
Zeitschrift: Mitteilungen / Schweizerische Vereinigung der
Versicherungsmathematiker = Bulletin / Association Suisse des
Actuaires = Bulletin / Swiss Association of Actuaries

Herausgeber: Schweizerische Vereinigung der Versicherungsmathematiker

Band: - (1994)

Heft: 2

Rubrik: Kurzmitteilungen

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


203

D. Kurzmitteilungen

F. Michaud, Lausanne

The p-th power variance principle

1 Introduction

In the terminology of Bühlmann (1971, p. 85), Goovaerts, de Vylder and

Haezendock (1984, p. 16), and Heilmann (1987, p. 110), a principle of premium
calculation H is a functional that assigns a number P H(S), the premium, to

any given risk S, a random variable. Examples are the variance principle, where

H{S) E{S) + aVar(S), a>0
and the standard deviation principle,

H(S)=E{S)+ßy/V^{S), ß > 0

In this note, we shall imbed these two principles in a one parameter family. We

consider more generally the p-th power variance principle, where

H{S) E(S) +7Var(S)p, 7 > 0, p>0.5.

The condition p > 0.5 is necessary to assure convexity of the p-th power variance

principle in the sense of Deprez and Gerber (1985).

2 The problem of optimal cooperation

As in Gerber (1980, p. 78), we suppose that each of n companies determines

the premium according to a given principle. Let Ht(-) denote the principle of

company i, 1 1,2, • •, n. Also, let S be a given risk to be insured by the n

companies. How can the risk S be decomposed so that the total premium is a

minimum? Mathematically, this is the problem of minimising

n

i=i
where Si, S2,..., Sn are random variables such that S Si + S2 + + Sn.

Mitteilungen der Schwei/ Vereinigung der Versicherungsmalhematiker Hell 2/1994
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If all the companies use a variance principle (company i with parameter 07,
i 1,2,..., n), it has been shown that this problem has an explicit solution. The

premium is minimal for

a

with

1 n 1

- y—,a ' a,-i=i 1

and its value is

E(S) + a Var(5).

This result has an intuitive interpretation. It is the premium that would be charged
by a single company that uses the variance principle with parameter a. The goal
of this note is to generalise these results to the p-th power variance principle.

3 Proportional decompositions

We suppose that company i uses the p-th power variance principle with
parameters 7i and p > 0.5. Thus for a decomposition S\, 52, • •, Sn of S, the total

premium is

n n
E(S) + ^7iVar(5i)p

i=l i=l
A first step is to consider proportional decompositions of S, i.e.,

Si fiS,
where Yli=i fi — 1- Then the total premium is

n
E(S) + Y/^f?PV*r(S)p-

2 1

We are looking for values of fi for which this expression is minimal. To apply
the method of Lagrange multipliers, we start with the function

G(h h /«• A) £ 7 jfP Var(S)P - A [ ft - l\
i=1 z=l '
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2P7fc/fcP
1

Var(S)p - Xfk fc=l,2,...,n.

The partial derivatives are

dG

dfk

If we set them equal to 0 and solve for ff,, we get

Ik
P

'
A; 1,2,... ,n,

where 7 is a constant such that

n

i=i
or equivalently,

1 „ 1

The resulting total premium is

n
E(S) + ^7J7var(Sf E(S) + 7 Var(Sf (1)

2=1

Note that this expression can be interpreted as the premium that results from

applying a p-th power variance principle with parameters 7 and p.
Two questions have to be answered. Firstly, the method of Lagrange multipliers
gives necessary (but not always sufficient) conditions. How can we be sure that

we have obtained the minimal premium? Secondly, is the solution also optimal in

a global sense, i.e., if we do not limit the analysis to proportional decompositions
of S?

