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MARK H.A. Davis and MicHEL H. VELLEKOOP, London

Permanent Health Insurance:
A Case Study in Piecewise-Deterministic Markov Modelling

1 Introduction

As insurance contracts become more complicated there is increasing need
for a systematic approach to the associated computations, and such an
approach is provided by modelling the cash flows associated with the
contract as Markov processes. Of course, the idea of “markovianizing”
stochastic processes by the inclusion of “supplementary variables” goes back
a long way, at least to Cox [1]. This approach does not, however, seem to
have been much used by actuaries for two reasons: (a) the difficulty of
estimating the required transition rates and (b) the difficulty of carrying
out the associated computations even when the rates are given. The former
seems intrinsic: any attempt at more accurate modelling will face this
problem. This paper is a contribution to overcoming (b).

There is some evidence — see for example the interesting recent paper by
Jones [4] — that markovian methods are coming back into favour. There
are two ways in which one can use them: one can assume a very simple
process structure with a view to obtaining closed-form or easily expressed
results, or one can go for a more complex (and realistic) structure and then
resort to methods of numerical analysis to do the computations. We take the
latter approach here. A convenient generalization of Cox’s supplementary
variables idea is the piecewise-deterministic Markov processes, introduced
by the first author [2, 3], and the purpose of this paper is to examine
a typical insurance application, namely permanent health insurance (PHI)
[6], from this point of view in order to demonstrate that it leads to efficient
and practical computational methods. Many of the ingredients are already
contained in the book [3]: the Markov model is described in § 33 there, and a
rather crude algorithm, based on the “general recursive method” introduced
in §32.2, is described for computing the expected payout. However, this
algorithm is inefficient and there is no discussion of computation of the
variance or the distribution function. In this paper we cover the latter points
and introduce interpolation and extrapolation steps which give orders-of-
magnitude improvement in efficiency. This does not matter much for the
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simple computation of expected values but, as will be seen, the variance
and - particularly — the distribution function present tougher problems and
mandate a more careful examination of the solution technique. Finally, a
key point in these computations is their sensitivity to parameter values; this
point is not discussed at all in [3] but is covered here. Of course, this is
relevant to the problem of parameter estimation in that we obtain some
idea of the level of accuracy required.

PHI is a contract whereby the insured person receives payments at a fixed
rate whenever he or she is sick (i.e. unavailable for work) for a time longer
than a certain elimination period. Thus the payment made as a result of a
sickness of duration d is K max(d — p,0) where K is the contracted payout
rate and p the length of the elimination period. Our objective 1s to compute
the mean, variance and distribution of the total payout over the lifetime
of the contract. The basic actuarial model is very simple and is shown in
figure 1.

p(t)
healthy sick
a(t.y)
p(t) n(t.y)
dead

Figure 1

Transition from healthy to sick or dead take place with age-dependent
forces o(t), u(t) (here, ¢t will denote the time since the commencement of
insurance) while, when sick, the forces of transition to recovery and death
are o(t,y),n(t,y) which could depend on y, the duration of the current
sickness period, as well as on the age t. This paper is not concerned with
the estimation problem, and we assume that the functions u,w,p,0 are
known. As will be seen, models incorporating a more complicated transition
structure could easily be constructed.

Section 2 below gives a brief account of the general piecewise-deterministic
Markov process (PDP) and in particular describes the recursive method for
solving the associated backward equation, on which all our computations
are based. We return to PHI in Section 3, where the problem is formulated
in terms of a PDP model.
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Computational methods for calculating the mean, variance, parameter
sensitivity and distribution function are given in sections 4 to 7 respectively.
Section 8 contains a summary description of the algorithms together with
numerical results and conclusions.

2 Piecewise-Deterministic Markov Processes

A PDP (z;) is a random motion taking place in a state space F consisting of
possibly disconnected components in some Euclidian space R%. The process
follows the integral curves of a vector field between random jumps, which
may occur in the interior of £ or on the boundary JF. The deterministic
motion and jump mechanism are specified by three “local characteristics™: a
vector field g : E — R®, a jump rate ) : E — R, corresponding to a force of
fransition in actuarial terminology, and a transition measure () : E — P(E),
where P(F) denotes the set of probability measures on £. The vector field
g determines a set of integral curves ¢ on E, i.e. ¢(t,x) is the solution of
the ordinary differential equation (ODE)

Cota) = g(6(t.2),  o(0.a)=z ek @1

We can alternatively write this equation in coordinate-free form as

— f(¢(t,2)) = Xf(p(t,2)),  $(0,@) =gz, feC\(E) (2.2)

where X is the first-order differential operator

d

acting on arbitrary functions f € C!(FE). (2.1) and (2.2) are equivalent
ways of writing the differential equation, and the vector field operator X is
needed below.

Define I' = {z € O0F : z = ¢(t,z) for some t > 0, z € E} and t«(z) =
inf{t : ¢(¢t,z) € I'}. Thus t(z) is the first time the integral curve o¢(t,x)
hits the boundary (or +oo if it never does) and I" is the set of boundary
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points z that are hit by ¢ starting at some « in the interior of E. We call I’
the active boundary of E.

The PDP (z:) follows the integral curves ¢ between random jumps, which
occur at random times 0 < 77 < 75 .... Thus starting at zp = = € E,
z¢ = ¢(t,z) for t < T7. The jump time 7} is a random variable whose
distribution function is

P,) = PolTy £0) =1~ Tcqugo ex0 ([ N02)ds),
0

implying that force of transition is A(zs) on the interval [0,f.(z)), with a
mandatory jump at ¢.(x) if no jump has occurred before then. The trajectory
is left-continuous at T3, so x, — = ¢(17,x). The transition measure () gives

the distribution of z7, given that a jump occurs at T from a position

¢(T17$):
Prlzp, € AlTh] = Q(A;6(T1, 7)) -

The process (x¢) jumps at time 77 to a position selected from this dis-
tribution, and the process then restarts from z7, according to the same
recipe: thus xy = ¢(t — T1,27,) for t € [T7,T»), etc. It is assumed that
limy, o0 T = 00 a.s., a property that is easily checked in most applications
such as the one in this paper.

