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JAN GRANDELL

Some remarks on the Ammeter risk process

1 Introduction

The early development of risk theory was, to a large extent, dominated by
Swedish scientists. The most prominent pioneers are Filip Lundberg and
Harald Cramér. Probably most readers are further familiar with namens
as Arfwedson, Esscher, Laurin, Saxén, Segerdahl, and Técklind. All these
pioneers were mainly interested in finding and proving results related to the
ruin probability when the claims occur according to a Poisson process. We
also mention Ove Lundberg, who 1940 presented a thesis about Markov point
processes and, more particularly, mixed Poisson processes.

In the early development of risk theory, the Swiss actuary Hans Ammeter also
plays a very important role. In Ammeter (1948) results were presented about
the ruin probability, in a model with randomly fluctuating “basic- probabilities”
or intensities. Thus the claims occur according to a Cox process. That special
Cox process is built up by independent and stochastically identical pieces of
mixed Poisson processes. Mathematically the analysis of the Ammeter model
is related to the analysis of mixed Poisson process. Due to the war, Ove
Lundberg’s thesis was not available to Ammeter. However, despite of certain
mathematical similarities, the Ammeter model and the mixed Poisson process
are different kinds of Cox processes; the Ammeter process is ergodic while
the mixed Poisson process is a typical example of a non-ergodic process. For
a modern treatment of mixed Poisson processes and — to some extent — of
the Ammeter model, see Grandell (1995). The purpose of this paper is to
give a modern treatment of the Ammeter model. It is natural to let those
(fixed) epochs constituting the border between the underlying mixed Poisson
processes, play a fundamental role in the analysis.

In Section 2 we give background for the analysis. The most important part is
the simple inequalities in Lemma 1. We will further give a survey of known
results when the claims occur according to a renewal and a Poisson process
respectively.

Section 3 is devoted to general” Ammeter models, and Section 4 to the case
with infinitely divisible intensities.

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 1/1995
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2 The risk process

2.1 The general risk process

The usual model of a risk business is based on the following independent
objects:

(i) apoint process N;

(i) asequence {Z,}7° of independent and identically distributed random

variables, having the common distribution function F', with mean value

w, and variance ¢2.

Here N describes the times and {7}, } the costs of the claims. We will here only
treat the case with non-negative risk sums, i.e., we assume that F'(0—) = 0.
Notice that, for technical reasons, “zero risk sums” are allowed. The total
amount of claims paid by the company in the interval (0, ¢] is then described
by the claim process

N(t)

Y() =3 2, (ézk d:efo).

k=l
The risk process, X, is defined by
X(t)=ct-Y(t),

where c is a positive real constant.
The ruin probability ¥(u) of a company facing the risk process X and having
initial capital v is defined by

W(u) = P{u+ X(t) <0 forsome t > 0}.
Let A > 0 be given and put
Ya(u) = P{lu+ X(kA) <0 for some integer & > 0}.

Thus ¥ 4 (u) is the probability for the risk process to be ruined at some epoch
of the totiit = kA k=12, ..:.
The following simple lemma will be used several times.

Lemma 1. Let A > 0 be given and assume that almost surely no claims occur
at the epochst = kA k =0,1,2, .... Then

U(u+cA) <Up(u) <P(u) <Pp(u—cA) for u>cA.
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Proof. Assume that u + ¢A 4+ X (t;) < 0 for some ¢, € (kyA, (kg + 1)A]. The
premium received by the company in the interval (¢, (kg + 1)4] is less than
cA. Since F'(0—) = 0 it therefore follows that

u+ X((kg+1)AQ) <u+cA+ X(ty) <0.

Thus the first inequality follows. The second inequality is trivial, and the third
inequality follows from the first one. The restriction u > ¢4 is not necessary,
but we have introduced it in order to avoid ¥ (u) with u < 0. |

The tail behaviour of the claim distribution /' is of utmost importance for the
ruin probability. Put

>0
:L / 7Z(lF
0

Definition 1. We talk about small claims, or say that I is light-tailed, if there
exists o, > 0 such that h(r) 1 +oo when r 1 v, (we allow for the possibility
Too = +00). ]

The important part of Definition 1 is that () < oo forsome r > 0. This means
that the tail of F decreases at least exponentially fast, and thus for example
the lognormal and the Pareto distributions are excluded.

Ifh(r) = ooforallr > Owe talk about large claims, or say that F'is heavy-tailed.
A good survey of this case is given by Embrechts and Veraverbeke (1982). In
the latter case, we restrict ourselves to claim distributions related to the class
8, defined below.

Definition 2. A distribution G on (0, 00) belongs to the class 8 of subexponential
distributions if

1~ G(z)(m)
l' - =
J—ligo 1-G(x) 2
T
where G2 (z) = [ G(x — y) dG(y)- -
0
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All G € § have the property, see Embrechts and Veraverbeke (1982, p. 62),

lim -Gl —y)
t—oo 1 — G(1)

=3 | for all y. (1)

Much of our discussion will rely on known results in the cases where NV 1s a
Poisson process or an ordinary renewal process. Although the Poisson case
was the only case known at the time of Ammeter’s contribution, we will first
give some known results in the renewal case. The use of the tildes and stars in
the notations in Sections 2.1 and 2.2 is meant to facilitate the applications in
Sections 3 and 4.