4 Global optimality

To obtain a positive answer to these last two questions, we must show that

n

E(S) + 7 Var(5)p < E(S) + ]T lt Var (S.f
i=i
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for any random variables Si, S2, Sn such that S Si + S2 + + Sn. Since

n \ p/ V
Var{S)p Var ^ St

i=l

' ?=1 i=2j l
/ n \ 2 p

xi=i

where 07 is the standard deviation of Sx and qxj, the correlation coefficient
between Sx and S3, it is sufficient to show that

n n 2p n

i=i y i=i '

for any positive numbers <71, <72,..., <7n. Let

1 1

g, j ^ 1

and ßt J
2P *

Then the last inequality can be written as

/ n x 2p n

£ q^(T'1 - £ h(foai)2P
S=1 '

t=1
(2)

Note that qx > 0 and Y^=i Qt L So we can think of the g/s as probabilities,
and then by applying Jensen's inequality, we see that (2) is verified since p > 0.5.

Therefore, (1) is indeed the minimum total premium in a global sense.

5 The limiting case p 0.5

If all companies apply a standard deviation principle, the total premium is minimal

if the risk is distributed among the companies with the smallest parameter
value. This well known result can now be obtained as a limiting result from the

p-th power variance principle. To fix ideas, suppose that 71 < -ft, 1 2,3,..., n.
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Then

l{p)
1

2p— 1

1
for p J. 0.5

71

which shows that f\{p) —> 1 forp j 0.5. And since fz(p) > 0 and Y?}=\ fi 1>

it follows that ft{p) —> 0 for p J, 0.5, z 1,2,n.
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E. Di Lorenzo and M. Sibillo, Napoli

Some results on a model in risk theory
with constant dividend barrier

1. In 1974 H. Gerber [5] considered a new mathematical model in relation to
actuarial strategies in presence of a linear dividend barrier; this model overcomes
old polemics about payment of dividends and safety of an Insurance Company

In this framework, we suppose that the process of the aggregate claims {St} is a

compound Poisson process with parameter 7 > 0; in the following we consider
the case of purely positive risk sums, so, if S is the distribution function of the

risk sums, the mean claim size is given by:

Therefore, if C is the constant income, continuously received in time, the

following condition holds:

C > 7/U1

According to Gerber's model (cf. also [6] page 139), we suppose that when the

surplus reaches a fixed barrier, dividends are paid and the surplus waits on the

barrier until the next claim.
In [5] and then in [7], the case of a linear dividend barrier bt depending on time
is considered:

with b > 0, 0 < a < C, so that the risk reserve Xt verifies the conditions:

dXt Cdt-dSt if Xt < b + at

dXt adt — dSt if Xt=b + at.

If no barrier of this type is fixed, we set a C.

2. We denote by ip(x, b) the ultimate ruin probability in presence of a linear

dividend barrier, x being the initial risk reserve; considering all possible events,

(cf. [3]).

(1)

0

bt b + at, (2)

Miueilungen der Schweiz. Vereinigung der Versicherungsmalhemaliker. Hell 2/1994
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it is soon verified that (cf. [7]) the corresponding survival probability U(x,b)
satisfies the following equation:

X

C~+a^-1U + 1 Ju(x-y,b)dS(y) 0, (4)

o

with the boundary condition:

*IL-
Denoting by W(x,b) the expectation of the discounted dividend payments,
Gerber shows (cf. [7] page 109) that W(x,b) is the unique solution of the following
integro-differential problem:

s X
dW dW f

~ C~dx ~ a~db + ^ + ^)w 7 / W(x - y,b) dS(y)

o (6)

l(^Lt 1 W^SK+oo)
6 being a constant force of interest at which the divided payments are discounted,
and he gives the expression ofW(x,b), under the assumption that S(v) l — e~v.
Gerber's model can be generalized (cf. [4], [8]) by supposing that the income

depends from the initial surplus x by a given rate 8, so we consider the income

c, received as premiums, and the interest at rate 6:

C(x) c + 9x. (7)

In this scheme of ideas, we want to evaluate the expectation of the discounted

dividend payments.

3. Under the assumption that the process of the aggregate claims is a compound
Poisson one (with parameter 7), the mathematical model describing the surplus
of an Insurance Company in presence of a linear dividend barrier generates the

following integro-differential problem:
X

dW dW f- (c + 8x)— + {8 + i)W 7 J W{x-y,b)dS(y)
0 (8)

(£)-•
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where c( > 0) is the premium density, 9( > 0) the interest rate on the initial surplus,
<5(> 0) the force of interest at which the dividend payments are discounted.

The unique solution of (8) is the expectation of the discounted dividend
payments.