The main general result of PDP theory is that the process just described is
a homogeneous strong Markov process whose differential generator is the
operator 2, acting on functions f: F — R, defined by

Af(2) = 2f(2) + M) f () - F()Q(dy; ). (23)

E

Sufficient conditions under which f € D(2) (the domain of the operator 2)
are that

the function ¢ — f(¢(¢,x)) is continuously differentiable, (2.4)
Ey Y |f(@rat) = fapae-)l <oo, t>0, z€E (2.5)

f(@) = / fW)Qdy;z), zel. (2.6)
E



181

Conditions (2.4) and (2.5) are technical; the main condition is the boundary

condition (2.6). Elements z of I" are not in the state space E and the value
of f(z) for z € I' is defined by

f(z) = lim f(¢(—t,2)) .

£10

Thus f(z) for z € I' is the limit of f(z) as =z € E approaches z along
the unique integral curve through 2. The function f is in the domain D ()
only if this limit exists and (2.6) is satisfied. The main significance of the
generator is that under conditions (2.4)—(2.6) the Dynkin formula

t
Ealf(z1)] = f(z) +Eq [ Af (i) ds @.7)
0

holds. This is the key result from which the equations described below
satisfied by expectations of various functionals are easily derived.
Let us consider the functional

%

Vo) =Eo{ [ tadt+ ¥ #(or, ), _en). 28)

0 i

where { : E — R, and ¢ : ' — R4 are bounded non-negative functions.
Theorem (32.10) of [3] states that if V' is finite and

Ex[V(z)] =0, t—o00 (2.9)
then V' (z) is the unique solution of the equation

AV (x) + £(x) =0, z€FE (2.10)
together with the boundary condition

V() =QV(z)+&(z), =zel, (2.11)
where QV (z) := [ V(y)Q(dy; z). Equation (2.10) is an integro-differential

equation involving the non-local term QV. In the application of this paper,
and many others, condition (2.9) holds because of the existence of a
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cemetary state; this is an isolated point A € F such that g(A) = A(4) =0,
so that z; = A for all ¢t > 7, where 7 is the killing time T = inf{t : z; = A}.
In our application 7 is bounded by a constant and ¢(A) = 0, so (2.9) is
certainly satisfied.

Equations (2.10), (2.11) can be solved by the following iterative method
([3], §32.2). Let ¢ be an arbitrary bounded measurable function and define

Ty
Gve) = Bo{ [ tar)dt+ gy cp. i Plog )+ 0Gem) | 212

Iterates G™ are defined by G™(z) = G(G™ 1) (x), n = 2,3, ... and it is
easily shown that

o) de+ Y T, _eryPlog,—) + o) |

i=1 '

Gp() = E{

O\;ﬂ

and hence that

_ > n
V(z) = nli)mooG P(x) (2.13)
for any bounded measurable function ¥, where V' is defined by (2.8), as long

as ExY(xzr, ) — 0. The function v := G satisfies the following modified
version of (2.10), (2.11):

Xv(z) + AM(z)Q¢(z) — Mz)v(z) + £€(z) =0, x€FE (2.14)
v(z) = QyY(x) + P(x) zel. (2.15)

The point about this is that (2.14) contains no non-local terms in the
unknown variable v and is in fact a first-order partial differential equation
(PDE). We can thus compute V' from (2.13) in which each iteration step
involves only the solution of a PDE, not an integro-differential equation.
Two extensions of the above results will be needed. Firstly, we will need to
compute expectations of the form

Ulz) = ]Em{ ib(wﬂ,mﬂ_)} , (2.16)
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where b is some non-negative function. It is shown in [3, (31.16)] that
U(z) = V(x) where V is defined as in (2.8) with

Hm) == Xlm) fb(y,:v)@(dy,:z:), x€eF (2.17)
E
and
Dy = /b(y,x)@(dy,:c), zel. (2.18)
E

Secondly, we may want to compute net present values, i.e. discounted
expectations of the form

oo

Vifz) = }Ex{ /e_"tﬂ(:rt) dt + Ze_”Ti@(a:TéH)I(m

0

Ty

en | (219

for n > 0. As discussed in [3, (31.6)] this is equivalent to “killing” the
x¢ process at rate n. All calculations are exactly as above, except that the
generator 2 of the process is replaced by A" f :=Af —nf.

3. A PDP model for PHI

The transitions in the PHI model are those shown in figure 1, but we need to
record whether the duration of the current sickness period has exceeded the
elimination period p or not, since payout only takes place when it has. The
state space will therefore have four components F,,v = 1,2,3 4, indexed
by the integer variable v:

v =1: healthy
v=2: sick; duration of current sickness less than p

v =3: sick, duration of current sickness greater than p

v=4: dead.