2.2 The ordinary renewal risk process

The first treatment of the ruin problem when the occurrence of the claims is
described by a renewal process is due to Sparre Andersen (1957). In a series of
papers Thorin has carried through a systematic study, see for example Thorin
(1982).

Let N be a point process and let S, denote the time of the kth claim. N is
called an ordinary renewal process (with inter-occurrence time distribution
K) if the variables S;, S, — Sy, S3 — 55, ... are independent and have a
common distribution K with mean 1/a. Let k denote the Laplace transform,
ie, k(v) = [{Ce v dK(s).

The distribution of the costs of the claims is denoted by F where IT“(()—) = 0.
Thus ruin can only occur at claim epochs. To avoid some technical complica-
tions we assume that F' contains an absolutely continuous component. Fur-
thermore f, ﬁ(r) and so on have their natural interpretation with respect to
F.

The relative safety loading o is defined by

. Cc—ajt
0= :

Y

The risk process, X, is said to have positive safety loading if p > 0.
Consider now the small claim case.

The adjustment coefficient or the Lundberg exponent R is the positive solution
of

~

(h(r) -+ Dk(cr) = 1. (2)
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The following basic results hold, see Grandell (1991):
U(u) = (1 — iR)e~ (3)

when the claim costs are exponentially distributed with mean p, cf. Sparre
Andersen (1957, p. 226). We further have:
the Cramér-Lundberg approximation, cf. Thorin (1974, p. 94),

lim '™ (u) = C; (4)

uU—00

the Lundberg inequality, cf. Sparre Andersen (1957, p. 224),

U(u) < et (5)

Consider now the large claim case. Let I} be defined by

z

Fi(z) == [0~ Fla)ds.
fi
0
and assume that ]N“*“I € 8. This includes lognormally and Pareto distributed
claims.
Then, cf. Embrechts and Veraverbeke (1982, p. 65),

B(u) ~ %(1 _Fy(w)  as u— oo (6)

(The sign ~ means that the quotient between the two sides tends to one.)
We will now essentially consider Pareto distributed claims, but we will need a
slight generalization to distributions with regularly varying tails. Then

1-F(z)~27%L(z) as z— oo, (7)
where L is slowly varying at infinity, i.e.,
L{zz) ~ L(2), as z — 0o,

for all z > 0. Distributions fulfilling (7) are sometimes said to be of the Pareto
type. We will only consider 6 > 1 so that ji < oco. It follows from Feller (1971,
pp. 279 and 281) that

1

(1]
ﬁ(6~1)z L(z)

1 - Fy(z) ~
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and

Dy & (61
1— 15 (2) o) L(z).

Thus f[ € o and

~ 1
l_[l Al B e
() o6 —1)

In the Poisson case (8) is due to von Bahr (1975).

?L"(5_])L(u) as u — 00. (8)

Example 1. Let I be a Pareto distribution with 6 > 1, i.e.,

-6
1 - F(z2) = <3> for z>a>0.
a

Then (7) holds with L(z) = a®. Since i = da e get from (8)

61
0
T a
U(u) ~ W—’U.“((S—I)
W)~ e =)
& —(6-1)
a U
== . — 9
c(é—l)—am(a) s sl (©)
cf. von Bahr (1975). ]

2.3 The Poisson risk process

Let N* be a Poisson process with intensity o*, which — expressed in terms of
the renewal process — means that

. ~ 1
K#)=1-¢ " fort>0 k(v) = ———.
(*) F ort=0 or k) 1+v/a*
In the small claim case R is the positive solution of
h*(r) + 1 :
MULE 1 or A%r)= iy (10)

14 cr/a* a*
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For exponentially distributed claims (4) is reduced to

_ o*u
l[/*('u,) — 1 -:'Q*e p*(1e*) | (11)

In the Cramér-Lundberg approximation the constant is explicitly given by

o' p”
* = ) 12
© h*(R) — ¢/a* (12)

The Poisson versions of (2)—(5) are due to Lundberg (1926) and Cramér
(1930).

Let X*(t) be a Poisson risk process with intensity o and claim distribution
F. Assume that ¥*(u) is known, or at least “asymptotically” known. Let, as
before, ¥, (1) be the probability that the risk process is ruined at some epoch
of the form t = kA.

It follows from Lemma 1 that

U*(u + cA) 2 J/Z(u)

<1, 13
w*(u) T w*(u) (13)
where, of course, the second inequality is trivial.
Let X be a renewal risk process with inter-occurrence time distribution
0 fort< A ~ —A
Ki(t) = ' F Ek(v) = Y 14
®) {1 fort> A, or Ky} =% (14)
and claim distribution
oo * Ak
= a*A o«
Bl = AZ ( . ) e~ Apx(R) () (15)
=0

where F*(O)(z) — {(l) ior : i g’ and F*(F)(z) = foz FE=D(z—y) dF*(y).
1 for z >

Since X* has stationary and independent increments it follows that X has ruin
probability w* , cf. Grandell (1991, p. 67). Thus we have

- 1

4= =5 and 1= Ap*.
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In the small claim case we have ¥* (1) ~ C*e~ ' where R and C* are given
by (10) and (12). Consider now X. We have

—~

5 (o A)F s k
hir)+1 = Z X e~ 2(h*(r) + 1)

and thus the Lundberg exponent is given by
pGj*Al),*(T)'—CT-A —1 or o*h* (7,) —r. (17)

Thus X* and X have the same R, and it follows from (4) that Uh(u) ~

C pe~ ™ for some constant C 4. In this case it follows from Cramér (1955,
p. 75) that

C*

C A~
& ro* R a* A

as a* A — o0o. (18)

From Lemma 1 we get C 4 > Ce~1eA which - in comparison with (18) -
merely means that C' 4, > 0 for large values of A.

