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B. Wissenschaftliche Mitteilungen

F. DE VULDER, H. COSSETTE*, Louvain-la-Neuve

Dependent contracts in Bithlmann’s credibility model

1.  Introduction: credibility on a roulette, dependent contracts

We consider a roulette with holes numbered 1,2,...,k. We denote by 8,
(7 = 1,...,k) the probability that the ball falls in the hole j, in any play. In
a perfect roulette,

1

fy =y smsrvem P =

i, 2 k k

We do not assume the roulette to be perfect here. We have
B +02+4---4+8; =1.

Let us observe the roulette during ¢ plays, numbered 1,2, ... ,t. We define X
(7 =1,...,k; s = 1,...,t) to be equal to 1 if the ball falls in the hole j at
the play s, and to be equal to 0 if not. We want to find credibility estimators for
61, ...,0;.Biihlmann’s model does not apply directly, because it treats portfolio’s
with independent contracts. The independence assumption is not satisfied on the
roulette, because

Xig+ Xog+ -+ Xpe=1 (s=1,...,1).

But Biithlmann’s estimator is constructed on a fixed contract, and the portfolio
with several contracts is used only for the estimation of the involved parameters.
Starting with this idea, we were convinced that only a small adaptation of
Biihlmann’s model would solve our roulette problem.

We like to believe that the contracts of insurance portfolios can be considered as
being independent, mostly because this is very convenient for the construction
of a theory. But chain car crashes are not exceptional, and on misty days all cars
of a region have higher probabilities to be involved in an accident. During dry
hot summers, all wooden cottages are more exposed to fire. In such situations,
the stochastic dependence can hardly be neglected. Next credibility model shows
that it is not so difficult to take it into account.

“This reseral i supported by I'Université Laval and Fonds pour la Formation de Chercheurs et
I'Aide & la Recherche.
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The considerations of this note also apply, mutatis mutandis, to the Bithlmann-
Straub model with weighted observations.

2. Bithlmann columns

2

A Biihlmann column with characteristics ju(.), m, a, s* is a column
0,X1,...,Xt) (1)
of random variables such that
E(Xs/0) = u(o) CEY O
Epld] =
Var u(6) = a, (2)
ECov(Xy, Xs/O) = 6pss®  (r,s=1,...,1). (3)

(No confusion is possible between the time subscript s and the s occurring in the
parameter s2). Using the indicated covariances, we implicitly assume that

EX? < o0 (8= 1y..0,t).

Any column (1), such that for fixed ©, the variables X, ..., X} are conditionally
i.i.d. is a Bithlmann column with characteristics defined by (2) and (3).

In the paper Biihlmann (1967), at the origin of all the developments of modern
credibility theory, the author argued on a single column (1), and he only used the
relations (2) and (3). He derived the credibility estimator [i for j1(O):

B at
52 fat’

—~

p=z=(X1+:-+Xt)+ (1 —2)m, where 2z

o~ | =

The classical Biihlmann model, with several contracts, can be defined as being a
finite number of independent Bithlmann columns with the same characteristics.
The parameters m, a, s° can be estimated from observations in this model.

As we shall see in next sections, the independence assumption can be dropped
if some bias is allowed in the estimation of a. In fact, already in the classical
Biihlmann and Biihlmann-Straub models, the usual estimators for a are biased.
Indeed, pseudo-estimators are biased because they do not use the exact z's. If
the classical estimator is used, say a, it may take negative values and it is replaced
by max(a, 0), introducing a bias again.
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3.  Buhlmann’s generalized model

We consider the model with random variables

61 ... B ... Oy
X11 Xi] Xk‘l
Xis oo Xis sue X
Xlt Xit th

We only assume that the columns of this tableau are Bithlmann columns with the

same characteristics u(.), m, a, s%:

E(Xis/0;) = m(0;),
Eu(©;) =m,
Var u(@;) = a [e=1,....8 3=1,...,0)
B GO0 Xyl B ) = b8 (B Lovsus By B8 =Dsu::4k)
The credibility estimator for u(@;) is

Hi = 2Xip + (1= z)m,
at

where 2z = 5
54 + at

and  Xjpr = —(Xo1 + - + Xqp).