This gives the state space shown in figure 2, which also shows a possible
trajectory of the process. Ey is the single-point set {A}.
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The horizontal axis is time ¢ since the inception of the policy (whose
duration is T'). In E, the vertical axis variable y,y € [0, p|, is the duration
of the current sickness period, while the vertical variable, also denoted v, in
E5 1s the excess duration of the current sickness period over the elimination
period. In the sample trajectory shown, the insured person starts off healthy
at time 0, and falls sick at time ¢;. At time ¢, = ¢; + p the sickness period
reaches the elimination period and the trajectory therefore jumps into Ex,
where ¢ and y = ((duration of sickness) —p) continue to increase at unit
rate. At time t3 the insured person recovers, but unfortunately dies at time
t4. For this trajectory the insurance company’s payout would be (t3 — t;)
times the contracted payment rate (ignoring discounting; NPV calculations
can also be included, as described below). A moment’s thought shows that
the 2-dimensional state space components F,, F3 contain just those (¢,y)
pairs that can be reached by trajectories starting in the healthy state at
t =0, and that the policy is valueless at all points in the shaded regions of
Ey and E; since, once these regions are entered, no further claims could
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possibly be made. It i1s convenient to eliminate the shaded regions from
the state space, and this can be done simply by regarding the policy as
terminating at time 7' — p in Fj; then the shaded region in FE5 will never
be entered. Henceforth, F; and F, will denote these “reduced” state space
components.

The state of the process will be denoted by z = (v,() where ( = ¢t when
v=1,¢ = (t,y) when v =2 or 3 and { = A, the cemetary state, when
v =4. When v = 1 the jump rate of the process is A(1,t) = o(t) + (t) and
a jump from (1,¢) goes to (2,(t,0)) with probability o(t)/(o(t) + p(t)) and
to (4, A) with probability p(t)/(o(t) + p(t)), so that in the notation of the
previous section the transition measure is

o(t) p(t)

Q(dz'; (1,1)) = (t)5(2,(t,0))(d50’) + m5(4,4)(d$’)

where §, denotes the Dirac measure (unit mass) at . We can similarly
define @ in the other state space components. Writing f(z) = f.((),
r = (1,() for a function f : F — R, and assuming as is conventional
that f(4, A) = 0 we then obtain from (2.3) the following expression for the
generator of the process:

Afi(6) = 5 1(0) + o(t) falt,0) — (ot) + (®) 11 (2 3.1)
Uha(t9) = 5 a(t0) + - Folt9) + ot )0
— (ot y) + 7(t,9)) f2(t,y) (3:2)
Ws(ty) = 5 F3(80) + 5 o(t9) + olty + DA
~ (ot +p) + 7ty + D)D) 33)

As regards boundary conditions, it is easiest to think of the process as
being killed at time 7 — p in Fy and at time T in E3 should it not have
been killed earlier, i.e. transferring from (1,7 —p) or (3, (T, y)) immediately
to (4, A) and staying there thereafter. The killing time 7 is then given by
T = inf{t : 2y = A}, as in section 2 above. (In this application, “killing”
and the “cemetary state” have a gruesomely literal interpretation.) The
active boundary I" consists of the sets {(1,7 —p)}, {(2,t,p),t € [p,T]} and
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{(3,T,y):y € (0,7 — p]} and the PDP boundary conditions are
H(T —p) =0, (3.4)
] = :

h(tp) = f3(0), telpT],
f3(T>y)$Oa yE[O,T—p].

There is a small notational problem in this application: in the general theory
of section 2 the process begins in some arbitrary state at time 0 and x¢
denotes its state ¢ time units later. Here, however, “real time” ¢ is also a
state space component and it is more convenient to denote by z; the state
of the process at real time t and to let 7 be the real killing time. Thus we

write
00 T T
/Efcs dS—Em/£$5 ds—IEg;fl? (3.7)
t t t

with x = (v,{) and ( =t if v =1, { = (t,y) if v = 2,3, interchangeably for
the expectation of an integral functional evaluated over the residual lifetime
of the policy starting in state x, bearing in mind as usual that £(A) = 0. We
may also be interested in the NPV with discount rate 7,

T
V' (z) = Ey /e_n(s_t)!f(ms)ds.
t
As discussed at the end of §2, this 1s computed in exactly the same way as
V' given by (3.7), except that the generator 2 is replaced by 2l —r7. Referring
to (3.1)-(3.3) we see that this is the same thing as replacing the forces of
mortality u, 7 by p+n, ™+ n respectively. This occasions no change at all

in the computational method, so we shall, just for notational convenience,
take 7 = 0 throughout the rest of the paper.

4 Computation of the mean payout

Payout takes place at rate 1 per unit time per unit assured, so our objective
is to compute V(z) =V, (¢), z = (v, () given by (3.7) with

Eu(C):{l’ v=3

0 otherwise
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Then in particular V;(0) is the total expected payout over the lifetime of the
policy when the insured person is healthy at the commencement of the pol-
icy. We know from the discussion in section 2 that V' (z) = limy,—, 00 G™9(x),
where v(z) = Gy(x) satisfies (2.14), (2.15) with & = 0. Using the ex-
pressions (3.1)-(3.6) for the generator and boundary conditions, equations
(2.13), (2.14) become

{ Loy (t) + ova(t,0) — (0 + vy (t) = 0 (4.1)

n(T —p)=0

{ Frva(ty) + ggua(t,y) + o1 () — (0 + ma(t,y) =0 42)
v (t,p) =¥3(¢,0)  telp,T]

{ Sus(t,y) + (%Us(t,y) +oy(t) — (0 +mvs(t,y) +1=0 (43)
fU3(Tay):O: yE [O,T_p]

In these equations we have for brevity suppressed the arguments of ¢ = p(t)
etc; these are as in (3.1)—(3.3). The first-order PDEs (4.2) and (4.3) can be
solved by the “method of characteristics”. The characteristic curves are
the deterministic trajectories of the PDP, ie., the lines y — (s + y,y)
parametrised by s € [0,7 — p] in E; and by s € [p,T] in E3. Along these
lines v;, v3 satisfy the ordinary differential equations

03 (y) + ols T,y (s +v)

—(o(s+y,y) +n(s+y,v)v5) =0, yel0,p] (4.2)
Uf(p) = 103(5 + p, O)

L8 (y) + o(s+y,p+ )i (s +9)
—(o(s+y,p+y) +r(s+y,p+y)viy) +1=0, (4.3)
v3(T' =) =0 y €[0,T — s

Here v} (y) = v, (s +y,y), v = 2,3. Figure 3 shows the state space with the
characteristic lines.