The fact that Lemma 1 is rather useless in this case may be the explanation
why the underlying simple idea, to our knowledge, has not been used.

In the large claim case the situation is quite different. Assume that Iy € 3.
From (6) and (1) we then get

L= Ff(u+cdd)

lim 2 luted) _
uo U (u) uli{léo 1-Ff (u) Ly

and 1t follows from (13) that
U () ~ U (u) as u — 0o. (19)

Intuitively, in this case, ruin is caused by a claim so large that the risk process
will remain negative until the next epoch of the form kA.



3 The Ammeter process

We will define the Ammeter process within the framework of Cox processes.
Intuitively we shall think of a Cox process N as generated in the following way.
First a realization «(t) of a non-negative random process A = {A(t); t > 0}
is generated and conditioned upon that realization, N is a non-homogeneous
Poisson process with intensity function «(t). The process A is called the intensity
process. This intuitive definition of a Cox process suffices for our purposes. A
detailed discussion of Cox processes and their impact on risk theory is to be
found in Grandell (1991).

A natural measure of the variability of the intensity process is ai, defined by

t
(Ti 9F firy %Var [//\(S)d% ;

t—oo
0

Grandell (1991, p. 123) proposed the approximation R, of R, given by
20041

12a3 + a(o? + p?)
where D stands for “diffusion”.
This approximation must be regarded as based on ad hoc reasoning, although
the ideas behind it are due to a diffusion approximation of the risk process,
which is reasonable for small values of p.

The first Cox process, other than the Poisson process, used in connection

with risk theory was the mixed Poisson process. Below we give the modern
definition.

Ry =

bl

Definition 3. Let A bea non-negative random variable with distribution U and
mean o. The Cox process obtained by letting

A1) = A, as.,
is called a mixed Poisson process. , [

: ; : I
For a mixed Poisson process we have a%\ i1 PR ftz Var[4] = o0.

Definition 4. Let A > 0 be fixed and let {L;; k = 0,1, ...} be a sequence of
non-negative, independent, and identically distributed random variables with
distribution U and mean a. The Cox process obtained by letting

Alty=Ly  for kA<t<(k+1)A,

is called an Ammeter process. s
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Figure 1. Illustration of the intensity process in the Ammeter case.

The Cox process with this intensity is called an Ammeter process, since it is
essentially the model considered by Ammeter (1948). The Ammeter process
is technically related to the mixed Poisson process since it can be looked upon
as built up by a sequence of independent mixed Poisson processes. However,

besides from that relation, it is very different from a mixed Poisson process.
For an Ammeter process we have

O’iz ll—l)léok—Aval |\ZALj|

where 0% i Var[L;]. Thus we have

2ot

Rp= .
& Ap2o? +afo? + p?)

For exponentially distributed claims, Ry, reduces to

Y

/(1—}4‘—0’&)

Rp =
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Let now N be an Ammeter process, F' the distribution of the costs of the
claims, Y'(-) the corresponding claim process, and X (t) = ¢t — Y (t) the risk
process. Let u denote the Laplace transform of U, i.e.,

u(v) = /e‘”g dU () .
0

As usual ¥(u) denotes the ruin probability.

A fundamental property in the analysis of Ammeter processes is that {Z,‘:}‘
defined by

Z, ' y((k+1)4) - Y(k4), k=0,1,...
is a sequence of independent and identically distributed random variables. Let
F denote their common distribution function. Then we have, cf. (15),

o= [ £

Let X be a renewal risk process with inter-occurrence time distribution K
given by (14) and claim distribution I given by (20). Obviously the sequences
{X(kA)}$2 ,and {X (kA)}$2, have the same distribution. Since in a renewal
model ruin can only occur at claim epochs, it follows that X has ruin probability
¥ A(u). Thus the situation is somewhat contrary to the Poisson case, since here
it is reasonable to regard ¥ 4 (u) as known. Form Lemma 1 we now get, cf. (13),

e tARR) () qU(f) and Ji=aAp. (20)

(u) W A(u—cA)
N

Consider the small claim case and assume that U is light-tailed, i.e., that u
fulfills the same condition as 4. Then we have, cf. (16),

for u > cA. (21)

Mr)+1= ] AT qur (o) = A(- Ah(r)) .
0

This implies that F is light-tailed.
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Since (71(7‘) + I)E(cr) = T(—Ah(r))e "4 it follows that R is the positive
solution of .

U(—Ah(r))e 4 =1. (22)
A Lundberg inequality now readily follows.

Theorem 1. ¥ (u) < Ce™ % for some C' < .