S =

Our problem is to estimate m, s2, a.

Whereas the columns of the tableau are independent in the classical model, we
later (section 6) make a conditional independence assumption on the lines of the
tableau.

4, Parameter estimation

Estimation of m.
The obvious estimator of m is
= 1
i = i Z ok g
15
But m might also be estimated in a larger portfolio than the one under consider-
ation. Hereafter, i’ denotes any estimate (a constant, not a random variable),
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of m. In the roulette problem, m is known exactly, and then we take of course
"
m = m;

Estimation of s°.

As in the classical Bithimann model, the right estimator of s? is

5 1 2
§? = — Z Z (Xis — Xim) (4)
(122
It is unbiased. Indeed, the unbiasedness of the estimator
" 1 9
5§ =317 S (Xis — Xim) ",

based on the observations of the i-th contract only, results from the fact that the
1-th column of the tableau of section 3 1s a Bithlmann column. Moreover,

5 1 P
Pl E
1

Estimation of a.

We suggest the estimator

" 1

a = m Z Z (X”- — 'ITL,) (Xz's — m’), (5)
1 T#s
It satisfies
Fa=a+ (m— m')Q, (6)

i.e. it has the bias (m — m/)%.
Indeed, we have

Cov (Xir, Xis) =a+6rss®  (i=1,...,k r,8=1,...,1)
because the i-th contract is a Biihlmann column. Also,
(Xir —m") (Xis —m')
= ((Xsp —m) + (m = m")) (X35 —m) + (m —m'))
= (Xir —m) (Xis —m) + (m —m') (X5 —m)
+ (X —m)(m—m") + (m — m’)?
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Hence, if 7 £ 5,
E((Xir —m') (X35 —m))
= E((Xir — m) (Xss —m)) + (m —m')?
= Cov (Xir, Xis) + (m — m')2 = a + (m —m')2.

This implies (6) because the double sum in the last member of (5) has kt(t — 1)
terms with the same expectation

a+(m—m2.

We notice that
1 5
a = Z Zaz 5
7
where
~ l : o / e 7
Gy = D) ; (Xir —m) (X3 —m).

Because a > 0, we cannot accept negative estimates and we have to replace a by
max(0, @), or, perhaps even better, by

1
x Z max (0, a;).
1

N Application to the roulette problem

In the roulette problem of the introduction, we interpret the unknown vector
(61,....0;) as realization of some random vector (01, ...,@}). To other real-
izations of that random vector correspond other hypothetical roulettes.

At each play, the ball falls in exactly one hole. Hence

Xy1$+...+XkS:1_

Taking expectations, we have km = 1. Hence m = 1/k and we can use the
estimator (5) with m’ = 1/k. Then (6) shows its unbiasedness.
We use the notations

Xiz =X+ + Xy (i=1,...,k),

Xerp=X1g+ -+ Xpx =t,
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We have

t<Q <2

The case () = t occurs if the ball falls in different holes in the plays s = 1, ...

; B

This is only possible if t < k. The case ) = t2 occurs if the ball falls in the same

hole in each of the plays s = 1,...,t.
Here we have
1(6;) = E(Xis/6:)
= P(X;s = 1/0;)
and 1i; is the credibility estimator 5@ of 6;:

o~

0; =z Xim + (1 - 2)7

o] =

Estimation of s°.

From (4) results

- ()

2 1
= Z Z (Xis — > XisXim + t_QXiQZ)

_XZE__ZX12+“tZX2

——
t
Hence
9 -Q
kt(t —1)°
; 1
D=L £ <,
=S5 S 3
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Estimation of a.

Z Z i — M) —m)

T T#s
= Z (Xir —m) (Xis —m) — Z (Xis — m)"2
irs 18
= Z —~mXis — mXgy +m?)

iTs

- Z (X%-s —2mX;s + m2)

:Q—th—mt2+m2kt2 t -+ 2mt — ktm?
1o 1, 2 1
gt le Lpe 2 gl
YW R TR " E k2

2

_ i L 1 9
—(Q“tH“E—Z—t(t—l)—gt(t*l)“(t - Q).