188

7777727

The value of v(z) at any point = can be computed by numerical solution of
(4.1), (4.2") or (4.3") along the characteristic line through =, in the direction
of decreasing t or y with the specified boundary condition at t =T — p in
(4.1) or at y =p, T — s in (4.2') or (4.3') respectively. Recall, however, that
we want to compute G, G2y, ..., ie. having computed v = Gy we want
to re-solve (4.1), (4.27), (4.3") with the computed values of v replacing 1.
We therefore have to make sure that v is computed at all points needed
for re-insertion into the equations at the next iteration. The easiest way to
make all the computations compatible in this way is as follows:

Figure 3

Algorithm 1: Assume (without loss of generality) that p = mh and
(I' — p) = nh for some h € R and integers m,n. We solve (4.1) by
numerical integration using the 4th-order Runge-Kutta algorithm [5] with
step length h. Now (4.2") is solved for s = 0, h,...,nh and (4.3’) is solved
for s =mh,(m+1)h, ... ,(m +n)h. To perform these integrations we are
going to need the values of () at all the appropriate grid points, and at the
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end of the calculation we will have obtained the values of v(z) at all these
points. At the next iteration we recompute, replacing the original 1 values
by the computed v values. Iteration proceeds until the maximum difference
between the solutions in successive iterations becomes sufficiently small.

For this small problem, Algorithm 1 executes in at most a few seconds
on 486 PC or Sun workstation, but it is rather wasteful: with n = 100,
for example, we are solving 201 differential equations per iteration. This
number can be drastically reduced if one notes that the only purpose of
solving the 200 equations in regions v = 2,3 is to provide the values of
¥, (¢,0) needed in the next iteration of equation (4.1). Since v,(¢,0) is a
very smooth function of ¢ we can estimate it accurately by computing a few
values and obtaining the remaining values by interpolation. This leads to
the following improved algorithm.

Algorithm 2: This is the same as Algorithm 1 except that (4.2’) and (4.3)

are solved only for s = 0, gh, 2¢h, ..., nh and s = mh, (m+q)h, ..., (m+n)h
respectively, where ¢ is, say, n/5. We then take the computed values
v2(0,0), v2(qh,0), ..., v2(nh,0) and compute a cubic spline interpolation [5]

U (t,0) for t € [0, nh]. At the next iteration the interpolated values v (0, 0),
v2(h,0), ..., Tp(nh,0) replace 1,(0,0), ..., ¥(nh,0) in (4.1). If n = 100
and ¢ = 20, for example, we are now solving only 11 ODEs per iteration
with negligible loss of accuracy.

One could consider an alternative approach to this calculation in which
the original continuous-time Markov process is approximated by a discrete-
time process in which transitions are allowed only at times 0, h,2h, .. .. This
would lead to an algorithm not substantially different to Algorithm 1 using
the Euler method for numerical integration. By staying with the continuous-
time process we are able to make use of the smoothness over time of the
solution to derive a substantially more efficient algorithm.
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5 Computation of the variance

In previous sections we have seen how to compute EX;, where

o0

Xe = /E(:cs)ds

t

for the PDP (x;) starting at x = (v,t,y) € E, namely by solving (2.10),
(2.11) with @(x) = 0. We now want to consider computation of other
moments of X, specifically the variance var(X;) = E(X2)—(EX,)?. This is
in principle easily accomplished by the stratagem of adjoining to the process
an additional component (zs) forming a new PDP Ts = (zs,2s) evolving
in the state space E= E1 UE2 UE3 U E4, where Ey =FE, xRy, v=1,2,3,
and B4 = E4 = {A}. In E; U E, U E5 the component (z) satisfies

d ~
2385 = Pz, T = (i, %),

so that

S

Zy :z+/€(:cu)du.

t

As before, the killing time is 7 = inf{t : z; = A}. We define 7 = A
for t > 7, so that in particular (z:) is killed at time T at the boundaries
{TYx Ry, {T} x[0,T—p|] x Ry of Ey, Es respectively, i.e. the process jumps
immediately to A and stays there, on hitting one of these boundary sets.
The union of these boundary sets is denoted I". The new process (%¢) is
still a PDP, and from (2.3) its generator is 2 given by

Af (z,2) = Af(x,z) + E(.’E)%f(l’, z).
For = (z, z) define

2 . o~
) = {2 V=t TEA

0, otherwise.
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Then clearly

Eg{éb(a«:ﬂ,zﬂ_ﬂ)} = Ez(2_) -—]Eg(ert/Té’(xs)ds)z.

We can therefore compute the latter expectation, which we denote W (z),
by the method described at the end of section 2: from (2.17), (2.18) we
define

N 22 u(t), v
Ue) = zzw(t,y), v
Zzﬂ'(t,p +vy), v

]

1
2,
3

’

and

~ 2 7= . 7=

0 elsewhere.

Then, as described in section 2, W is the unique solution of

AW (T) + 1(Z) =0 ieckE (5.1)
W(Z) = &(%) Tel (5.2)
W(t,p,z) = W5(t,0,2),  (t,2z) € [p,T] x Ry . (5.3)

In particular

T 2
Wl(O,O):]E(LO)( / E(:cs)ds) . (5.5)
0

Thus the variance of the total payout starting at time 0 is just W;(0,0) —
% (0))2 where Vj is as in Section 4 above. Obviously, higher moments of
X could be computed by a similar procedure, but for concreteness we will
only consider the variance here.