Proof. The theorem is an immediate consequence of (21) and (5):

O(u) < W (u—cA) < e FHu—cd) o pchA—Ttu

CR/_\G

Since e —Ru > 1 for u < cA, the theorem holds for all values of u. [ |

From the proof of Theorem 1 it is seen that we can choose C' = e°/*4 Although
we do not at all claim that this is the smallest possible value of C' we must in
general, cf. (5), accept that C > 1.

Put,cf. (4), C 5, €' lim,,_, . /™ , (u). We do conjecture that also the Cramér-

Lundberg approximation holds for ¥(u). This conjecture is based on Asmussen
(1989), Asmussen and Rolski (1994), and Grigelionis (1993). In any case we
may define

lef .. — def .. :
C = liminf ¥ (u) and C = limsup ™ W (u),
Y—res U—00

and it follows from (21) that
8x < G 2 0 <e®80,. (23)

Recall from Section 2.3 that a similar use of Lemma 1 in the Poisson case
turned out to yield little information for large values of A. The reason was
that RA became large for large values of A.

Here the situation is - at least sometimes — quite different, since A is involved
in the definition of X and thus also in R.

Proposition 1. Assume that there exists a positive solution ry of
w(—r/a)e” I+ = 1 (24)
Then we have

<A < (14007,
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Proof. Put Ry = paAR. Noticing that cRA = (1 + p) Ry it follows from (22)
that 1% is the positive solution of

=f r —(l4o0)r =
u( Ah(uaﬂ))e )

Since u(—v) is increasing in v and since h(r) > ru it follows that

a(an(ﬂiﬁ) > fi(—r/a). (25)

Thus we have

1= ;E(Ah,(ﬁo_))c—uwm., > (= Ry ja)e—(1+OFo

jite’

which implies
ﬂ(mRo/Q)C"(!+Q)]{t) < ﬁ(—ro/a)(f('*@)”’ .

Since u(—r/a)e” T2 is convex in 7, it follows that iy < ry and the
proposition is proved. o

Remark 1. Suppose now that Aislarge. In “kind” cases we have Ah(r/(pucA))
~ r /o and thus we have approximate equality in (25). Therefore the bound in

Proposition 1 ought to be the best possible bound holding for all A. O
Consider
~ [0 for f<a, _ S ——
U({’)_{] for £ . o1 u(v) =e ,

which corresponds to the Poisson case. Then (24) reduces to —or = 0, which
obviously has no positive solution.

Example 2. The simplest non-trivial example, to which we will return, is
probably when L, is exponentially distributed. Then u(v) = 1/(1 + av) and
(24) reduces to

1

e—(+o)r _ 1. (26)
1—7

Some values of 7 and e{!+2)7 are given in Table 1.
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Table 1. Valuesofryand elI+e)m for exponentially distributed intensity.

0 7'0 e(]‘l_Q)T[l

5%  0.0937 1.1034
10%  0.1761 1.2138
15%  0.2490 1.3316
20%  0.3137 1.4571
25% 03714 1.5908
30%  0.4230 1.7330

It is seen from (24), and illustrated in Table 1, that r; increases with increasing
values of p. This is quite natural, since the higher safety loading the quicker
the risk process “recovers” after ruin.

Example 3. A natural extension of the case considered in Example 2 is when
L, 1s I'-distributed. Then

U'(e) = %e%‘e“ﬁ‘f,

def

wf) =

for £>0,

where +y is called the shape parameter and 3 the scale parameter. In this case
we say that the intensity is I'(v, 3). We have

ep!
o= %, o3 = Var[L,| = %, and u(v) = (1 + %) ;
and (24) reduces to
(1 - i) Myc“’("'f@)’" =1 or - e~ (I+a)r/v — 1 (27)
g 1-7/y

O

Consider now the case where F is heavy-tailed, or more precisely that FI € 8.

Then (6) applies to ¥ 5 (u). From (1) and (21) its follows that ¥(u) ~ ¥ 4 (u),
cf. (19), and thus

1
0

W(u) ~ —(1 - Fy(u)) as u— oo. (28)



Assume now, for some ¢ > 1 and some slowly varying function L, that
1-UW) ~wlOL(¢) and 1-—F(z)~ ¢2"%L(z), (29)

where w > 0and ¢ > 0. If w = 0, then (29) means that 1 — U (¢) = o(¢ =0 L(¢)),
1—-U(£)

Le., that lim,_, T=L(0)

= 0, and similarly if ¢ = 0.

Proposition 2. Assume that (29) holds and that at least one of the constants w
or ¢ are strictly positive. Then |

A)® ‘
w(pd)’ +¢ad 51,

U(u) ~
() o Ap(d —1)

(u) as u — 00. (30)

In the proof of Proposition 2 we will need the following Lemma.

Lemma 2. 1 — U(¢) = o(£~%L(#)) implies P{N(A) > n} = o(n"%L(n)) as

n — oQ.

