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D. Kurzmitteilungen

F. MicHAUD, Lausanne

The p-th power variance principle

1 Introduction

In the terminology of Bithlmann (1971, p. 85), Goovaerts, de Vylder and
Haezendock (1984, p. 16), and Heilmann (1987, p. 110), a principle of premium
calculation H is a functional that assigns a number P = H(S), the premium, to
any given risk .S, a random variable. Examples are the variance principle, where

H(S) = E(S) + aVar(5), a>0
and the standard deviation principle,
H(S) = E(S) + B+/Var(S5), 6>0.

In this note, we shall imbed these two principles in a one parameter family. We
consider more generally the p-th power variance principle, where

H(S) = E(S) 4+ v Var(S)?, v>0, p>0.5.

The condition p > 0.5 is necessary to assure convexity of the p-th power variance
principle in the sense of Deprez and Gerber (1985).

2 The problem of optimal cooperation

As in Gerber (1980, p. 78), we suppose that each of n companies determines
the premium according to a given principle. Let H;(-) denote the principle of
company ¢, i = 1,2,---,n. Also, let S be a given risk to be insured by the n
companies. How can the risk S be decomposed so that the total premium is a
minimum? Mathematically, this is the problem of minimising

where S;, S, ..., S, are random variables such that S = S + Sg + - - + Sp.
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If all the companies use a variance principle (company ¢ with parameter «;,
t=1,2,...,n),it has been shown that this problem has an explicit solution. The
premium is minimal for

A -
Y
with
1 LA
« "

and 1ts value is
E(S)+ o Var(S).

Thisresult has an intuitive interpretation. It is the premium that would be charged
by a single company that uses the variance principle with parameter . The goal
of this note 1s to generalise these results to the p-th power variance principle.

3 Proportional decompositions

We suppose that company ¢ uses the p-th power variance principle with para-
meters ; and p > 0.5. Thus for a decomposition Sy, So,...,S, of S, the total
premium 1s

ST H(S) = E(S) + 3 i Var(Si)P.
1=1

=1
A first step is to consider proportional decompositions of S, i.e.,
Si = fi§,

where 1 | f; = 1. Then the total premium is

E(S) + 3" 72 Var(S)P

i=1
We are looking for values of f; for which this expression is minimal. To apply
the method of Lagrange multipliers, we start with the function

G(f1fz ----- an\) = Z Wifztzp \’ar(s)p = /\<Zfz' - l) :
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The partial derivatives are

oa _
Ofk

If we set them equal to 0 and solve for fi, we get

1

. 2p—1

fk(l)p, k=1,2,...,n,
Tk

where 7y i1s a constant such that

& ~
> hi=1,
i—1

or equivalently,

Gl O

The resulting total premium is

E(S)+ > 7% fF Var(S)P = E(S) + v Var(S)P .

=1

2 fi P Var(S)P = Afy,  k=1,2,...

(1)

Note that this expression can be interpreted as the premium that results from

applying a p-th power variance principle with parameters -y and p.

Two questions have to be answered. Firstly, the method of Lagrange multipliers
gives necessary (but not always sufficient) conditions. How can we be sure that
we have obtained the minimal premium? Secondly, is the solution also optimal in
a global sense, i.e., if we do not limit the analysis to proportional decompositions

of §?

4 Global optimality

To obtain a positive answer to these last two questions, we must show that

E(S) + v Var(S)P < E(S) + Y 7i Var(5;)P

=1
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for any random variables Sy, S2, ..., S, such that § = S§1+ S+ - - 4+ .5,,. Since

Var(S)P = Var (i sz-)p
(ZU + Qii 9%3‘7%‘79)

1=27j=1
T 2p
% (Z%’) )
f=1

where o, is the standard deviation of 5; and g;;, the correlation coefficient
between 5; and S, it is sufficient to show that

(%) =50

=
for any positive numbers 01,02, ...,0,. Let
1

1
2p—1 ~1
= ()7 ana p=(2)7
Yi i

Then the last inequality can be written as

mn 2p n
(Z%ﬁigi) <> ai(Bioe)*P . (2)
=1 i=1

Note that ¢; > 0 and Z —1¢: = 1. So we can think of the ¢;’s as probabilities,
and then by applying Jensen’s inequality, we see that (2) is verified since p > 0.5.
Therefore, (1) is indeed the minimum total premium in a global sense.