The first step in devising an algorithm for solving (5.1)—(5.3) is to de-
termine the smallest subset of the new state space E in which the solu-
tion is required. This consists of all points (1,%,z), (2,¢,y,2) and (3,¢,y, z)
that the trajectory z; could possibly reach starting at zy = (1,0,0). It is
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not immediately obvious what this set is, but in fact the three compo-
nents are as shown in figure 4. We will in future use the notation E,,
v =1,2,3 for these reduced state space components.

(T.T-p)
w =
< .
T Z
(EP:P-O) =
Op — &
(T,T-p.T-p)
(T,T-2p,T-2p)
>
-
(T,0,T-2p)
z
Figure 4

In principle (5.1), (5.2) can now be solved using the direct analogue of
Algorithm 1, but one immediately sees that the extra dimension makes
this barely feasible. In E’3, for example, one would have to solve ODE’s
along characteristic lines starting at a grid of points {(ih,0,jh), j < i,
i = 0,1,2,...}. Taking a step length h = T/100 there are about 5000
such points and one iteration of Algorithm 1 therefore involves numerical
solution of over 10,000 ODEs! This number can however be reduced to
about a dozen by the interpolation idea of Algorithm 2 and by making use
of the special structure of the problem. The key point is to note that the
values of W(z) for z > 0 are determined by the values for z = 0 and the
function
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calculated in §4 above. Indeed, from (5.4) and with z = (z,z2) = (v,(, 2),
(=tforv=1, (= (ty) for v =2,3, we have

A 2
W(z) = Ez (z + ]E(:Cs)ds)
t

T T 2
= z2-|—2z]E5( f E(ms)ds) +IE55( / E(:cs)ds) . (5.6)
t t

Now observe that the two expectations in this expression do not depend on
the value of z since this is simply the initial value of (z¢), which does not
influence the evolution of (z;). Hence

W(Z) = W(z,z) = 22 + 22V (z) + W(z,0), (5.7)

so that the values W(z,z) for z > 0 are determined by the values z = 0
together with the expectation value computed previously. Now consider the
recursive computational method, which here will consist of computing

w(Z) = GY(T) = Bg{®@r—) (7, >1) + @) (1<)}

with @ defined as above. As before, we find that

wn(F) == G™(F) = Ba{v @1, ) (1, <) + 2@Er_) (1,51}  (5:8)

and hence, since T}, — oo a.s., that

lim wy(7) = W ().

n—oo

In detail, the equations satisfied by w(Z) are as follows. As before we write
w(Z) = wy (¢, z) for = (v,¢, z) in E (recall that ¢ = ¢t when v =1, ¢ = (¢, y)
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when v = 2,3). Recalling the definitions of ¢, 0, the equations become

{ %wl(t,z) i Q¢2(t7072) - (Q+ lu‘)wl (t’ Z) + Zz'u’ =0 (59)

T,U]_(T 2 Z) = zz

( Frwalt,y, 2) + gwa(t,y, 2) + oty (¢, 2)
9 — (o + mwy(t,y,z) + 2 =0 (5.10)
\ wZ(t:pa Z) = le(t,Oaz)

)
[ B_tw.?:(t:y: Z) + %w:‘}(t:ywz) + g;%wg,(t,y,z)
1 + oYy (t, 2) — (0 + mws(t,y, z) + 227 =0 (5.11)
w3 (T, y, 2) = 2°

In region 2 the characteristics are lines y — (s + y,y,r) for y € [0, p] while
in region 3 they are lines y — (s + y,y,r + y), parameterized in both cases
by (s,r). From (5.10), (5.11) the ODE:s satisfied along characteristic lines
in regions 2 and 3 are

(w3 () + o (s +y,7) — (0 + mwy " (y)

) +r2r(s+y,y) =0 (5.107)
L w3 (p) = ¥3(s + p,0,7)
( Fws" () + oy (s + . +y) — (0 +mwd" (y)

5 +(r+y)P’r(s+y,pt+y) =0 (5.11%)
(w3 (T =)= (r+T - s)°

where ws" (y) = wa(s + y,y) and w3 (y) = w3(s + y,y,7 +y). If we take
1 = 0 then from (5.8) we see that

wn (%) := GM0(T) = IE;E{ (z + fT (zs) ds)ZI(TnZT)} .
t
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As argued before, the evolution of (zs) (including the jump times (7%))
does not depend on z, so that

P
W, (N)—zsz(T > T) +2z1E:c{/£ zs)dsl(T, >T)}
t

+]E${(]€(a:3)d ) I(Tnzfr)}v

o~

1.e.,

+ 2zvp(x) + wn(z,0) (5.12)

wn(Z) = 2 un(

)
where we define uy, (z) := Pz (Tn > 7). The functions (u,) can be computed
in the same manner as (vy,). We define

oo
:E) == IE(I? Zﬁ(xTiaxTi—)
=1
where
(1, y=4, z#£A
Bly,2) = {O elsewhere.

Clearly w(z) = limp—ooun(z) = 1 since every sample function of the
process jumps to the cemetary state exactly once. Using (2.16)—(2.18) we
find that u(z) = V(z) given by (2.8) with ¢1(t) = u(t), £ (t,y) = 7(t,y),
&(t,y) = n(t,p+y) and &(z) = 1 at z = (1,T —p), 3,1,y), =0
elsewhere. The equations for uy(z) := Py (T, > 7) then become

{ Fur (t) + o(t)ya(t,0) — ((t) + p(t))ur (&) + p(t) =0 (5.13)

w(T—p)=1

( d%ug(y) +o(s+y,y)¥1(s +y)

) —(o(s+yy) +mls 9. u)u3(y) + (s +4,9) =0, 5 14
yE [0,]?]