Proof. By partial integration, properties of the I'(n + 1, A)-distribution, and
that n! > n™e™", we get, fora < 1,

e n-1pn
AT LT —ea

P{N(A)>n}:/ -~ (1 - U(0)de
VT
an/A I
n n
< / AT A g
n!
0

TH—] n
+ ] A——g—eﬁ(m df - (1 —=U(an/A))

n!
an/A
< % A(C::f) e~ 4 (1 — U(an/A))
n+1,—an
(“”ine_‘; + (1= Ulan/A))

< nae™ + (1 — U(an/A)).
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Choose a < 1/e. Then

n(ae)® + (1 — U(an/AQ))

P{N(A) > n} &

nhi%o n=0L(n) nlj}*réo n=%L(n)
; 1—-U(an/A
= (a/A)”° lim u (an/A)) =, =

n—oo (an/A)~®L(an/A)

Proof of Proposition 2. Tt follows from Willmot (1990), after a slight modifica-
tion, cf. Grandell (1995), that 1 — U(¢) ~ wl~°L(¢) implies P{N(A) > n} ~
wA%n~OL(n) for w > 0. For w = 0 Lemma 2 applies.

From Stam (1973, p. 311) it follows that

1 — F(2) ~ (wpb A + pad)2"0L(z).

Since fi = aAu the proposition now follows exactly as (8) followed from (7).
[

The case where both w and ¢ are positive seems somewhat artificial, since it
means that U and F' have almost exactly the same tail behaviour. If we let one
of those constants be zero, it is no restriction to let the other be one.

Let us first consider the case ¢ = 0 and w = 1. This means that the heavy-tail
behaviour of F is caused by the variation of the intensity. It does not imply that

F'is necessarily light-tailed, but it is less heavy-tailed than U. Then it follows
from (30) that

&5—1
%'{L""(éq)ll(u) o5, =B

W (w) ~
Now consider the case ¢» = 1 and w = 0. This means that F' is heavy-tailed,
and we can really talk about large claims. Then it follows from (30) that

1

Tl ~v ———
/(1) oo 1)71,

—(6"1)L(u) as u — oo.

In this case, cf. (8), there is no essential influence of the intensity. This
observation is in agreement with Asmussen et al. (1994).

We will now consider more in detail the case where F is heavy-tailed and U
is light-tailed. It turns out that we will need both that F € § as well as that
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[, € 8. The relation between these two conditions is not at all trivial. In order
to cope with these requirements, we will rely on the class 8%, defined below.

Definition 5. A distribution F on [0,00) belongs to the class 8* if it has finite
expectation p and

T
limn k=l —p)

T—00 1 — F(;’l:)
0

(1 —=F(y))dy =2pu. ]

From Kliippelberg (1989) it follows that the lognormal and the Pareto distri-
bution belong to §*.
The following proposition was proposed by Kliippelberg (1994).

Proposition 3. Let F' € 87 and U be light-tailed. Then

1
U(u) ~ —(1 = Fy(u)) as u— oo.

0

(S

Proof. We will first show that F and F are tail-equivalent, i.e., that

1 = F(z
:Eljiléo 1_—1:(; = const. € (0,00),

since it will imply (Kltippelberg 1988, p. 134) that [ € 8*. From (20) we get

o

00 0O oAk
1 F(z) = [(1 -y At ) av)
0 ”

k!
0 k=0
and thus
1-Fo) _ [ (A _wal-F¥GE) 0
1-F(z) / Z_: k! 1 - F(z)
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Since F' € 8* implies (Kliippelberg 1988, p. 135) F' € §, we have, see Athreya
and Ney (1972, p. 148),

. 1= FR)(g)
zllu—{l(l)o—i—jm:k’ for krO,l,Z,...

Further, see Athreya and Ney (1972, p. 149), given any € > 0 there exists a
D < oo such that

1 - F("’)(z)
F(z)

Since U is light-tailed, this implies, for € small enough, that

- _eal = FR(2)
/Z A )

c=()

< D(1+¢)* forallkandz.

?e-

IA

/}: = —MD(HE) dU ()

) k=0

—

(]

D. fe”-‘"(w < 00.
)

—_

By dominated convergence we get

li 1-F
zgléol——

_mk dU(¢) = ad,

which implies (Kliippelberg 1988, pp. 134 and 135) that E € 8. Thus (6) yields
(u) ~ lg(l — Fy(w)). By UHospital’s rule

i i s B
lim 1__5‘& = T aAp fu (1 - F(T)) dx
u—oco | — F](u) u—oo 1 foo(l B F(’I‘)) dx

Lo 1— Fy(u)

:aAu—vool—FI( ) =1

follows, and the proposition is proved. w
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Remark 2. We will now consider the relation between Proposition 2, in the
case w = 0 and ¢ = 1, and Proposition 3. Let F' be of the Pareto type, i.e.,
1 - F(z) ~ 270 L(2).

Although it follows from Kliippelberg (1989) that F' € 8*, we will give a
direct proof, since it will give some insight in the properties of §*. Following
Kliippelberg (1988, p. 135) we get

& /2
1= Flg=y) B 1—-F(z—1y)
0/ 1— F(x) (1-F(y))dy =2 O/ W(l—F(y})dy

&2
1— F(z/2)
0

~2426,u<oo.

Thus FF € 8* follows by dominated convergence. Notice that a careless
interchange of limits and the integration in the first term leads to a wrong
result.