5 The limiting case p = 0.5

If all companies apply a standard deviation principle, the total premium is mini-
mal if the risk is distributed among the companies with the smallest parameter
value. This well known result can now be obtained as a limiting result from the
p-th power variance principle. To fix ideas, suppose that y; < 7;, 1 = 2,3,...,n
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Then

wo(Z6E)T)T

1
1 n E— 2p—1
T i—o \ T

1
— — for p| 0.5,
71

which shows that f1(p) — 1for p | 0.5. And since f;(p) > 0 and Yok =1
it follows that f;(p) = Oforp | 0.5,i = 1,2,...,n.

3

Frédéric Michaud

Ecole des Hautes Etudes Commerciales
Université de Lausanne

CH-1015 Lausanne, Suisse

References

Bithlmann, H. (1971). Mathematical Methods in Risk Theory. Springer, New-York, Heidelberg, Berlin.

Deprez, O. and Gerber, H.U. (1985). On Convex Principles of Premium Calculation. Insurance:
Mathematics and Economics 4 (1985), pp. 179-189.

Gerber, H.U. (1980). An Introduction to Mathematical Risk Theory. The S.S. Huebner Foundation,
Philadelphia, PA; distributed by Irwin, Homewood, IL.

Goovaerts, M.J., de Vylder, F. and Haezendock, J. (1984). fnsurance Premiums. North-Holland,
Amsterdam, New-York.

Heilmann, W-R, (1987). Grundbegriffe der Risikotheorie. Verlag Versicherungwirtschaft e.V.,
Karlsruhe.






209

E. D1 LoreENzO and M. SiBILLO, Napoli

Some results on a model in risk theory
with constant dividend barrier

1. In 1974 H. Gerber [5] considered a new mathematical model in relation to
actuarial strategies in presence of a linear dividend barrier; this model overcomes
old polemics about payment of dividends and safety of an Insurance Company
(cf. [3)).

In this framework, we suppose that the process of the aggregate claims {S;} is a
compound Poisson process with parameter v > 0; in the following we consider
the case of purely positive risk sums, so, if S is the distribution function of the
risk sums, the mean claim size is given by:

+oo

= /"udS(v). (1)

0
Therefore, if C is the constant income, continuously received in time, the
following condition holds:

C>ypr .

According to Gerber’s model (cf. also [6] page 139), we suppose that when the
surplus reaches a fixed barrier, dividends are paid and the surplus waits on the
barrier until the next claim.

In [5] and then in [7], the case of a linear dividend barrier by depending on time
1s considered:

by = b+ at, (2)

with b > 0,0 < a < C, so that the risk reserve X; verifies the conditions:

dXy = Cdt — dSt if Xy <b+at

(3)
dX; = adt —dSt if X¢=0b+ at.

If no barrier of this type is fixed, we seta = C.

2. We denote by 7(x, b) the ultimate ruin probability in presence of a linear
dividend barrier, = being the initial risk reserve; considering all possible events,

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 2/1994
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it is soon verified that (cf. [7]) the corresponding survival probability U(x, b)
satisfies the following equation:
ou ou

i
C%+aE—’yU+”y/U(x—y,b)dS(y)20, (4)
0

with the boundary condition:

(7)., ®

Denoting by W(z,b) the expectation of the discounted dividend payments,
Gerbershows (cf. [7] page 109) that W (z, b) is the unique solution of the following
integro-differential problem:

P X
aw oW
_odW oW +(5+V)W—W/W(x—y,b>d5(y)
dzx ob
< 0 (6)
(5’_”/) —1 (0<z<b<+o0)
\ ox r=>b -

6 being a constant force of interest at which the divided payments are discounted,
and he gives the expression of W (z, b), under the assumption that S(v) = 1—e™".
Gerber’s model can be generalized (cf. [4], [8]) by supposing that the income
depends from the initial surplus x by a given rate @, so we consider the income
c, received as premiums, and the interest at rate 6:

C(z) =c+ 0. (7)

In this scheme of ideas, we want to evaluate the expectation of the discounted
dividend payments.