5( ) 103(3"4”1’: O)
(U5 +o(s+y,p+1)P1(s +y)
< —(o(s+y,p+y) +7(s + 1,0+ v)ui () (5.15)
—;—7r(5+y,p+y):0= yE[O,T—S]
\ Uf(T - 3) =1 ’
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which can be solved in the same way as (v, ). Remark that w = 1 is indeed
a fixed point for these differential equations.

6 Sensitivity analysis of the mean

We know now how to approximate the expected payout EX, and its
variance EX2 numerically. As suggested earlier, the values obtained may
depend heavily on the accuracy of the functions involved in finding them:
the transition rates p(t), u(t), 7(t,y) and o(¢,y). It is therefore important to
investigate the sensitivity of the expected payout to these functions. If we
assume that the transition rates are continuously differentiable, it is possible
to calculate the sensitivities using a numerical scheme which is very similar
to the one we used for the calculation of the expected mean payout itself.
We will now show how to do this for the case where these functions are
constants (i.e. independent of time and the duration of the illness) but we
will show later that non-constant functions can be treated in the same way.
If we differentiate equations (4.1), (4.2") and (4.3") with respect to o(t) = o
we find, after changing the order of differentiation:

o
FHE) + 052 (1,0) — (o + ) FE (1) —1(t,0) 61)
SU(T —p) =0

ovs ovg
dy 5 W) + oG5 (s +9) — (0 +m) FE(y) =0 -
8 s r .
2(p) = G2 (s+p,0), ye[0p

ovs 0
T W)+ oG (s +y) — (o +m)HE(y) =0, 63)
AT —5)=0, ye[0,T—s

The key observation is that the fixed point of this scheme is exactly the
function

Vy(z) = iEmfﬂg(azs)ds
i
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as in equation (3.7), where we define
—v1(t) +n(t,0) vr=1
¢ —
o(7) { 0 v=23
and since /, is a bounded function and lim; .o Vj(z¢) = 0, the arguments
of section 2 again guarantee that this scheme converges to the unique fixed
point of equations (6.1)—(6.3). This proves that we may indeed compute
the sensitivities with our earlier computational method, by just replacing
our old function ¢ by the new ¢,.
It is clear that the sensitivities of the parameters u(t), o(t,y) and (¢, y) can
be found in exactly the same way, using the functions

Ou(w) = {0_ 1) Z:;

0 ="k

to(a) = { wi(t) —wlty) v=2
o(t) —vs(tyy) v =3

0 75— |
ta(@) =4 —wmltyy) v=2
—U3(t,y) v=3.

Analogously, if the parameters are not independent constants but depend
on time and a parameter 6, that is

o(t) = o(t,0), u(t)=n0), n(t,y)=7(ty0), olt,y)=olty,0)
one may simply substitute these into equations (4.1), (4.2’) and (4.3’) and

differentiate with respect to #. This will give exactly the same structure as

before, when we replace the parameter functions g, 41, m, o by the derivative

functions %‘-’, %’g, %%, g—g, and choose an appropriate function #y.

7 Computation of the distribution function

The method described in section 5 to compute E,X 2 can be modified to
calculate the distribution function

Fx(a) =5 P:c (/Z(IS) ds 2 a) = Emf(ft'r l(:cs)dsza) .

t
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In particular we can calculate Fy(a) := F{q g)(a), the distribution function of
the payout at time zero when healthy at the start of the policy, by computing
its values for all a € [0,7 — p]. To do so we take, in our earlier notation

I(zZa) Yy = A, T 75 A
0 elsewhere

b(y, ) = {

where z is, as before, given by

S

Zg :::Z‘J[‘\/l(mu)du.

t

The theory in [3] gives us, as in the case of the variance

_ I(zZa)ﬂ'(t) v=1
i® =)@ [0, DRy 3) = { Tazarty) v
E I(zza)ﬂ'(t,p—{— y) v=3

and boundary conditions

(F) = { I(;30) T=(1,T—p,2) or 2=3,T,y,2)
0 elsewhere.

Defining

dn(a, ) = dnla,z; 2) = Py (z -

I(zs)ds > a)

as the n-th estimate of F(a) starting from a point 7 in F, this leads us to
the following equations, after transforming to characteristic coordinates

2y (a,t,2) + e(O)a(0,1,0,2) — (olt) + u(t))di (0,1, )
+ I(zZa)lu'(t) =0
di(a, T —p,z) = I(zZa,)
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¢ d ;
@dg "(a,y) + o(s +y,y)1(a, s +y,7)—

(e(s+y,y) + (s +v,9)d5" (a,) (7.2)
+Irsaym(s+y,y) =0

| d3"(a,p) = ¥3(a,s +p,0,7),  y€0,p]

(3" (a,y) +o(s +y,p+y)¥r(a, s +y,7 +y)—
(o(s+y,p+y) +7(s+y,p+y))dy" (a,y)
+1ppy>a)m(s+y,p+y) =0,

\dg’T(a,T—s) =IryT—s>a) s y €10, T —g|.

(7.3)

As in the previous case, we only have to do the actual computations for
z=0and r=01in E1 and Ez, E3 respectively since

dn (0,2, 2) = dnlo—2,2.0) . (7.4)
The only expression which involves a term with the third coordinate not

equal to zero is ¥i(a,s + y,7 +y) = ¥1(a —y,s + 3,0) in (7.3). We
should therefore compute the distribution function recursively for a =

0,h,2h, ..., nh, with the same step length h as we use for the integration
of equations (7.1)—(7.3), storing previously calculated values of d;(a, kh,0),
k =0,...,n in memory for use in later iterations. Note that this means

that we have to solve equations (7.1)—(7.3) for all these values of a so the
computation of the distribution function requires n times the number of
computations we had to do for the mean or variance! We have not been
able to find any method for computing Fy(a) in larger increments of a.
However, this is not very surprising since computation of the distribution
function can be interpreted as calculating a// moments of the payout, so
this increase in computational effort is only natural.