Hence, by (5) and (8),

- 1 1
G— (E_sz) - (10)

This is a relation between the unbiased estimators @, 52. Taking expectations, we
obtain that the corresponding relation holds between the exact values a, s2.

In fact, the latter relation is obvious because

o+ 5% =Var X;s = E(X2) — B2(X;5) = E(Xs5) — m?
, 11
=m-m‘=—-—-—=.

ko k?

Discussion of the solution.

Case 1. The last member of (10) is negative.

Then we can only adopt the estimate a = 0. Then z = 0 and from (7) results

This means that we cannot contradict the perfectness of the roulette.
Case 1 certainly occurs if the balls fall in different holes in the considered plays.
Indeed, then Q = ¢, 32 = 1/k and the last member of (10) equals —1/k?.
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Case 2: The last member of (10) is positive.

Then we adopt (8) and (10) as estimators for s2, a and the estimate of 6; results
from (7). Of course, all involved random variables X;s are supposed to be
replaced by their realizations x;.

We tried different values of £, ¢, Q). In each case there was complete agreement
with the intuition that we have of the roulette problem, or at least, there was no
contradiction with this intuition. As extreme example, let us assume that in all
the considered plays the ball falls in the hole 1. Then

Q:t27 §2: b Z:1’
8 =1, 9, =0 i=2,...k).
Conclusion.

This study implies the following advice to the gamblers: play the numbers that
come out most frequently. Most strangely, a lot of gamblers do just the opposite.
They commit a double error. First they believe that the roulette is perfect. This
is certainly not the case in obscure gamblers clubs, and even not in big casinos,
as one of us was told by a manager. Further, they know just enough of the law
of large numbers to apply it incorrectly. If a number has not come out for some
time, they believe that the law of large numbers sanctions the roulette by forcing
its outcome 1in the next plays. Of course they ignore a statement by Borel, we
believe, “La roulette n’a ni yeux, ni mémoire”.

6. A restriction on Bithlmann’s generalized model

Our next problem is the detection of the stochastic dependence of the contracts
(i.e. the columnsin the tableau of 3.) in Bithlmann’s generalized model, restricted
conveniently.

We shall assume that, in any fixed portfolio, corresponding to a realization

of the vector
Q@ ={04,....0%),

the observations in different years s = 1,...,¢, are independent. In fact we
assume less. Precisely, we suppose that

E(XIS/Q)IE(XIS/@J ('izl,....k; Sﬁl,....t)



135

and that constants b, ¢ exist, satisfying the relations

Cov(p(©;), 1(€5)) = b (5,7 =1,...,k 1% j),
ECov (X, Xjs/O) =6psc (1,5=1,...,k i#£7; rs=1,...,1).

If the contracts are independent, then b = ¢ = 0.

The values of b and ¢ give an idea of the stochastic dependence, more precisely
of the correlation, of the contracts. In next section, we indicate how they can be
estimated.

7. Parameter estimation in the restricted model

The estimation of b and ¢ is based on the relation
Cov(XiT,XjS):b—HSTSC (,i=1,...,k &% 7;
rs=1,...,t) (11)
proved in the usual way from the assumptions on the restricted model. Indeed,
t61d o 4,
Cov (X;p, Xjs) = Cov (E(X,,/0), E(X;5/6)) + E Cov (Xir, X5/O)
= Cov (E(XW/QT), E(st/é)j)) + bpgC
= Cov (u(6;),p(6;)) + brsc
= b+ 0rscC.

Estimation of b.

For b we suggest the estimator

5 1 , ,
b= : E Xir —m ) (Xjs—m), (12)
k(k— 1)t(t — 1) i i ks (Xir ) (Xis )

where m/ is an approximation of m.
By a proof similar to that of (6), we obtain

—~

Eb=b+ (m—m')?. (13)

In the roulette case, we can take m’ = m and then b is unbiased.
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Estimation of c.
For ¢ we suggest the estimator
_1 DD (Xis —m')(Xjs —m') —b. (14)
S i#j

It is unbiased: E¢ = c.
Indeed, from (14) results that

Eb+7) =b+c+ (m—m)?

and the difference with (13) proves the unbiasedness of ¢, whatever be m/.
General expressions for the estimators.