3. Under the assumption that the process of the aggregate claims is a compound
Poisson one (with parameter ), the mathematical model describing the surplus
of an Insurance Company in presence of a linear dividend barrier generates the
following integro-differential problem:

s x
W oW
— (¢ + 03:)8— - ad— +(6+7)W = W/W'(:r: —y,b)dS(y)
< ow 0b 8)
0

(81/1/) .
) =1
\ de r=b
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where ¢(> 0) is the premium density, (> 0) the interest rate on the initial surplus,
6(> 0) the force of interest at which the dividend payments are discounted.

The unique solution of (8) is the expectation of the discounted dividend pay-
ments. '

In the case of a constant barrier, 1.e. @ = 0, we can treat b as a fixed parameter and
consider the function W (.,b) as a function of the only x variable, then it follows
from (8) that W (., b) is the unique solution of the integro-differential equation:

—@+9@uﬂ@¢y+w+ynvum):yqux—%mdam (9)
0

combined with the boundary condition:
W'(b,b) = 1. (10)

In order to compute W (., b), we consider the equation:

T

e+ ) () + (6 + Vh(z) =7 / h(z — ) dS(y). (11)
0

which has a unique solution, apart from a multiplicative constant. Let & be a
solution of (11), then it is clear that W (.,b) and h are linked by the following
relation:

h(z)
h'(b)

Wi(x,b) = (0 €z £ b < +400), (12)
therefore we only have to find a solution A of (11). We now consider the special
case where the claim amounts are exponentially distributed, i.e. S(y) =1 —e Y.
In this case the equation (11) can be written as follows:

&

—(c+0z)h (z) + (6 +Y)h(z) =7 / h(y)e_(m_y) dy. (13)
0

Itis clear that the solutions of (13) are at least of class C°, hence by multiplying
the equation (13) with ¢ and differentiating with respect to x, we obtain:

d?h dh
iy ~ O — (¢ 4 8h =0. 14
(04~9$)dmz-+[5—+ y =0 — (c+0z)]——+ (14)
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The equation (14) can be studied by means of classical techniques of the theory
of hypergeometric equations (cf. [9]). We define:

w) =h(y-5)er  y=art s, (19
since

dh dw

L — e Y _ 7Y

o= 7 e Yw,

d?h d*w _ _gdw _

L y—2<e yd_y_e yw)—e Y,

and substituting in (14), we get:

d?w 6+ dw v
17 ot e AT ey 1—— == >0 1
Yy +( 0 y) dy ( 9>w e 1)

(16) is an hypergeometric confluent equation for w.

On the basis of the above considerations, it follows that if A is a solution of
equation (13) in ( — 7, +00), then

h(z) = e—w—c/f’w(:w g) (17)

where w is a solution of (16) in (0, +00).

If [ — (6 + v)]/€ is not an integer, the general solution of equation (16) is given

by:

v -6+,

w(y) = A@( g Y
—I—By(‘”“/)/g@(lntg,l+—5gﬁ/;y), (18)

A and B being two arbitrary constants and &(a, §; z) denoting the Kummer’s
function:

o0

— 1

(8+/<:—1)k
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By virtue of (17), the solution h(x) of equation (13) can be expressed by the
formula:

h(z) = e_“_C/BAq')(l T W-x+ E)

6 0 ’ 0
(6+v)/6
—z—c/f g £ é 6“"‘/, C
+e (:z:+9> @(1+9,1+———9 ,a:+9 -(19)
We now observe that (cf. [1]):
e’z@(a,ﬁ;z) :@(ﬁ_aaﬁr'—z)a (20)

and that the condition [0 — (§ + v)]/0 ¢ Z is equivalent to (6 + v)/8 ¢ N
(6,,6 > 0), therefore under the condition (6 + v)/0 ¢ N, we have from (19):

h(a:):Adi(—g,lmé—gl - —g)
(5+7)/6
e LR ks PO
+B(w+9> @(9,1+ e 9). (21)

In order to determine a relation between A and B, we replace the expression of
h(x) given in (21) into (13), obtaining for z = 0:

d 0 0 + -y c
—c— |AP| — =, 1 — ———;—— =
Caﬂf[ ( 9’ 0 o 9)];c=0

§ 6
+(6+7)A©(——,1—ﬂ;5>

g 0 0
0 o\ (6+7)/8 ~ &+ c
(6+~)/0
c y b+v ¢
e ! .2} =0. 22
+(6+f\/)B(9> @(9,1+ 7 9> (22)

Formula (22) gives the required condition for A and B.

