été question étaient
bornés, ce qui veut dire que xp ne tendait jamais vers +00 ou vers -00
lorsque /. devenait infinimemt grand.
Mais des comportements non bornés se présentent aussi. Pour cela on a les

conditions suivantes:

1°) pour fc<0 si 1 - ri > ;cq ou si d < xq
2°) pour 0 < fc < 1 si d > xq ou si 1 - d < xq
3°) pour 1 < fc si 0 > x'o ou si 1 < xq

Ces conditions sont suffisantes mais pas nécessaires. En effet:

si fc < -2, des comportements non bornés peuvent aussi apparaître

pour

1 — d < Xq < d

Lxemp/e: fc -2.5 1 - d -0.4 d 1.4

xq -0.274456 3 entraîne un comportement périodique donc borné

xq -0.274 entraîne lim xt +00 donc un comportement
t—>00

non borné.
si 4 < des comportements non bornés peuvent aussi apparaître

pour

0 < Xq < 1

Lxemp/e: fc 5

xq - 0.8 entraîne un comportement stationnaire donc borné

xq 0.81 entraîne lim Xf —00 donc un comportement non borné.
£—» 00

2.S Le comportement cbao/L/ue

Le comportement chaotique peut être assimilé à un comportement pério-
dique avec une valeur de p infiniment grande. La suite présente dans ce
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cas un comportement borné mais qui n'est ni stationnaire, ni périodique -
p étant fini - que ce soit:

dès 2:q (chiffres 2.1 et 2.4 ci-dessus)

dès ip (chiffres 2.2 et 2.5 ci-dessus)

à la limite (chiffres 2.3 et 2.6 ci-dessus)

Prenons A: 3.58 et une valeur initiale .cq comprise entre 0 et 1. Faisons

quelques calculs numériques, soit:

£

0 0.05 0.5 0.6 0.9

1 0.170 05 0.895 0.8592 0.3222

2 0.505 256 1 0.3364305 0.433 091 8 0.7818260

3 0.894901 1 0.7992172 0.878973 4 0.610655 2

4 0.3367102 0.5744793 0.380837 4 0.851 164 4

5 0.799544 4 0.875 1411 0.844 165 0 0.453 527 2

6 0.573777 8 0.391 1835 0.470 9506 0.887 268 2

On remarque que la suite des ,rt présente pour toutes les valeurs initiales
une alternance de valeurs hautes et de valeurs basses. Dans les trois
premiers cas, les valeurs basses apparaissent lorsque f est pair et, dans

le dernier cas, pour f impair. En outre les valeurs hautes et basses ne sont

pas très éloignées de

do 0.867 297 013 0.412 032595

Tout cela suggère que l'on pourrait avoir peut-être à la limite un comporte-
ment périodique avec p 2.

Or tel n'est pas le cas! Considérons en effet la limite suivante (écrite pour
les cas où la valeur basse de ap se présente pour f pair)

lim "Oto+2 - <*i

^ ^2çi _ 2do)(l - 2d|).
2m ^2m ^1

La limite ci-dessus peut s'établir par la règle de L'Hospital. On prend
alors la dérivée du dénominateur et du numérateur considérés comme des
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fonctions de a'2,„.. La dérivée du dénominateur est 1. Pour le numérateur,
on obtient: ^2m.+2 ~ ^(1 ~~ 2-''2m)( l — 2[A".r2„,, — Axc^J) d'où l'expression
ci-dessus en faisant .r2„, dj.
Pour A: 3.58, la limite ci-dessus vaut -1.6564 ce qui entraîne que, lorsque
2:2m est suffisamment voisin de dj, on a:

l*^2m+2 ~ ^11 ^ |^2m ^ll

donc que £2m+2 s'éloigne de dj.
Remarquons que, dans l'exemple du chiffre 2.6 ci-dessus, la même limite
est de 0.16; d'où pour X2m suffisamment voisin de dj

1*^2771+2 ~~ ^11 ^ l^2m ^11

ce qui entraîne la convergence constatée dans cet exemple.
Dès lors, on va avoir, pour A- 3.58, des séquences de X2m fiui s'éloignent
de dj. On remarque en outre que la première valeur de chaque séquence
est plus proche de dj que la dernière valeur de la séquence précédente.
C'est ce fait qui garantit que l'on reste dans un comportement borné.

L'exemple suivant illustre ce qui vient d'être dit dans le cas où A; 3.58 et

xq 0.6:

t x-t — cii t xt - fil

1ère séquence 3e séquence

2 0.433 0.021 16 0.337 -0.075

4 0.381 -0.031 18 0.574 0.162

6 0.471 0.059 4e séquence

S 0.345 -0.067 20 0.390 -0.022

10 0.553 0.141 22 0.452 0.040

2e séquence 24 0.359 -0.053

12 0.365 -0.047 26 0.519 0.107

14 0.506 0.094

Cet exemple est tout à fait typique d'un comportement chaotique. Un même

genre de variation des ay se présente d'ailleurs pour A impair. Puisque le
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comportement chaotique est l'objet principal de cet exposé, nous allons en
donner un second exemple.
Soit alors A; —2; pour .tq choisi entre d 1.5 et 1 — d —0.5, les .-et se

présentent en séquences de valeurs décroissantes, la dernière étant toujours
négative. En outre, il n'est plus nécessaire, dans ce second exemple, de

distinguer entre valeurs paires et impaires de A

Nous prendrons deux valeurs de .tq, soit .iq 1.2 et .cq 1-21 - ce qui
permet d'illustrer la sensibilité aux conditions initiales qui est très forte en