Thus Proposition 3 is a strict generalization of Proposition 2 when U is light-
tailed. The really nice thing with Proposition 2 is that /' and U contribute to the
ruin probability in a rather symmetric way. It is therefore tempting to consider
I light-tailed and U € 8 or $*. However, both 8 and §* are defined in terms of
convolution properties, while there seems not to be any natural convolution of
U with itself involved. Therefore such an approach seems to be difficult. [

4 Infinitely divisible Ammeter processes

We will now restrict ourselves to small claims. A major problem in this case
is that C, occurring in (4), is not given in an explicit form and therefore (23)
is not so easy to use. In the infinitely divisible case the situation is nicer, since
then the explicit form given in (12) can be used. This is, in fact, the essential
observation in Ammeter’s original approach.

Definition 6. A random variable L with distribution U is called infinitely
divisible, ID, if for each m there exists a random variable L™ such that L
has the same distribution as the sum of n independent copies of L), (]
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An Ammeter process is ID if its structure distribution U is ID. This holds in a
“point process” sense, but we will only need that the mixed Poisson distributed
random variable N(A) is ID. It is well-known, see for example Feller (1968,
p. 290), that this implies that N (A) is compound Poisson distributed, i.e., that

N(A) =& + &+ +éx,  (N(A)=0if N=0), (31)

where £, &5, ... are independent and identically distributed discrete variables,
N is Poisson distributed with mean @&, and IV is independent of the €, 5. In order
to make the representation unique we assume that P{£; = 0} = 0.

For any discrete random variable NV, its generating function Gy (s) is given by

G (9) &f E[s™V]. Then (31) can be written in the form
WAL —s)) = X Fe&)=D - for s < 1, (32)

where u(A(1 —s)) follows from the representation of N (A) as a mixed Poisson
distribution, cf. Grandell (1995), and e Ce($)=1) from the representation as
a compound Poisson distribution. Since we assumed that P{{, = 0} = 0, we
have G¢(0) = 0. Thus we get

uA)=e"% or a=-log(u(Q)) (33)
and
(Ge(s) — 1) = log(u(A(1 - 5)))

or

We will introduce an associate Poisson risk process X *, with the same premium

casin X. The position of the claims is described by a Poisson process N* with
intensity

@ log((4))

A A

The claim distribution F™* is given by

F*(z) =Y P{g = k}F®)(z),
k=1
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and thus

W)+ 1= P{&g = k}(h(r) + 1)F = G¢(h(r) +1)
k=1

or

_log(u(=Ah(r)))
log(u(A)) '

Notice that both o* and F'* depend on A.
Although the processes X and X* are different, the sequences { X (kA)}7°,
and { X *(kA)}7°, have the same distribution. Thus

Bhr) = (34)

U (u) = U (u) . (35)
Since N* is a Poisson process (12) applies, i.e.,

Q*O‘*M* (36)

* * —Ru *
U*(u) ~ C*e , where C = () ¢

The Lundberg exponent in (36) is the positive solution of

- g AMI) o (- an(ryeA =1.

cr = a*h*(r)

Thus we have the same R for X and X*, cf. (17) and (22), which is “as it shall
be”, cf. (35). Further o* u* = oy which follows from the construction of X*
or from a* p* = a*pG’E (1) and

' (=AR(n)W (1)
u(—Ah(r))

(M*h,*’(r) =

From (22) it follows that i(— Ah(R)) = 214 and we get

c* — o/l , 37)
—1! (—Ah(R))W (R)e— <A — ¢ (

where it may be noticed that @' (v) < 0 for all v.
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It follows from Lemma 1 that

T*(u + cA) <UR(u) = Ta(u) <(u) <Pp(u—cd)
= Uh(u—cA) <U*(u — cA)
for u > cA and that, cf. (23),
eCRAGH < 0% < ¢ < T < eRACY < ooRACH, (38)
or, using Proposition 1,
e~ (oo < g i< B e(l+@)m(jzl < el1+o)Too* (39)

Naturally we are better off if we can calculate C'y = C7%, but (38) and (39)
give bounds which only require C*. We know only one case where C 4, can be
simply calculated, and will consider that case in the continuation of Example
!

We can now apply the diffusion approximation to X *, i.e., we consider R}, =
29,11,*/(0*2 -+ ,u,*l). By differentiation of (34) we find — not very surprisingly —
that R}, = Rp,. Then it follows, cf. Grandell (1991, p. 17), that

2001

R < i
- Auzni + a(o? + pu?)

(40)
Remark 3. We will, by a counterexample, show that (40) does not hold in
general. Consider the case

PlZ=1}=1 = h{r}=¢" -1

Pilp=0}=P{l;=2}= % = u(v) =1+ c_zv),

DO —

where, of course, L, is not infinitely divisible. We have u = 1, o2 =0,a=1,
and a% = 1, and thus

Let

fr,2) % %(1 +exp{24(e" —1)})e(IHa)7A
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From (22) it follows that R is the positive solution of f(r, A) = 1.If we can show
that f(Rp, A) < 1, it follows that R, < R, which would be a contradiction to
(40). For A — oo we have Ry ~ 29/A and thus

F(Rpy, A) ~ %(1 exp {m- %’})az(wm = La+ete)e2irae,

Choosing, for example, p = 1, we get

f(Rp,A) ~ %(1 +eMNe =14+ <1,

N —

Thus (40) does not hold in general. (Exact computations show that f(R2},, A)
< 1 for A = 4.502.) O

From the point of view of the diffusion approximation, the inequality (40) is
in the “wrong™ direction. For our purpose it is in the “right” direction, since it
means that

20(1 + p)a? Ap? - 20(1 + 0)a?