Let us abbreviate

Z == Z (Xir —m) (X5 —m),

278 tJrs

Z Z m Xjs — m’),

] 178

/
E E —m Xig —m),
s irs

Z Z m — m’),

where?,7=1,...,kandr,s=1,...,t.

%WHJ;;;ﬂ X
a2 b
s 2)

From (15) and (17) results

= T 2) e a8

ijrs 158
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8. Estimation of b and c in the roulette case

In the roulette case we take m’ = m = %

Estimation of b.
Z = Z (XWXJ-S —mX;js — mXgp + m2)
1J7rs tJTs
=12 — mkt? — mkt® + m?k%t?
42 42 42 4 42

=0
Z = Z (Xiszs — mXiS — mXJS + 7712)

INE] IVE;
=t — mkt — mkt + m2k>t
=t—t—t+t
=0.
By (18),
~ 1
. 19
15 (19)
Taking expectations, we have
1
b= — 20
o (20)

For a direct proof of (20), we first observe the obvious result:
Z@ _ZE Xis/65) (wa/o) E(1/6) =1.
Then
0 = Cov (Z@i, Z@j) = Z Cov(0;,0;)
=" Cov(6;,6;) +Z\/a,r

1#£]
=k(k—1)b+ ka.
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Estimation of c.
Z = Z (X,L-QS —2mX;s + m2)

18 18
- Z (Xis —2mX;s + m2)

18

:t—2mt+m2k‘t

Tk

(k — 1)t.

x| =

Then, by (10) and (19)

L 1 1 /1 5 1 1
———pm e b o R )=
k2 k2+k1<k; ’ k2> =1 °

& 1 9
= , 21
C=—g—78 (21)

o)
I

Taking expectations, we obtain

For a direct proof of (22):
0= ECov(1,1/0)

= FE Cov (ZX?:S,ZJ js/@>
i j
=Y ECov (X5, Xj5/0) + Y _ EVar (X;/0)
i#j i
= k(k — 1)c+ ks?.

Remarks.

In the roulette case, the dependence between the “contracts” is negative: b < 0,
¢ < 0. In automobile insurance, fire insurance, ... positive dependencies must
be expected.

In the roulette case, @, b, ¢ depend on k and 52 only, and 52 only depends on &
and Q.
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The quality of the estimator 2 increases with ¢ and with k. For small values of ¢
and k, say 2 or 3, the number of observations X is too small, and 52 can only
be a poor estimator of 52

5 Improved credibility estimators in the restricted model

The credibility estimator Ji; is the linear combination of the random variables

1, X1, ..., X closest to pu(©;) in the least squares sense. Let i} be the linear
combination of 1 and all the observable random variables X5 (7 = 1,...,k;
s = 1,...,t) closest to u(@;) in the least squares sense. In the classical model

1; = p because the contracts are independent. Here p is a strictly better
estimator than fi; (except in special cases, where the two estimators may be
equal). For symmetry reasons, 17 can be displayed as

p; =21 X0 + 22X + 23m, (23)

where X, s i1s defined in section 3 and
1
Xmm =7 Z iM = ZXZS

Then the unknown coefficients z1, zo, z3 result from the relations
Ep} = Ep(6;) (24)
Cov (uf, Xjs) = Cov (u(©0:). Xjs) (G=1,...,k;
8= d g ey B (25)

(For instance, see Theorem 5 of De Vylder e.a. (1992)).
In order to explicit (25), we need more

Covariance relations.

