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HANSPETER SCHMIDLL* Arhus

Corrected Diffusion Approximations for a Risk Process
with the Possibility of Borrowing and Investment

1 Introduction

In classical risk theory in general no explicit formulae for the probability of
ruin can be obtained. Therefore approximations are called for. For the Cramér-
Lundberg model, some of the most important approximation methods can be
found in [1]. A useful method also described therein is the called diffusion
approximation. The idea is to consider an appropriate diffusion process instead
of the risk process and to use the corresponding ruin probabilities as an
approximation.

As far as [ know the first treatment of diffusion approximations in risk theory
goes back to H. Hadwiger [11] in 1940. The modern approach, based on weak
convergence, is due to Iglehart [12]. The idea is to let increase the number of
claims in a unit time interval and to make the claim sizes smaller in such a way
that the risk process converges weakly to a diffusion. Another interpretation of
the convergence can be found in [9].

The easiest way to do this is to use a sequence of risk processes having the same
drift and the same auto-covariance function as the approximated risk process.
But comparing the approximated values it turns out, that this approximation
satisfies only in cases where the safety loading is very small. For a comparison of
diffusion approximations and exact values see for instance [9].

The main problem with the approximation seems to be the overshoot, that means
the difference between the ruin level and the surplus of the process at the ruin
time, which is smoothed by a diffusion. It is due to this effect that corrected
diffusion approximations are constructed (see for instance [1] or [18]).

The problem how these classical diffusion approximations can be used to
construct approximations for more general models was recently solved by
Schmidli [16], [15]. He compared the approximation results with exact values
for a risk model also including investment and borrowing. The purpose of the
present paper is to show, how the approximation results can be improved by
using corrected diffusion approximations.

“ The author was supported by Schweizerischer Nationalfonds
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The considered approximations are based on weak convergence. Denote by D
the space of all cadlag (i.e. right-continuous with left-hand limits) functions on
[0, 00) endowed with the Skorohod topology (see for instance [6] and references
therein). In the sequel all stochastic processes are assumed to be in D. Recall the
definition of weak convergence.

Definition 1. A sequence (X(”) . n € N) of stochastic processes is said to
converge weakly to a stochastic process X if for every bounded continuous
functional f it follows that

lim E[f(X™)] = E[f(X)].

In this case we write X (M) — X

For further background on weak convergence see also [2], [6], [13] and [14].

2 Risk Processes in an Economic Environment

Let us start defining the basic model. Letin the sequel ({2, §, P) be alarge enough

probability space, in particular carrying the following independent objects

° a Poisson process (N : t > 0) with rate A > 0;

o a sequence (Y; : 7 € N) of i.i.d. random variables, having the distribution
function G, with G(0) = 0, mean y and finite variance o2,

Set

Ny
By pes Z b
=1

the accumulated claim process and define the classical risk process (Cy : ¢ > 0)
by

Ct:=u-+ct— 5

where ¢ > 01s the premium income rate and u denotes the initial capital. Denote
by 0 := (¢ — Au)/(Au) the safety loading. We call above model also Cramér-
Lundberg model. A comprehensive discussion of this model can be found for
instance in [10].

Let (Cfn) : n € N) be a sequence of classical risk processes. Denote the

corresponding Poisson processes by (Nt(n) ), their intensities by A("), the claims
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by Y;.(n), their distribution function by G{") the initial capital by 1, the premium

(n

rates by ¢’ and the accumulated claim processes by (Sgn)), I8 Ct(n) -

u+ (M — an). Set

,u(’“) = /:L’(JG('”)(FC); o(m* = /.(:1: - n“'(n))QdG(n)(x)
0 0

where we assume o(™)° < co. For each of the processes we define the safety
loading o™ = (el — X, (n)y /(A1) (7)Y Denote by (Q; : ¢t > 0) a
(d,7?)-Brownian motion, ie. Q; = Qp + nB; + dt where (B; : t > 0)
is a standard Wiener process. We assume in the sequel that cln) = Q. If
the sequence is chosen appropriately, i.e. all (") have ‘similar properties’,
then we call ) a diffusion approximation for (1) For the classical theory of

(n) (1)

diffusion approximations, similar properties means that ££[C)"'] = K[C, "] and

Var [C’in)} = "V [Cfl)}. For more background on diffusion approximations for
the classical risk model see [12] or [9].