8 Implementation and numerical examples

We can now give the algorithm for the computation of mean, variance and
sensitivity functions:

Algorithm 3: As before we suppose that p = mh and T — p = nh for
integers n, m where h is the step length for numerical integration, and we
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Figure 5

take further integers g,n’, m’ such that ¢ = n/n’ = m/m’ (n’ being typically
between 15 and 20). Suppose that wy, (z), vn (x), un (x) have been computed
in the previous iteration or, for n = 0, wy = vy = ug = 0. To find the
numerical solution of the equation for w,, (Z) we want to compute its values
in the following points on the characteristic lines, as displayed in figure 5:

E; > {(1,t,0) |t =kh, k=0, ..., n}

E’ZD{(Z,S+y,y,O)|S:k’qh, y=jgh, k=0,...,7n,
i=0,...,m'}

E3:){(3,S+y,y,y)|s:kqh, y=jgh, k=m',...,m' +n/,
i=0,....,m" +n' -k}
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This leads to the following algorithm:

1.

Compute u,,1(z) by substituting the values of u,(z) in equations
(5.13)—(5.15) and using a 4th order Runga Kutta scheme [5] to solve
the differential equations.

Compute v,, () in the same way by substituting the values of vy, (z)
in equations (4.1), (4.2") and (4.3).

(Interpolation Step) Use the values of w, 2(kgh,0,0), k =0, ..., n/
to compute a cubic spline interpolate w,, (¢,0,0), 0 <t <T — p.

(Extrapolation Step) Calculate the values of wy, 1(p + kh,jh),
k=0,...,n, j=0,..., k using equation (5.12).

Substitute the values obtained in the two previous steps together with
the values of wy,(Z) in equations (5.9), (5.10”) and (5.11") to compute
Wy, 41(T), taking z = 0 in (5.9) and 7 = 0 in (5.10") and (5.11’). Use a
step length A in El and a step length gh in Ez U E3.

Repeat this until the maximum differences |v,,1(z) — vn(x)| and
|wy, 11 () — wn(T)| are both below some positive threshold e.

Substitute the final values of v, (z) in the sensitivity function £, de-
fined in equation (6.5) (or in £,,, 7, £, depending on which sensitivity

one wants to compute) and solve the equations (6.1)—(6.3) to obtain

the iterates (g—Z)n(:c), taking them all zero during the first iteration.

Repeat this until the maximum difference |(g—g)n+1(a¢) - (%)n(m)
is below the threshold e.

b
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The stopping criterion mentioned in 6. can be improved to guarantee a
certain accuracy of the estimates. Indeed, since we start the algorithm with
Yo = 0 we have for the error in the expected payout at time zero after n
iterations:

T Tn
Vi) - 6o (0)] = [Bo [ t6as)ds ~ o [ ifas)ds
0 0

T

= EO f l(xs) ds - I(Tngv‘)

Th

T—p

< Ey / 1ds - I(TnS’F)
0

= (T = p)Py(Tn < 71)
= (T = p)(1 — un(0))

where we have used the definition of up(z) to obtain the last equality.
Completely analogously one may derive that

W1(0,0) — [G™pol1(0)| < (K(T —p)* + (T = p)*)(1 — un(0))

where K denotes the maximum of p(¢), n(t,y) for0 <t <T and 0 <y < T,
and therefore an upper bound ¢ > 0 on the errors in both the mean and
variance is guaranteed if we replace step 6. by

0

6.  Repeat this until u,(0) > 1 — .
" KE(T —p)*+(T - p)?

Remark that this stopping criterion makes sure that the algorithm will
indeed stop after a finite number of iterations since uy, (0) — 1 when n — oo.
The algorithm for the calculation of the distribution function becomes

Algorithm 4: For all values of a = 0, h, 2h, ..., nh, solve equations
(7.1)—(7.3) recursively with integration step length h and with z = 0 in (7.1)
and » = 0 in (7.3). Take ¥y = 0 during the first iteration and use formula
(7.4) to calculate the term 1y (a,s + y,y) in (7.3). Stop iteration as soon as
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the 1iterates change less than a certain prescribed bound ¢, and then store
the values of dy(a, kh,0), Kk = 0, ..., n in memory for later use in (7.4).
Continue with the next value of a, until all values have been calculated.
Alternatively, to guarantee a maximal error of § for ||Fy — [G™]1(0)|lmax,
also calculate the functions uy (z) using (5.13)—(5.15) during the iterations
for a particular value of a, and stop iteration when wu, (0) > 1—6. It is easily
shown by the method outlined above that this guarantees that the error will
be smaller than 6.

We will now discuss some examples and results obtained by implementing
the algorithms 3 and 4.

Example 1: A good test case for algorithms 3 and 4 consists of a model in
which the probabilities of dying and recovering are zero while there is a
constant positive probability of falling ill,

o(t)=0>0,  p(t)=m(t,y) =0o(t,y) =0

since we can explicitly derive the solution for this case. Indeed, T'—p — X 1s
approximately exponentially distributed with parameter %, since we expect
to fall ill after a time é and remain ill the rest of the time T—% since there is
no chance of recovery. Therefore the expected payout at time 0 is 7' —p — é
and both the variance and the sensitivity function of p should be 515. The
distribution function of the payout (measured in years) is approximately
u — e(u—(T—p))

The results are presented in figure 6 which shows the numerical approx-

imation for the value ¢ = 0.3 and T = 25.0, p = 0.5 with a step length

_ T
h——_o(')'.
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Expectation (solid) and Variance (dashad)

25 v Y Y

0 A A . A
0 5 10 15 20 25
Years after start policy
Figure 6: Example 1, Expectation and Variance
Sensitivity of rho
12 B § v L] L
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O e A & o o
0 5 10 15 20 25
Years aflar stant policy

Figure 7: Example 1, Sensitivity of p
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Distribution Function
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Figure 8: Example 1, Distribution.