2

cRA<cRpA = <
= Aptas + a(o? + p?) o7

(41)

Formula (41) indicates that (38) is useful when o islarge. This is quite natural,
since then the (random) intensity is probably large in an interval [k A, (k+1)A)
where ruin occurs and it is rather probable that the risk process remains
negative until the end of that interval. If, on the other hand, ¢ is small, we are
“locally” close to the Poisson case, where we know that (38) is quite useless.
Notice that this does not necessarily imply that the risk process itself is close
to the Poisson case, since the natural measure of the variability is Ac .

Inview of Remark 1 and (41), the following proposition is not very surprising.

Propositiond. Assumethat Ly, is infinitely divisible. Thenrq < 2007 /o%, where
Ty is given by (24).

Proof. By the assumption of infinite divisibility, it follows from (32) and (33)

that
(v) = exp{- log(%(A)) (Gg (1 - %) - 1) } ,
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where G is a generating function, depending on 4, with G¢(0) = 0. Notice
that log(u(A)) < 0. Thus 7 is the positive solution of

~ log(@(A)) (Gg (1 + A’—a) - 1) ~(1+o)r=0,

independently of the choice of A.
Let p;(A) = P{§; = j}, so that

Ge(s) = p1(A)s +pp(A)s” + - = py(A)s +py(A)s®  for 52 0.

By similar arguments as in the proof of Proposition 1 it follows that ry < 7(A),
where 7(A) is the positive solution of

— log(@(A)) ((1 4 A%);?I (A) + (1 + Aia)zpz(é\) - 1) —(1+o)r

=0. (42)
Using (32) again, we get
logu(A(1 — s))
Ge(s) =1
() log a(A)

which, by routine differentiation, yields

AW(4) Ao
u(A)log(u(4)) - log(u(4))

pi(4) = G¢(0) =

and

B i ) A S G
2u(A)log(u(4))  2u(4)* log(u(A))

Pa(4) = 2GL(0) =

2.2
N A 0T,
—2log(u(4))’

as A — 0. Putting this into (42), it follows that 7(0) %' lim 4_.o 7(A) is the
solution of

"2

ro
1—2& __H = {J
+2a2 (1+90)=0

Thus, 7(0) = 2002 /0%, and the proposition follows. =
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By considering the same case as in Remark 3, it is seen that Proposition 4 does
not hold in general.

Example 3 continued. The most important example of an infinitely divisible
structure distribution is certainly when U is I'(vy, #). Recall that o = /3. We
choose to parameterize with « and ~y, which gives UZL = az/v. Then R is the

positive solution of

Aah(r) T —erA . 7 —crAfy
(1—T> e=TA =1 o h,(r)_E(l—e ) (43)

which is eq. (35) in Ammeter (1948, p. 196).
We have @/ (v) = —%(1 & %)"W“' = —a(l+ %)"Y‘],and thus

(- An(m) = a1 - AHI;(R))-Y-'

_ ~(},C~(;I\’.A(——'y—1)/'\/ _ Maecl{AecRA/'y'

Thus (37) reduces to

C* — Q/I;(]temCHA/’Y . (44)
ah!/(R) — ce=cRA/Y

Now we simplify further and let the claims be exponentially distributed with
mean . Then h(r) = pir/(1 — pr) and B/ (r) = /(1 — pr)? and (44) leads to

. o(1 — /LR)ZG—CR/_‘\/W
C —
1— (14 )1 —pR)2Ze A/
or, equivalently,

T= (1 + )1 — wB)(1 — (1 + Aaf1)iF)

Ammeter (1948, p. 196) considered this case for p = 1, @ = 1, A = 1000,
Y = 100, and » = 1000. Further he compared with the Poisson case. We
will consider the same case, but restrict ourselves to o = 10%. Notice that
0% =1000- 0.01 = 10.
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From Table 1 and (27) we get 7y = 17.6134. This yields {17270 ~ 2.6 - 108,
and thus (39) is useless in this case. Solving (43) we get R = 0.01482 which
yields ¢4 ~ 1.2-107, and thus also (38) is useless.

Let us therefore consider the ruin probability for the related Poisson process

N*. Recall that the only thing we now can say about the Ammeter process is
that ¥ 4 (u) < ¥*(u). From (36) and (45) we get

0.1{1 = R)(1 = 11R)e—Eu

o 08875 ,—0.01482u ,
1-11(1- R)(1 - 11R) ‘

U™ (u) ~

and thus ¥*(1000) ~ 3.3 - 10~7. In Table 4 given by Ammeter (1948, p. 196),
values of ¥;((1000) are given. Ammeter uses a relation, related to (18),
between ¥ 4 (u) and ¥*(u). To the best of our understanding, that relation is
not correct. We will return to this in Remark 4 below.

In the Poisson case, or when 0% = 0, we have by (11) and (18), R = 0.09091,
?(1000) = 3.0- 1074 and ¥, (1000) = 3.3-10~*!. Thus we are far from that
case. [J

Example 2 continued. Let now both U and F be exponential distributions,
with means « and p respectively. Then it follows from (45), with v = 1, that

o(1 — uR)(1 — (1 + Aa)uR)

= 1-(14+0)(1—-uR)(1- 1+ Aa)uR)’

In Grandell (1995) it is shown that

Wa(u) = (1—(1+ad)uR)e B, (46)
and it follows that

Ca=(1-(1+ad)uR).