In the sequel we want to consider a risk model, where the drift depends on the
surplus of the process, e.g. by allowing the company to invest or to borrow money.
Lok

Bz —A4A) x> A,
olm) = § 0 0<% e A, (1)
Box x <0.

We define a sequence (X(") : n e N) of risk processes via the stochastic
differential equation (SDE)

d‘{YISn’) _ (S(Xf(n)) dt + (]Ct(n) ~ X(()TL) — C’(()TL) .
and a diffusion Z satisfying the SDE
dZy = 8(Z;) dt + dQy, Zp = Qo-

Recall from [4, p. 183] that X () as well as Z are well-defined. The parameter
B1 is interpreted as the force of interest for invested money, 32 as the force
of interest for borrowed money and A as the amount of money the company
retains as a liquid reserve. We define the ruin time 7(™) as the first epoch,
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where the payments for interest are larger than the premium income, i.e.
() = inf{t >0:¢c< —[52Xt(n)}. It is easy to see that

{T(n) < B | = {an) — —00} as.

where, also in the sequel, — denotes the limit for £ — oo. A discussion of the
model defined above can be found in [15], [S] or [17].
Recall that we assumed that (") = Q. It follows now from [16, Thm.2] that
also X (") — 7 and furthermore that the infinite time ruin probabilities of the
processes Fin) converge to the infinite time ruin probability of 7, i.e.
lim P[Xt(n) — —o0] = P|Z; — —oq],
n—oo

2

provided that lim,, .~ )\(”)(U(n) + ,u(”)g) < oo ([16, Thm.3]).

Remarks.
i) Note that the premium rate ¢ does not appear in (1). It is hidden in dC’t(n)

and therefore also present in dXt(n).

ii)  Bysetting the parameters A = 0 and 31 = 32 we get the model considered
by Gerber [7]. By setting the parameter A = oo we get as a special case
the model considered by Dassios and Embrechts [3].

iii)  Notice that in the case A < oo, contrary to the classical case, there is no
net profit condition needed to assure P[r(") < o] # 1 (see also [5]).

iv)  Note that for n — oo the ruin barrier converges to —oo. Therefore we
shall consider the event {Xt(n) — —o00} as our ruin event, which also
makes sense for the process (7).

v)  The condition limy,— «o /\("”‘)(U(”)2 + ,u(”)z) < o0 is rather weak. Note
that Var [C'fn')] = A(n) ((f(/”’)2 +,u(”)2 ). It would not make sense to consider
a sequence where Var [an)} 1s unbounded and to use a diffusion with
Var[Z1] = n? as an approximation. M

To end this section we recall from [16] or [8] an explicit expression for the ruin

probability of the diffusion Z.

Proposition 1. Let Z be the diffusion defined above. Then the probability of
ultimate ruin is given by

L (0~ f(Z0)
P2 = =ool = ) = F(=00)
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where f denotes the function f : R — R, with

(30— (- 20)) 2, oo o - %)
(@(—‘/%z( —A+ﬁ1)) @(%\/;)) A m,

fa) = y
(1w (- 52)) Prrea
i (252 (= 1)) - 2(5V%)) <
k2 B2 CXP(TJ2/32 (gb( n \TT B, > ny 02 z<0,
where ®(x fm e yz/2dy. UJ

Remark. If we use the uncorrected diffusion approximation approach the pa-
rameters of the diffusion are given by d = ¢ — Ay and 772 = /\(02 e ;1,2). For
the special case 31 = (2 and A = 0 we recover the approximation proposed
by Gerber [7]. His approach was based on an asymptotic normallty property as
B N o, W

A comparison of the approximation and exact results for exponential distributed
claims can be found in [16], where the risk process is approximated by an
‘uncorrected’ diffusion with the same drift and auto-covariance function.

3 Corrected Approximations

Let us first consider a diffusion approximation C(") — @ for the classical
Cramér-Lundberg model. Assume that the Lundberg coefficient, i.e. the strictly
positive solution v, of the equation

h(r) == AG(=r) = 1) —cr =0

exists. Denote by vp is the unique solution of the equation A'(r) = 0 and
by G fo e %% dG(x) the Laplace-Stieltjes transform of the claim-size
dlstrlbutlon Instead of only considering a single claim size distribution we
consider the exponential family

dGy(z) = (é(—(9+~m))) e(0+70)2 4i(z)

where 0 € {r € R : G(—(r +79)) < oo}. Furthermore let Ay = AG(—(8+70))-
We denote by P and Fy the probability measure and expectation with respect
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to the law with parameter 6. Define furthermore ho(#) := h(6 +~9) — h(~p) and
note that the safety loading og ; 0 iff @ § 0. For changing from one parameter
to another the following change of measure formula is well-known (see [1] or