The function @ satisfies:

d o
a;@(a,ﬁ;z) = B@(a +1,8+1;2).
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From (22) we have immediately:

66 5 (5—{—»—7' .
A[_m@(l—— 2- 22, 8)

hence:

B:AK(C,(S"‘Y’H),

with
K(c,6,7,0) = — (1 §,2- 51 )
c(g)(5+v)/95+g+7@(1 +3,2+ 55_45_1; e
R G TR ) (24)

- J e ¢
hm)ﬁAF( A ‘?0)
(6+v)/6
¢ w (5+'y c
et (o)
and being;
dh . o 5 54 .
6+~ e\~ (E+7)/8
+K(C’6’7»9)T(b 5)
J g+ 7y c
X@(9,1+ 7 9)

! L 0+ c
AU .
><0+(S+7 <9+, + 5 9)1’ -
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finally, by virtue of (12), we can deduce the following result:

Theorem 3.1. Let W(z,b) be the expectation of the discounted dividend
payments in the presence of a constant dividend barrier b, = being the initial
surplus. Suppose that the aggregate claims process is compound Poisson (with
Poisson parameter v and exponentially distributed claim amounts). Let ¢ denote
the premium density, d the interest rate on the initial surplus, 6 the force of interest
at which the dividend payments are discounted. W (z, b) satisfies the equation
(9). It %l ¢ N when W (z,b) is given by:

0’ 0 6
(6+v)/0
¥ o+ it
-E—K(c,é,%é’)(.’r"}— 9) @(—571+—9—’_$_§>jl
) ) b+ %
—1+(6+7)/0
L K(e 67,0 (b4 €
0 0
v b+y. , ¢
x@(9,1+ o b 9)
o\ (6+7)/8
»~K(c,6,7,9)(b+5)
—1
5 y o+ é
— 24 ——;—b— = i
x9+6+7@<1+9’ T 9)}

with K (c, 8,7, 0) given by (24).

4. According to the scheme of the previous sections, we now want to evaluate
the expectation of the discounted dividend payments when the process of the
aggregate claims is a Wiener one. It is well known (cf. [2]) that processes of this
type naturally appear in models in which the insurance companies have a large
number of customers.

The presence of a linear dividend barrier implies that the risk reserve Xy verifies
the condition:

dX; = pdt +dW;, if Xi <b+at, (26)



216

p(> 0) denoting the constant income and {W;} the standard Wiener process.
It is known (cf. [7] page 112) that in this case the probability of survival U (x, b)
satisfies the following partial differential equation:

192U  oU  oU

Lo L LIY LY g
5922 "Haez "%

together with the conditions:

U(0,b) =0,

%),
oz x=b

lim Uz, b) =1—e 28T,
b—+o00
Letusconsider in this model the expectation of the discounted dividend payments
W(z,b). If a = 0, we can treat b as a fixed parameter; then denoting by § the
force of interest at which the dividend payments are discounted, the function
W(.,b), considered as a function of the only x variable, satisfies the differential
equation (cf. [7]):

%W”(m, b) + uW' (z,b) — 6W (z,b) = 0, (27)
with the conditions:

W(0,b) =0, (28)

W'(b,b) = 1. (29)

Introducing interest in the above described model (6 denoting as in the previous
section the interest rate on the initial surplus), we are lead to study the following
equation:

%W”(x,b) + (i + 92)W' (2, b) — 6W (z,b) = O, (30)

together with the conditions (28) and (29).

It is well known that every solution of (30) with the above boundary conditions
can be expressed as the sum of a series of the type Zf,;ozl cnx™; therefore if we
set:

Wz, b) = Z e, (31)
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it immediately follows that:

oo

W' (z,b) = Z nepz™ 1, (32)
n=1
(o.]

W’ (z,b) = > n(n—1)cpz™ 2 (33)
n=1

By replacing (31), (32) and (33) into (30), we obtain:
co = —pey (34)

and

(n+1)(n+2)
2

cnt2 =—pn+epr1 + (0 —0n)en, n>1

which is equivalent to:

2u P 2(6 —6n)
n+2) "M T D2

Cnt2 = — )cn, n > 1. (35)

Remembering that ¢c; = W/(0,b), we get by (34) e = —uW’(0,b).
It follows by (35) that ¢y, are proportional to W’ (0, b). We then have:

cn = W (0,b)yn (1, 6,8), n>1
71 (u, 6, 6) being equal to 1, and 2 (u, 6, 8) being equal to —p.
The coefficients -y, follow the same recursion formula as the coefficients ¢;,: i.e.