In the case of a constant barrier, i.e. a 0, we can treat b as a fixed parameter and

consider the function W(., b) as a function of the only x variable, then it follows
from (8) that W(.,b) is the unique solution of the integro-differential equation:

X

~(c + 6x)W'(x, b) + (S + 7)W(x, 6) 7 J W(x - y, b) dS(y) (9)

o

combined with the boundary condition:

W'{b,b) 1. (10)

In order to compute W(., 6), we consider the equation:

X

-(c + 6x)h'(x) + (6 + -y)h(x) 7 J h(x-y)dS(y), (11)

0

which has a unique solution, apart from a multiplicative constant. Let h be a

solution of (11), then it is clear that W(.,b) and h are linked by the following
relation:

W{x, b) (0 < x < b < +00), (12)
h \b)

therefore we only have to find a solution h of (11). We now consider the special

case where the claim amounts are exponentially distributed, i.e. S(y) 1 — e~y.

In this case the equation (11) can be written as follows:

X

-(c + 6x)h'(x) + {6 + j)h(x) 7 J h(y)e~^x~yS> dy. (13)

0

It is clear that the solutions of (13) are at least of class C°°, hence by multiplying
the equation (13) with ex and differentiating with respect to x, we obtain:

J2, h dh
-(c + 6x)^ + [6 + 7 - 0 - (c + 0x)\^ + Sh °. (14)
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The equation (14) can be studied by means of classical techniques of the theory
of hypergeometric equations (cf. [9]). We define:

w(y) h(y - ^jey, y x+ (15)

since

dh _1.dw
— e y — e yw,
dx dy

fh fEe-y _ 2(e-»*ü - e-'w) - e~«w,
dxz dxz \ dy

and substituting in (14), we get:

»*<> <"»

(16) is an hypergeometric confluent equation for w.

On the basis of the above considerations, it follows that if h is a solution of

equation (13) in — +00), then

h(x) e-x~c/ew(x+£), (17)

where re is a solution of (16) in (0, +00).

If [0 - (6 + 7))/6 is not an integer, the general solution of equation (16) is given

by:

+ By(«+l)/9si^l + ^,l + l±2;j,), (18)

A and B being two arbitrary constants and 3>(cq ß; z) denoting the Kummer's

function:

$(a p-z) i + y a(Q+1)---(Q + /e-1)^9(a,ß,z) +2_ ß{ß+lh^{ß + k_1) kl
k l
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By virtue of (17), the solution h(x) of equation (13) can be expressed by the

formula:

c~c/eB x+^
(6+7)/0

We now observe that (cf. [1]):

e"^(a, ß; z) @(ß - a, /?; -z), (20)

and that the condition [9 - (6 + 7)\/9 TL is equivalent to (6 + 7)/# ^ N

(5,7,9 > 0), therefore under the condition (5 + 7)/9 ^ N, we have from (19):

h{x)=A$[ -|,i-
B[x + ^f+l)/6Jl i + «+V* '). (21)

In order to determine a relation between A and B, we replace the expression of

h(x) given in (21) into (13), obtaining for x 0:

— c
d_

dx
AM

x=0

+ (5 + 7)^1

9x x=0

+ (H7)SQ
\(S+-y)/0

*(2.i + ^V'»=o. (22)

Formula (22) gives the required condition for A and B.

The function <P satisfies:

~$(a,ß]Z) ^<P(a + l,ß+l ;z).
az fj
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From (22) we have immediately:
c5

A
9 — 6 — 7

«(!_« 2-l±2;-£

ic \ *.i Ö 8 + 7 c
+ {8 + 7)$[ -Z'1 Z-'-ö

+ B
cv(«+7)/f 7 / 7rrfe#(1 + ?-2+

5 + 7 c
0, (23)

hence:

with

B AK(c,6,7,6),

c6 if,/-, <5 o 6+7. c\
K(c,8,1,9) - {6+l)/e/c\(t>+i)/v 7 &/, 7-Uz e+6+7^11 + 9'

6-i
~5~

6+7. _c"I)
(5 + 7)*(-!,i-«±2.-<F

^)(6+7)/07+fe+^ + ^2 + ^l;-§)
We get from (21):