comportement chaotique.
Il vient:

pour ,t„ =1.2 pour X() 1.21

f

0 1ère séquence 1.200 0 1ère séquence 1.2100

1 0.480 0 0.508 2

2 -0.499 2 -0.499 9

3 2e séquence 1.496 2e séquence 1.499 5

4 1.487 2 1.497 8

5 1.449 2 1.4914

6 1.302 1 1.465 8

7 0.786 6 1.365 4

8 -0.335 7 0.997 9

9 3c séquence 0.896 7 -0.004 2

10 -0.185 2 3e séquence 0.008 4

11 4e séquence 0.4390 -0.016 6

12 -0.492 6 4e séquence 0.033 8

13 5e séquence 1.470 4 -0.065 3

14 1.383 2 5c séquence 0.139 2

15 1.060 2 -0.239 7

16 0.127 6 6e séquence 0.594 3

17 -0.222 6 -0.482 2
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L'étude des exemples précédents, pour être complète, devrait montrer
encore qu'il n'existe pas, pour tout p, de p-uple de p valeurs périodiques
de xt qui soit un attracteur pour A —> oo. Nous ne pouvons cependant pas
développer ce point dans le cadre restreint de cet exposé.
Sur un plan plus général, on peut en revanche remarquer que, pour fc

positif mais < F, il n'existe pas de comportement chaotique. En effet, on
a toujours, selon le choix de a*o, soit un comportement non borné, soit un
comportement stationnaire ou périodique (dès xq, dès f 2' ou à la limite).
Si A: est positif, c'est donc seulement pour fc > F que des comportements
chaotiques apparaissent. Mais cette condition nécessaire n'est pas suffisante.

Pour A; 3.835 par exemple, on peut vérifier que le 3-uple

do 0.152074266 rf, 0.494514368 F 0.958634596

est un attracteur.

3 Trois remarques finales

1. On observe que des regroupements peuvent être faits entre les diffé-
rentes catégories de comportements dont nous avons parlé.

Ainsi, le comportement stationnaire peut être regardé comme un cas

particulier du comportement périodique, celui où p 1.

De même, les comportements traités sous chiffres 2.1 et 2.4 peuvent être

regardés comme des cas particuliers des comportements des chiffres 2.2 et
2.5, ceux où F 0.

De plus, les comportements des chiffres 2.3 et 2.6 peuvent être envisagés

comme les cas limites, pour T —> oo, des comportements traités sous chiffres
2.2 et 2.5.

Enfin le comportement chaotique n'est que le cas particulier du comporte-
ment périodique pour p —> oo.

2. Notre deuxième remarque a trait au niveau de généralité des déve-

loppements présentés.
Nous n'avons en effet considéré qu'une seule suite récurrente. Mais les

auteurs qui ont abordé ces questions ont montré que les conclusions

obtenues à son sujet peuvent être étendues à une vaste catégorie de suites
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récurrentes. Ils citent volontiers deux autres suites également très simples,
soit

^t+i fcsin(art) et forf — I

Par exemple, pour fc 2.1, la première de ces suites a un comportement
stationnaire pour xq 1.950458 65, valeur qui est également la limite des

xt pour £ —» oo (Pour la prise du sinus, il faut considérer les xt comme
exprimés en radians).
La seconde suite présente un comportement stationnaire pour è — 1.5 et

pour xq 1.215 2504 ou pour xq —0.548583 8.

C'est peut-être le lieu de faire remarquer qu'il existe des suites récurrentes

qui n'adoptent jamais un comportement chaotique. Par exemple

*,+.-4T* «>«)

a toujours un comportement stationnaire: dès xo si celui-ci vaut +\/Â; ou
— x/Â; ou à la limite pour toute autre valeur de xq (sauf 0). On a alors:

lim xt +\/fc si xq positif lim xt -Vfc si xq négatif.
t—»OO i—>oo

3. On peut se demander si, en comportement chaotique, un élément
aléatoire ne s'introduit pas et si le modèle ne devient pas une sorte de

machine à fournir des nombres au hasard. En fait il n'en est rien. Chaque

xt reste déterminé par son prédécesseur. C'est pourquoi d'ailleurs on parle
de chaos rféter/m'/zwte.

D'ailleurs, en cas de comportement périodique avec p très grand (supérieur
à 500 ou à 1000 par exemple), on est pratiquement aussi en situation
d'imprédictibilité. Dans un tel cas, le modèle mathématique ne délivre plus
une information utile sur le phénomène qu'il entend décrire.
Enfin signalons que, dans les exemples présentés, les calculs ont été faits
avec un plus grand nombre de décimales que celles figurant dans les valeurs
transcrites. Si donc on veut refaire les calculs à partir des chiffres cités, de

petites différences peuvent apparaître sur les dernières décimales.

Michel Hort
Jordils 13 bis

Yverdon-les-Bains
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Résumé

L'article présente d'une façon qui se veut très simple le concept de chaos déterministe

apparu dans les mathématiques au cours des années 1970. Chaque notion présentée est

illustrée par un exemple numérique.

Zusammenfassung

Der vorliegende Artikel stellt in einer gewollt einfachen Art das Konzept der Theorie des

deterministischen Chaos vor, deren Entwicklung im Verlauf der siebziger Jahre begann. Alle
vorgestellten Begriffe werden anhand numerischer Beispiele illustriert.

Summary

The paper presents in a simple way the concept of deterministic chaos, that appeared in
mathematics during the seventies. Every notion is illustrated by a numeric example.
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