There is excellent agreement after only four iterations for the mean,
variance, and sensitivity which for this case should have the values

1

EXo=T—-p—~-=212
0
1
VarXy = - =11.1
1%
0 1
—EXy=—5 =111
do 0T 2

and the distribution function, shown in figure 8, is as expected.

Example 2: To compare the sensitivity functions of the different parameters
a model was used in which all transition rates are constant:



206

The results of the computations, which used the same step length, insurance
period and elimination period as before, are presented in figures 9 to 13.
Apart from the mean and variance in the first figure, the relative sensitivity
functions

n (5V1($)> D= om0
I/l(l‘) 877 ? bl b bl

are shown. Note the difference between the sensitivity of the dying tran-
sitions and the other two. The results clearly suggest that an accurate es-
timation of the parameter o is much more important than the estimation
of the other parameters and that the data concerning the probabilities of
dying are far less significant. Of course, the sensitivities of p, 7 and ¢ are
negative, since a larger probability of death or recovery from illness reduces
the expected payout.

Expactation (solid) and Variance (dashed)

0.6 v

0 5 10 15 20 25
Years after start policy

Figure 9: Example 2, Expectation and Variance
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Sensitivity of tho

0.97 T v v v
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0.95} 1
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081} ]

%% 5 10 15 20 25
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Figure 10: Example 2, Sensitivity of o

Sensitivity of mu

1] T T v o

012, s 10 15 20 25
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Figure 11: Example 2, Sensitivity of p



208

-0.008

-0.01

~-0.014

-0.01&

-0.018
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Years afier start policy
Figure 12: Example 2, Sensitivity of «
. Sensitivity of sigma
-1- T T v
-1.8¢ 1
-1.9F 1
-2} ]
-2.1t 1
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A_———__‘-—_,‘
_23 i n A
S 10 15 25
Years after stast policy

Figure 13: Example 2, Sensitivity of o
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Example 3: In a more complicated model we took

o(t) = 0.3 4 0.1k(t)

u(t) = 0.01
m(t,y) = 0.01(1 +2(1 —e™¥))
o(t,y) =2.8(1— e 2¥)(1 — 0.2k(t))

k() = 0 0<t<15
001(t—-15)2 15<t<T,

This means that the death rate when ill grows slowly from the normal death
rate to three times the normal death rate, that the chances of falling ill rise
slowly after 15 years from 0.3 to 0.4 and that the probability of recovery
is mildly decreasing in the same way and rises from zero to its final value
after roughly one year. The results of this simulation for 7" = 25.0 years,

elimination period p = 0.5 years and step length h = %ﬁ are presented in
the figures 14 and 15. The mean and variance converged after 44 iterations;

some intermediate results are shown as well.

Expectation
1.5 T
1F ¥
oSr
0 3 1 s . A
0 1 10 15 20
Yeaars afler starnt policy

Figure 14: Example 3, Expectation
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ol A A 1 A
0 5 10 15 20 25
Years after start policy

Figure 15: Example 3, Variance

In figure 16 the distribution function of the payout at time ¢ = 0 is shown.
The mean and variance for this distribution function can be found by
numerical integration. They are approximately EXy ~ 1.9 and VarX, ~ 1.4,

which agrees nicely with the values found for ¢ = 0 in the calculations of
the mean and variance.

Distribution
1 T T N T v T
0.91 b
08f
0.7¢
0.6
05 E
04}
0.3} E
021
0.1F
o L " L . s X a
0 1 2 3 4 5 6 7 ]
Payout in years

Figure 16: Example 3, Distribution
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Summary

Permanent health insurance is a contract whereby the insured person is paid at a fixed rate
whenever he/she is sick for longer than a minimum elimination period. The payout process
resulting from this contract is modelled as a piecewise-deterministic Markov process, and
algorithms are presented by which the mean, variance and indeed the distribution function
of the payout may be computed. These algorithms involve iterative solution of systems of
first-order partial differential equations, and this is accomplished by combining the “method
of characteristics” with certain interpolation and extrapolation steps. Numerical results are
given.

Zusammenfassung

Der Artikel betrachtet Vertridge, geméss denen die versicherte Person einen festen Betrag
pro Zeiteinheit ihrer Krankheit erhdlt, nachdem eine minimale Wartefrist verstrichen
ist. Der aus dem Vertrag resultierende Leistungs-Prozess wird als stiickweise determi-
nistischer Markovprozess modelliert. Dabei werden Algorithmen angegeben, mit welchen
der Erwartungswert, die Varianz und — in der Tat — die Verteilungsfunktion der Leistungen
bestimmt werden konnen. Diese Algorithmen benutzen iteratives Losen von Systemen
partieller Differentialgleichungen erster Ordnung, und dazu wird die “Charakteristiken-
Methode” mit gewissen Inter- und Extrapolationsschritten kombiniert. Numerische Resultate
werden angegeben.

Résumé

Ce travail traite des contrats d’assurance selon lesquels la personne assurée touche un
montant fixe par unité de durée de maladie mesurée & partir d’un délai d’attente. Le
processus des prestations résultant de ces contrats est décrit a travers un processus de
Markov déterministe par morceaux. On donne des algorithmes permettant de déterminer la
moyenne, la variance et — en fait — la fonction de répartition des prestations. Ces algorithmes
requierent la résolution par itérations de systemes d’équations différentielles partielles de
premier ordre. Cette derniere est effectuée en combinant la méthode des caractéristiques

avec certains pas d’interpolation et d’extrapolation. On donne des résultats numériques.
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