/i(a:) ^4 <P - 77,1

+ K(c,6,7,0) x +

c

(«+7)/e
7 5 + 7

and being:

+

—1 + (6+7)/6>

~X"0

— 5 — 7

+ K(c, 5,7,

x<+2, i + l+I;_(,_£

<+17+£

-A'(c,6,i,0)(l+ +

*(1 + 1,2 +0+5+7 \ö

(<s+7)/e

5 + 7 -b — ^

(24)

(25)
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finally, by virtue of (12), we can deduce the following result:

Theorem 3.1. Let W(x,b) be the expectation of the discounted dividend

payments in the presence of a constant dividend barrier b, x being the initial
surplus. Suppose that the aggregate claims process is compound Poisson (with
Poisson parameter 7 and exponentially distributed claim amounts). Let c denote
the premium density, 6 the interest rate on the initial surplus, 6 the force of interest
at which the dividend payments are discounted. W(x,b) satisfies the equation

(9). If ^ jq when W(x, b) is given by:

W{x,b) *1
c

-x — —

r\ (<5+7)/e
+ K(c,6n,0)[x+~) <P : 11 +

— Ö — 7
.au-iz-Lt2--b-E

+ K(c,6,~,,0)S-^-(b+*.
-l + (8+~f)/0

6 + 7 c—; -b - -r

K(c,6,7,0)( b+ -

7

(<5+7 )/e

- 7 c
—; -x - -

0 + <5 + 7

with K(c, 6,7,6) given by (24).

#|, + 2,2+«+2;_J_'
-1

4. According to the scheme of the previous sections, we now want to evaluate
the expectation of the discounted dividend payments when the process of the

aggregate claims is a Wiener one. It is well known (cf. [2]) that processes of this

type naturally appear in models in which the insurance companies have a large
number of customers.
The presence of a linear dividend barrier implies that the risk reserve Xt verifies

the condition:

dXt fidt + dWt, if Xt<b + at, (26)
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ß(> 0) denoting the constant income and {Wt} the standard Wiener process.
It is known (cf. [7] page 112) that in this case the probability of survival U(x, b)

satisfies the following partial differential equation:

1 d2U dU dU n
29^+/X^+a96 -°'

together with the conditions:

17(0,6) 0,

9U\
dx)x=b~~

lim U(x,b) 1 -e-'2^x.
b^+oo

Let us consider in this model the expectation of the discounted dividend payments
W(x, b). If a 0, we can treat 6 as a fixed parameter; then denoting by 6 the

force of interest at which the dividend payments are discounted, the function
W(., b), considered as a function of the only x variable, satisfies the differential
equation (cf. [7]):

^W"{x, b) + nW'{x, b) - SW{x, 6) 0, (27)

with the conditions:

W(0,b) 0, (28)

W'(b, 6) 1. (29)

Introducing interest in the above described model (9 denoting as in the previous
section the interest rate on the initial surplus), we are lead to study the following
equation:

^W"(x, b) + (m + 6x)W'(x, b) - 6W(x, b) 0, (30)

together with the conditions (28) and (29).

It is well known that every solution of (30) with the above boundary conditions

can be expressed as the sum of a series of the type cnXn\ therefore if we

set:

CO

W(x,b)= J>nxn, (31)

n= 1
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it immediately follows that:

oo

W'(x,b) ^2 ncnxn_1, (32)
n= 1

oc

W"(x, b) ^ n{n - 1 )cnxn~2. (33)
71=1

By replacing (31), (32) and (33) into (30), we obtain:

c2 -ßci (34)

and

{ti + l)(?r 2)

2

which is equivalent to:

Cn+2 ~li{n + l)cn+i +(6- 9n)cn n > 1

2p 2(6 -On)
Cn+2 " " (^+2)Cn+1 +

(n + l)(n + 2)Cn' " " L (35)

Remembering that ci W'(0,6), we get by (34) C2 —ßW'(0,6).
It follows by (35) that cn are proportional to W'(0, b). We then have:

cn W'{0,b)-yn(p,6,Q), n> 1

7i (/r, 6,6) being equal to 1, and 72(/x, 6,0) being equal to —fj,.

The coefficients 7n follow the same recursion formula as the coefficients cn: i.e.