20 2(6 — 6n)

= —— + .

n>1. (36)

Taking into account the boundary condition (29) we actually find the following
result:

Theorem 4.1. Let W(zx,b) be the expectation of the discounted dividend
payments in the presence of a constant dividend barrier b, z being the initial
surplus. Suppose that the process of the aggregate claims is standard Wiener. Let
p denote the premium density, 6 the interest rate on the initial surplus, é the force
of interest at which the dividend payments are discounted.

W (x,b) satisfies the equation (30).
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Then W(x, b) is given by:

o0
Ynz™
=1
m I
Z n'?’nbn_l

n=1

Wia,b) =

withy; = 1, 72 = —pu and

Emilia. Di Lorenzo and Marilena Sibillo
Dipartimento di Matematica e Statistica
Universita degli Studi di Napoli “Federico I1”
Complesso Monte S. Angelo

via Cintia

80126 Napoli, Italy
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C. BucHTa, Erlangen

An Elementary Proof of the Schuette-Nesbitt Formula

Let Ay,...,Am C {2 be m events, denote by P[j] the probability that exactly
J of the m events take place and by F;, _;, the probability that the specified
kevents A;,, ..., A;, occur, irrespective of the occurrence of the other m — k
events. The Schuette-Nesbitt formula, a central tool in multiple life theory, states
that, for any real numbers cq, .. ., ¢m,

m

m
D oPy=> A% Y Py
=0 k

—0 1<y <o i <m

Here the difference operator A is defined by Acy = cp41 — ¢y, 1.€.

Akey = i(—l)’““(;)cw

£=0

The proof in standard textbooks (cf. [1] or [2]) is based on an elegant manipula-
tion of the difference operator A and the shift operator E defined by Fcp = cgpy.q.
The main step consists in calculating expectations of certain functions of these
operators. Here we present an elementary proof, which also shows that the
Schuette-Nesbitt formula is rather a combinatorial theorem than a probabilistic
one.

Assume that, for 5 = 0,...,m, to each set which is the intersection of exactly j
sets Apy,...,Ar; and m — j sets Agl,...,Agmfj (where {s1,...,8m—j} =
{1,...,m} \ {r1,...,7;} and A = 2\ As) the same weight c; is to be
assigned by assigning to the set {2 a weight wg and, for k = 1,...,m, to each
intersection of exactly k sets A;,,..., A;, the same weight wy. (A weight of
a set is a not necessarily nonnegative real number by which the measure of
the set ist multiplied.) If the weights wj are given, the weight ¢; of any set
Apy Moo N Apy MAG ML N AG L is the sum of the weight wo of the
set {2, the weights w; of each of the j sets ATI,---,ATj, the weights wsg of
each of the (;) sets Apy N Argy.o oy Ay N Ay;, and, generally, the weights
wy, of each of the (i) sets A;, N...N A;, which are obtained by choosing &

numbers 4, ...,7; out of the j numbers r1,...,7;. Thus ¢; = ?c:() (i)wk

Mitteilungen der Schweiz. Vercinigung der Versicherungsmathematiker, Helt 2/1994
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Consequently (as the inverse of the matrix ((gc))jzo, i k=0, ... m 18 the
matrix ((w1)’“+f(’;))k$0 el m),the desired weightscg, . . ., ¢y arise

if and only if, for k = 0,...,m, wg = Yy_o(—1)FH(%)ep = AFep.