From the relation following (6) for Cov (X;r, X;s) and the relation (11) for
Cov (Xyp, Xjs) (i # ), result
Cov (Xﬁn. st) = Cov (XiT, Xz‘s)fsij + Cov (Xi'r, st)(l — 6;5)
= b+ cbps + (@ — b)8ij + (5% — €)6;;6rs
(ij=1,....k rs=1,...1). (26)
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From (26) we obtain, foralli,5 =1,...,kandr,s=1,... %

Cov (X4r, Xjm) = Cov (Xinr, Xjnr)

1
= b+ (a—b)di; + %-(c + (5% = ¢)bi;)

Cov (X, Xing) = Cov (Xing, Xinmr)

1o
=a+ —s
t

Cov (Xir, Xnrm) = Cov (Xings X )

1
:b‘l—z(&—b)

1 1
+ ¥C+ H(b—c)

Cov (1(8;), Xjs) = E Cov (1(0;), X5/0)

+ Cov (E(u(0,)/0),E(X;5/0))

=0+ Cov (,U(@z')a #(@j))

= ab;; + b(1 —
Determination of 1.
From (23), (24):
21 + 290 +23 = 1.

From (23), (27), (29):

Cov (,LL;,XJ‘S) = z1 Cov (Xi[w, st) + 2z Cov (Xf\/l’f\/vajS)

1 .
= By (b + (a — b)éij + ;(C < (52 - C‘)(S,ij)) + zod,

where d is the last member of (29).

Hence, from (25) for ¢ = j and for ¢ # j,

1
21 (aJr ¥S2> + z90d = a

|
z] (b—!— E(“) + zo0d = b.

bij)-

using (30):

Then 21, 23, 23 result from (31), (33), (34).

If m, in (23), is estimated and replaced by X ; s, we obtain

pi =21 Xim + (1 —20) XM

(i=1,....k)

(27)

(28)

(31)

(35)
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Then we only need z;. From (33) and (34) results, taking the difference of these
relations:

(a —b)t
(s2 —¢) + (a — b)t £39)

Z1 =

In the roulette case, (20) and (22) imply 2z = zq, i; = p!

7"

Best unbiased homogeneous linear estimator.

The estimator u defined by (35) is the best (least squares sense) unbiased
approximation of ;(©;), linear homogeneous in the observable random variables
Xjs (j=1,...,k;s =1,...,t). This results from Theorem 6 of De Vylder ¢.a.
(1992). By that theorem it is enough to verify that

E(u(0;) — 1) Xjs = E((u(0;) — m) — (uf —m))(Xjs —m)
= Cov (u(0;), X;5) — Cov (uf, Xjs)

does not depend on the subscripts j, s. By (27), (29), (30), it is easily verified that
this is so.

F. De Vijlder, H. Cossette,
U.C.L. Place des Doyens 1
B-1348 Louvain-la-Neuve
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Abstract

We show how BiithImann’s model in credibility theory can be adapted in order to cope with contracts
that are not necessarily stochasticly independent. As illustration, outside the insurance world, we
estimate the probability that the ball falls in a fixed hole of an imperfect casino roulette.

We also indicate how the dependence between the contracts could be detected in a distribution-free
set-up.

Zusammenfassung

Das Modell von Bithmann in der Credibility-Theorie kann so angepasst werden, dass es auf nicht
notwendig unabhédngige Vertriage angewendet werden kann. Zur [llustrierung ausserhalb des Ver-
sicherungswesens schitzen wir die Wahrscheinlichkeit, dass die Kugel bei einem unvollkommenen
Roulette in ein festes Loch fillt.

Wir weisen ebenfalls darauf hin, wie die Abhéngigkeit zwischen Vertrdgen ohne die Kenntnis von
Verteilungen gefunden werden kann.

Résumé

Nous montrons comment le modele de Bithlmann de la théorie de la crédibilité peut étre modifié
afin qu'il puisse également étre appliqué lorsque 'indépendance des contrats d’assurance n’est pas
garantie. Comme illustration hors du domaine de I'assurance, nous estimons la probabilité que la
boule d’une roulette de casino non parfaite s’arréte dans une case donnée.

Nous montrons également comment la dépendance des contrats peut étre détectée lorsque les
fonctions de distributions ne sont pas connues.
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