2fi 2 (6-On)
ln+2 -~,—77cr7n+l + 7—-777—T7c7n n > 1. 36

(n + 2) (n + l)(n + 2)

Taking into account the boundary condition (29) we actually find the following
result:

Theorem 4.1. Let W(x,b) be the expectation of the discounted dividend

payments in the presence of a constant dividend barrier b, x being the initial
surplus. Suppose that the process of the aggregate claims is standard Wiener. Let
ß denote the premium density, 9 the interest rate on the initial surplus, 6 the force
of interest at which the dividend payments are discounted.

W(x, b) satisfies the equation (30).
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Then W(x, b) is given by:

oo

E lnXr
W(x, b) —

n=l
OO

E n~fnbn~l
71—1

with 7i 1, 72 —ß and

2p 2(ö — 9(n — 2))
In 7n—1 + TT In —2 n > 3.

n (n — i)n

Emilia. Di Lorenzo and Marilena Sibillo
Dipartimento di Matematica e Statistica
Universitä degli Studi di Napoli "Federico II"
Complesso Monte S. Angelo
via Cintia
80126 Napoli, Italy
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C. Buchta, Erlangen

An Elementary Proof of the Schuette-Nesbitt Formula

Let Ai,..., Am c 12 be to events, denote by the probability that exactly

j of the m events take place and by Pi1... the probability that the specified
k events Ai1,..., Aik occur, irrespective of the occurrence of the other to — k
events. The Schuette-Nesbitt formula, a central tool in multiple life theory, states

that, for any real numbers co, • • •, cm,

m m

Y cop\j\ Y Akc° Y pn n
j=0 k=0 l<ii<--<ifc<m

Here the difference operator A is defined by Ac# C(+ j — eg, i.e.

The proof in standard textbooks (cf. [1] or [2]) is based on an elegant manipulation

of the difference operator A and the shift operator E defined by Ec#
The main step consists in calculating expectations of certain functions of these

operators. Here we present an elementary proof, which also shows that the

Schuette-Nesbitt formula is rather a combinatorial theorem than a probabilistic
one.
Assume that, for j 0,..., to, to each set which is the intersection of exactly j
sets Ari,...,Ar} and to - j sets AcSl,..., AcSmj (where {si,..., sm-j }

{1,m} \ {ri,... ,Tj) and Acs 12 \ As) the same weight cj is to be

assigned by assigning to the set 12 a weight wq and, for k 1,..., to, to each

intersection of exactly k sets Aix,..., the same weight w^. (A weight of
a set is a not necessarily nonnegative real number by which the measure of
the set ist multiplied.) If the weights w& are given, the weight cj of any set

Ari n n Arj n AcSl n n AcSm_ is the sum of the weight wq of the

set 12, the weights w\ of each of the j sets Ari, • •, ATj the weights u>2 of

each of the sets Ari n Ar2,..., Arj_x n Ar^ and, generally, the weights

wk of each of the (jQ sets Aix n n Aik which are obtained by choosing k

numbers ij,... ,ik out of the j numbers ri,... ,rj. Thus Cj J2k=o (i)wk•

Milleilungen dor Schwei/. Vereinigung der Versicherungsmalhematiker. Hefl 2/1994
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Consequently (as the inverse of the matrix ((*.)) 0 m-k~0 m 's t'ie

matrix ((~1)(*)) fe=0,..., m; £=0,..., m)'the desired weights c0,..., cm arise

if and only if, for k 0,..., m, X^=0(-l)fc+^(i>)c£ ^fcc0-

C. Buchta
Mathematisches Institut der
Universität Erlangen-Nürnberg
Bismarckstrasse
D-91054 Erlangen
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E. Kremer, Hamburg

Clarification of certain extensions of the chain-ladder technique

After reading further papers on nonlinear time series models (e.g. Pemberton

(1987)), the author noticed that his theorem 1 in Kremer (1993) cannot be true
in general. One can only say that:

E(Xtj | Xik, l + k<i+j) {Xt,j-\),
what also suggests to forecast the Xl^n_l+ji/ for k > 3, according to (3.6). But
the resulting forecasts are not the optimal ones of (3.5) in general. They are

something like handy, reasonable approximations to the optimal ones. It does

not seem to be possible to give very handy, analytical expressions for the forecast
defined by (3.5) in the general nonaffine case. Consequently one will be satisfied

in practice by applying (3.6).
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R.Picard, Grand-Lancy