C. Buchta

Mathematisches Institut der
Universitdt Erlangen-Niirnberg
Bismarckstrasse 13

D-91054 Erlangen
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E. KREMER, Hamburg

Clarification of certain extensions of the chain-ladder technique

After reading further papers on nonlinear time series models (e.g. Pemberton
(1987)), the author noticed that his theorem | in Kremer (1993) cannot be true
in general. One can only say that:

E(be'j | Xk, L+ <i+j)= fj,aj (Xz‘,j—l)a

what also suggests to forecast the X; ,, ;4 for k > 3, according to (3.6). But
the resulting forecasts are not the optimal ones of (3.5) in general. They are
something like handy, reasonable approximations to the optimal ones. It does
not seem to be possible to give very handy, analytical expressions for the forecast
defined by (3.5) in the general nonaffine case. Consequently one will be satisfied
in practice by applying (3.6).
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R.Pi1cARD, Grand-Lancy

Die Sterblichkeit in der Schweiz in jlingster Zeit

In der vorliegenden Studie wird anhand der Sterbefille die Sterblichkeit in
der Schweiz von 1990/1991 mit derjenigen der schweizerischen Sterbetafel
1978/1983 verglichen. Das Vorgehen sei am folgenden Beispiel, die ménnliche
Bevolkerung der Schweiz betreffend, erldutert: Laut Angaben in den Statis-
tischen Jahrbiichern der Schweiz starben im Jahre 1990 32492, im Jahre 1991
32076 mannliche Einwohner in unserem Lande. Das arithmetische Mittel aus
beiden Zahlen, 32284, ergibt die Zahl der in der Schweiz vom 1. Juli 1990
bis zum 30. Juni 1991 gestorbenen Ménner. Nun stellt sich die Frage: Wieviele
Minner wiéren in der Schweiz im Laufe derselben Zeitspanne gestorben, wenn
ihr Ableben gemaiss der Sterbetafel SM 1978/1983 erfolgt wiare? Auf der Ba-
sis des von der Volkszdhlung vom 4. Dezember 1990 ermittelten Bestandes der
minnlichen Bevolkerung der Schweiz errechnet sich diese Zahl wie folgt: Laut
dieser Volkszdhlung betrug die Zahl der nulljahrigen Knaben 39354. Nach der
Tafel SM 1978/1983 ist die Sterbewahrscheinlichkeit im Alter 0 gleich 0.009 487.
Somit wiren 0.009 487 x 39354 = 373 Knaben im ersten Lebensjahr gestorben.
Eine analoge Rechnung ergibe 37 Tote unter den einjdhrigen Knaben, usw. Man
errechnet fiir den Gesamtbestand 35 634 Sterbefille. Diese Zahl, die, wie gesagt,
unter der Voraussetzung (Supposition) ermittelt wurde, die Sterblichkeit von
1990/1991 verlaufe gemaéss der Sterbetafel SM 1978/1983, wird nachstehend sup-
ponierte Sterblichkeit genannt, im Gegensatz zur effektiven Sterblichkeit. Im
vorliegenden Beispiel liegt die effektive Sterblichkeit unter der supponierten;
die Differenz betrdgt 3 350 Todesfille oder 9.4 % der supponierten Sterblichkeit.

In der folgenden Tabelle I sind fiir die schweizerische Wohnbevolkerung von
1990/1991 die Rechenergebnisse — getrennt nach Geschlecht und aufgeteilt in
Altersgruppen — zusammengestellt. (Es versteht sich von selbst, dass fiir Frauen
die supponierte Sterblichkeit aufgrund der Tafel SF 1978/1983 ermittelt wurde).
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Tabelle I: Sterbefille in der schweizerischen Bevolkerung von 1990/1991
(Alle Todesursachen)

Sterbefille der Mianner Sterbefille der Frauen

0-14 15-29 30-64 654+ Total Altersgruppen 0-14 15-29 30-64 65+  Total
614 1129 8402 25489 35634 supponiert 415 385 4258 30322 35380
477 1094 7191 23522 32284 effektiv 352 338 3605 26606 30901
137 35 1211 1967 3350 Differenz 63 47 653 3716 4479

Was bereits fiir die médnnliche Bevolkerung der Schweiz festgestellt wurde, gilt,
wie Tabelle I deutlich zeigt, fiir beide Geschlechter in allen Altersgruppen: Die
effektive Sterblichkeit von 1990/1991 liegt unter der aufgrund der Sterbetafel
1978/1983 berechneten supponierten Sterblichkeit, was auf einen giinstigen
Sterblichkeitsverlauf verweist.

Uber die Zahl der supponierten und effektiven Sterbefille infolge Krebs- und
Kreislaufkrankheiten sowie gewaltsamen Tod, den drei wichtigsten Todesur-
sachen, orientiert Tabelle II. Der Rechenprozess ist gleich wie in Tabelle 1. Die
supponierten Sterbefdlle wurden aufgrund der einjdhrigen abhédngigen Sterbe-
wahrscheinlichkeiten ermittelt.