The main idea in the proof of (46) is to use the fact that Z’k is exponentially
distributed given that Z,, > 0. By “looking” at the risk process at those epochs

kA where Z’k > 0, (46) follows from (2). This implies that we consider a
different inter-occurrence time distribution than given by (14).
In this case R is the positive solution of

apAr = (1 — pr)(1 — e(l+Q)auAr)’
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and 1t is easy to realize, cf. (26), that vp AR — 75 as A — oo, Thus

* o(1 —rp)
¢cRA— (14 0)rg, Chp —1—719 and C* — , (47

as A — oo. Further, cf. (41), since 0; = «

cRpA—201+4p0) as A— oo. (48)

As a matter of curiosity we may notice that CAeCRA —las A — oo.

In Table 2 we consider the case @ = p = 1. The case “A = oo” refers to the
limits (47) and (48),i.e., “R-00” = 71y.

Table 2. Tllustration of bounds for exponentially distributed intensity

and claims.
Q A R . A eu(?RAC)t CA eCRAch eCRAcv* eCRA e(TRDA
10 % 1 0.060383 0.8472 0.8792  0.9396 0.9676  1.0687 1.0761

10% 10 0.148163 0.7540 0.8370  0.9852 1.0446  1.1770 1.2012
10% 100 0.172884 0.7275 0.8254  0.9983 1.0642  1.2095  1.2407
10% 1000 0.175804 (.7244 0.8240  0.9998 1.0664  1.2133  1.2455

10% oo 0.176134 0.7240 0.8239  1.0000 1.0667 12138 1.2461]
20% 1 0.110300 0.7237 0.7794  0.8897 0.9430  1.1415 1.1735
20 % 10 0.266005 0.5762 0.7074  0.9734 1.0909  1.3760 14918

20% 100 0.308213 0.5387 0.6887  0.9969 1.1287  1.4475 1.6009
20% 1000 0.313142 0.5344 0.6865  0.9997 1.1331 1.4561 1.6145
20% oo 0.313698 0.5339 0.6863  1.0000 1.1335 14571  1.6161

30% I 0.152175 0.6224 0.6957  0.8478 0.9244  1.2188 1.2969
30 % 10 0.361152 0.4453 0.6027  0.9639 1.1388  1.5992 1.9155
30% 100 0.415920 0.4048 0.5799  0.9958 1.1937  1.7172  2.1484
30% 1000 0.422255 0.4003 0.5773  0.9996 1.2000 1.7314  2.1781

30% co  0.422970 0.3998 0.5770 1.0000 1.2007  1.7330 2.1815

The intention of presenting Table 2 is to illustrate first (38) and second (40)
and (41). Certainly this example suits the methods used very well, and hence
far reaching conclusions ought not to be drawn. It does, however, seem as if
the unique possibility to calculate €', does not improve the bounds drastically.
Further it seems that the diffusion approximation 2, works reasonably well
even for p as large as 30 %. The critical “parameter” seems to be o, and we
believe that the above conclusions hold reasonably generally for o7, =~ 1. [
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Remark 4. In the end of Example 3, we mentioned a relation between ¥ 4 (u)
and ¥* (1), used by Ammeter. Suppose that iz = o = 1. Ammeter (1948, p. 195)
states, as if it was a well-known fact, that

C%/C* = 1/(1 + oRA) (49)

in the Poisson case. In Laurin (1930, p. 111), which is one of Ammeter’s
general references to risk theory, (49) is mentioned after the comment “We
shall only give the final result which is suggested by Lundberg’s discussion
on this subject:” If we compare with (18), it follows that (49) holds as an
approximation, for large values of A. Therefore we believe (49) was motivated
by a heuristic argument.

In the case where both U and F' are exponential distributions it follows from
Example 2 that

1—-(1+o)(1-R)(1—-(1+A)R)

oA G e ,
al o(1 - R)

(50)

which is not in agreement with (49). Neither (50) is in agreement with (49) nor
(18) for large values of A. This is, however, no contradiction, since C* does
depend on A.

This is most certainly not to be regarded as a severe criticism of Ammeter’s
approach. In fact, Ammeter proposed e~ " as an approximation of ¥ 4 (u),
which means - see (5) — that he was “on the safe side”. O
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Zusammenfassung

Wir untersuchen verschiedene Fragen im Zusammenhang mit der Ruinwahrscheinlichkeit, falls
die Schiden gemiss einem Ammeter-Prozess eintreten. Der Ammeter-Prozess ist ein sehr
spezieller Cox-Prozess, der aus unabhingigen gemischten Poisson-Prozessen aufgebaut wird.

Summary

We consider certain questions related to the ruin probability, when the claims occur according to
an Ammeter process. The Ammeter process is a very special Cox process, built up by independent
mixed Poisson processes.

Résumé

Nous traitons de la probabilit¢ de ruine lorsque les sinistres surviennent selon un processus
d’Ammeter. Ce dernier est un cas trés particulier des processus de Cox, a savoir celui généré
par des processus de Poisson mixtes et indépendants.
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