Die Sterblichkeit in der Schweiz in jüngster Zeit

In der vorliegenden Studie wird anhand der Sterbefälle die Sterblichkeit in
der Schweiz von 1990/1991 mit derjenigen der schweizerischen Sterbetafel
1978/1983 verglichen. Das Vorgehen sei am folgenden Beispiel, die männliche

Bevölkerung der Schweiz betreffend, erläutert: Laut Angaben in den
Statistischen Jahrbüchern der Schweiz starben im Jahre 1990 32492, im Jahre 1991

32076 männliche Einwohner in unserem Lande. Das arithmetische Mittel aus
beiden Zahlen, 32284, ergibt die Zahl der in der Schweiz vom 1. Juli 1990

bis zum 30. Juni 1991 gestorbenen Männer. Nun stellt sich die Frage: Wieviele
Männer wären in der Schweiz im Laufe derselben Zeitspanne gestorben, wenn
ihr Ableben gemäss der Sterbetafel SM 1978/1983 erfolgt wäre? Auf der Basis

des von der Volkszählung vom 4. Dezember 1990 ermittelten Bestandes der
männlichen Bevölkerung der Schweiz errechnet sich diese Zahl wie folgt: Laut
dieser Volkszählung betrug die Zahl der nulljährigen Knaben 39354. Nach der
Tafel SM 1978/1983 ist die Sterbewahrscheinlichkeit im Alter 0 gleich 0.009487.

Somit wären 0.009487 x 39354 373 Knaben im ersten Lebensjahr gestorben.
Eine analoge Rechnung ergäbe 37 Tote unter den einjährigen Knaben, usw. Man
errechnet für den Gesamtbestand 35 634 Sterbefälle. Diese Zahl, die, wie gesagt,
unter der Voraussetzung (Supposition) ermittelt wurde, die Sterblichkeit von
1990/1991 verlaufe gemäss der Sterbetafel SM 1978/1983, wird nachstehend sup-
ponierte Sterblichkeit genannt, im Gegensatz zur effektiven Sterblichkeit. Im
vorliegenden Beispiel liegt die effektive Sterblichkeit unter der supponierten;
die Differenz beträgt 3 350 Todesfälle oder 9.4 % der supponierten Sterblichkeit.

In der folgenden Tabelle I sind für die schweizerische Wohnbevölkerung von
1990/1991 die Rechenergebnisse - getrennt nach Geschlecht und aufgeteilt in

Altersgruppen - zusammengestellt. (Es versteht sich von selbst, dass für Frauen
die supponierte Sterblichkeit aufgrund der Tafel SF1978/1983 ermittelt wurde).
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Tabelle I: Sterbefälle in der schweizerischen Bevölkerung von 1990/1991

(Alle Todesursachen)

Sterbefalle der Manner Sterbefalle der Frauen

0-14 15-29 30-64 65 + Total Altersgruppen 0-14 15-29 30-64 65 + Total

614 1 129 8402 25 489 35 634 supponiert 415 385 4258 30322 35 380

477 1094 7191 23 522 32 284 effektiv 352 338 3605 26606 30901

137 35 1211 1967 3350 Differenz 63 47 653 3716 4479

Was bereits für die männliche Bevölkerung der Schweiz festgestellt wurde, gilt,
wie Tabelle 1 deutlich zeigt, für beide Geschlechter in allen Altersgruppen: Die
effektive Sterblichkeit von 1990/1991 liegt unter der aufgrund der Sterbetafel
1978/1983 berechneten supponierten Sterblichkeit, was auf einen günstigen
Sterblichkeitsverlauf verweist.
Über die Zahl der supponierten und effektiven Sterbefälle infolge Krebs- und
Kreislaufkrankheiten sowie gewaltsamen Tod, den drei wichtigsten Todesursachen,

orientiert Tabelle II. Der Rechenprozess ist gleich wie in Tabelle I. Die
supponierten Sterbefälle wurden aufgrund der einjährigen abhängigen
Sterbewahrscheinlichkeiten ermittelt.