Tabelle II: Sterbefille in der schweizerischen Wohnbevolkerung 1990/1991
infolge von Krebskrankheiten, Kreislaufkrankheiten und
gewaltsamem Tod

Sterbefille der Manner Sterbefille der Frauen

0-14 15-29 30-64 654  Total Altersgruppen 0-14 15-29 30-64 654+  Total
Krebskrankheiten

34 86 2712 6393 9225 supponiert 28 54 2002 5523 7607

25 63 2396 6798 9282 effektiv 21 36 1816 5685 7558

9 23 316 405 ~-57 Differenz 7 18 186 -162 49
Kreislaufkrankheiten

27 2414 10284 12732 supponiert 4 18 707 13501 14230

10 49 1967 10876 12902 effektiv 7 20 630 14152 14809

-3 -22 447 -592 -170 Differenz -3 -2 77 -651 -579
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Tabelle II: Fortsetzung

Sterbefille der Méanner Sterbefille der Frauen

0-14 1529 30-64 65+ Total Altersgruppen 0-14 15-29 30-64 65+ Total

Gewaltsamer Tod
126 892 1500 1041 3559 supponiert 69 239 523 1295 2126
83 802 1334 1076 3295 effektiv 45 184 483 1349 2061
43 90 166 =35 264 Differenz 24 55 40 54 65

Tabelle II bietet ein anderes Bild als Tabelle I. So weicht die effektive Zahl
der Krebstoten nur wenig von der supponierten Zahl ab; somit hat sich die
Wahrscheinlichkeit, an Krebs zu sterben, wenig gedndert. Dies gilt auch fiir den
gewaltsamen Tod bei Frauen. Bei den Kreislaufkrankheiten liegt die Zahl der
effektiven Sterbefille in fast allen Altersgruppen deutlich iiber der supponierten.
Summiert man in der Kolonne Total der Tabelle II die Zahl aller supponierten
sowie die Zahl aller effektiven Sterbefille,so erhilt man:

Supponierte Sterbefille 49479
Effektive Sterbefille 49907

Differenz —428

Die Zahl der effektiven Sterbefille infolge der drei wichtigsten Todesursachen
tibertrifft somit die entsprechende supponierte Zahl. Daraus folgt, dass der an-
hand der Tabelle I nachgewiesene giinstige Sterblichkeitsverlauf nicht auf diese
drei Todesursachen, sondern auf die iibrigen Todesursachen (wie Infektions-
krankheiten, Erkrankung der Atmungsorgane, etc.) zuriickzufiihren ist.

Bildet man die Differenzen zwischen den entsprechenden Werten der Tabellen I
und II, so erhdlt man Tabelle III, die die Zahl der Sterbefille infolge dieser
iibrigen Todesursachen angibt:

Tabelle III: Sterbefélle in der schweizerischen Wohnbevolkerung 1990/1991
infolge der tibrigen Todesursachen

Sterbefille der Méanner Sterbefille der Frauen

0-14 15-29 30-64 65+  Total Altersgruppen 0-14 15-29 30-64 654+  Total

447 124 1776 7771 10118 supponiert 314 74 1026 10003 11417
359 180 1494 4772 6805 effektiv 279 98 676 5420 6473

88 -56 282 2999 3313 Differenz 35 -24 350 4583 4944
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In der Kolonne Total der Tabelle III betrédgt die Differenz zwischen den sup-
ponierten und effektiven Sterbefillen fiir Ménner 32,7 %, fiir Frauen 43.3%
der supponierten Sterbefille. Diese grossen Prozentsidtze bestédtigen die These,
dass der giinstige Sterblichkeitsverlauf von 1990/1991 auf diese iibrigen Todesur-
sachen zuriickzufiihren ist.

Anmerkung: Die den Berechnungen zugrunde liegenden Sterbewahrschein-
lichkeiten sind der folgenden Publikation des Bundesamtes fiir Statistik ent-
nommen:

Amtliche Statistik der Schweiz, Nr. 150 Schweizerische Sterbetafel 1978/1983,
Bern 1988.

Robert Picard
Chemin des Palettes 3
1212 Grand-Lancy (Geneve)
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