Tabelle II: Sterbefälle in der schweizerischen Wohnbevölkerung 1990/1991

infolge von Krebskrankheiten, Kreislaufkrankheiten und

gewaltsamem Tod

Sterbefalle der Manner Sterbefalle der Frauen

0-14 15-29 30-64 65+ Total Altersgruppen 0-14 15-29 30-64 65+ Total

Krebskrankheiten

34 86 2712 6393 9225 supponiert 28 54 2 002 5 523 7 607

25 63 2396 6798 9282 effektiv 21 36 1 816 5 685 7 558

9 23 316 ^t05 -57 Differenz 7 18 186 -162 49

Kreislaufkrankheiten

7 27 2414 10284 12 732 supponiert 4 18 707 13 501 14 230

10 49 1 967 10 876 12902 effektiv 7 20 630 14152 14 809

-3 -22 447 -592 -170 Differenz -3 -2 77 -651 -579
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Tabelle II: Fortsetzung

Sterbefalle der Manner Sterbefalle der Frauen

0-14 15-29 30-64 65+ Total Altersgruppen 0-14 15-29 30-64 65+ Total

Gewaltsamer Tod

126 892 1 500 1041 3559 supponiert 69 239 523 1295 2126

83 802 1334 1076 3295 effektiv 45 184 483 1349 2 061

43 90 166 -35 264 Differenz 24 55 40 -54 65

Tabelle II bietet ein anderes Bild als Tabelle I. So weicht die effektive Zahl
der Krebstoten nur wenig von der supponierten Zahl ab; somit hat sich die
Wahrscheinlichkeit, an Krebs zu sterben, wenig geändert. Dies gilt auch für den

gewaltsamen Tod bei Frauen. Bei den Kreislaufkrankheiten liegt die Zahl der
effektiven Sterbefälle in fast allen Altersgruppen deutlich über der supponierten.
Summiert man in der Kolonne Total der Tabelle II die Zahl aller supponierten
sowie die Zahl aller effektiven Sterbefälle,so erhält man:

Supponierte Sterbefalle 49479

Effektive Sterbefalle 49 907

Differenz -428

Die Zahl der effektiven Sterbefälle infolge der drei wichtigsten Todesursachen

übertrifft somit die entsprechende supponierte Zahl. Daraus folgt, dass der
anhand der Tabelle I nachgewiesene günstige Sterblichkeitsverlauf nicht auf diese

drei Todesursachen, sondern auf die übrigen Todesursachen (wie
Infektionskrankheiten, Erkrankung der Atmungsorgane, etc.) zurückzuführen ist.

Bildet man die Differenzen zwischen den entsprechenden Werten der Tabellen I
und II, so erhält man Tabelle III, die die Zahl der Sterbefälle infolge dieser

übrigen Todesursachen angibt:

Tabelle III: Sterbefälle in der schweizerischen Wohnbevölkerung 1990/1991

infolge der übrigen Todesursachen

Sterbefalle der Manner Sterbefalle der Frauen

0-14 15-29 30-64 65+ Total Altersgruppen 0-14 15-29 30-64 65+ Total

447 124 1776 7 771 10118 supponiert 314 74 1 026 10003 11417

359 180 1494 4 772 6805 effektiv 279 98 676 5 420 6 473

88 -56 282 2 999 3 313 Differenz 35 -24 350 4583 4 944
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In der Kolonne Total der Tabelle III beträgt die Differenz zwischen den sup-
ponierten und effektiven Sterbefällen für Männer 32,7%, für Frauen 43.3%
der supponierten Sterbefälle. Diese grossen Prozentsätze bestätigen die These,
dass der günstige Sterblichkeitsverlauf von 1990/1991 auf diese übrigen Todesursachen

zurückzuführen ist.

Anmerkung: Die den Berechnungen zugrunde liegenden Sterbewahrscheinlichkeiten

sind der folgenden Publikation des Bundesamtes für Statistik
entnommen:

Amtliche Statistik der Schweiz, Nr. 150 Schweizerische Sterbetafel 1978/1983,

Bern 1988.

Robert Picard
Chemin des Palettes 3

1212 Grand-Lancy (Geneve)
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