[18])
Pylr < T] = Egr []I{TST}E(QI*@”)CT—T(ho(f)’)—ho(ﬁ’”))} (2)

where 1 denotes the indicator function. Formula (2) becomes less complicated
if we choose ' and 6” such that hg(8') = ho(0”). Let (00 : n € N) be a
sequence with —yy < 6(™) < 0 and denote by (") the strictly positive solution
of ho(6(™)) = ho(#(™)). Inspired by the uncorrected diffusion approximation
we set A(™) .= nAg(n) and G (z) = G y(n) (v/nx). Now (2) can be rewritten
as (see also [1])

Pg(n) [T(n) % T:| — Eé(n) [H{T(H)ST} @Xp{(g(”) - é/(n))cf-?r)z)}:f

=F

T []l{r(")ST} exp{(ﬁ(n) — 0Ny (g + M7 (0) _ g(n) NE

7'(”)

By considering expectations
EIS)1 = Ay Blr™] = kg pgimy Blr )

increases with order /n. Hence (™) should increase with the same rate and it is

1
natural to choose 0™ = n~ 29(1), For a more comprehensive discussion of the
approximation including asymptotic expansions see [18].
The following Proposition shows that our intuitive approach leads to a weak

convergence result. The Proposition is an easy alteration of the approximation
in [1, p. 44].

Proposition 2. et (C;Jn)) be a sequence of classical risk processes such that
1

™ = /i, A = anG(—(1—n" 2)y) and

2% 1 _ 1
@(”)(s) ﬁ G(sn 2—-(1—-n 2)y) |
—~ e
G(=(1-n 2)y)
Let (Qt) be a (d,n?)-Brownian motion with d = )\70@”(—70_) and 1° =

)\é”(—'m). Then () — Q. O
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Note that (C't(l)) has the same law as (C%).

The idea of the diffusion approximation is to use the probability that the diffusion
(Z¢) converges to —oo as an approximation value for the infinite time ruin
probability of the risk process (X;). As mentioned before limy, P[T(”) <
x| = P|Z; — —ox|. The stationary distribution of the overshoot for the
considered model is the same as in the classical case. Therefore it makes sense
to use the sequence (Ct(n)) of Proposition 2.

We shall now compare exact values with their approximations. For simplicity we
use exponentially distributed claims. The exact infinite time ruin probability in
this case is given by (compare [16] or [17]):

Proposition 3. For exponentially distributed claims with mean p, the ruin proba-
bility for (Xy) is given by

9(Xo)
g(00)

P[Xi — —oo]=1-
where

9(x) = 91(2) LA o0y (@) + 92(2) o, A) (@) + 93(2) (¢ /8,,0) (%)

and
g (z) = g2(4)
z+c/B1—A
(A/B1)—1
- (&) U el (B gf ) f SOB)—1g=5/n g
g
c/B1
_ gé(O) = (1/p=A/c)x
and
z4e/Bs
gg(m) — K f S(A/JBQ)_le_S/I-L dS,

0

with K an arbitrary constant and 1 denotes the indicator function. U
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Table 1: Comparison of a risk process with Table 2: Comparison of a risk process with
exponentially distributed claims with mean o = exponentially distributed claims with mean p =
1,A =8andc = 8.2 (i.e. ¢ = 0.025) with its 0.909, A = 10 and ¢ = 9.5 (i.c. p = 0.045)

diffusion approximation.

with its diffusion approximation.

u exact approx. Error u exact approx. Error
- 20 0.992 0.988 - 0.40% - 20 0.973 0.963 —-0.97%
— 10 0.914 0.912 —-0.21% — 10 0.811 0.806 —0.59%

0 0.736 0.740 0.61% 0 0.531 0.534 0.52 %

10 0.576 0.578 0.46 % 10 0.331 0.331 0.00 %
20 0.450 0.452 0.31% 20 0.206 0.205 —-0.52%
30 0.352 0.353 0.17% 30 0.128 0.127 ~1.03%
40 0.275 0.275 0.03 % 40 0.0799 0.0786 - 1.55%
50 0.215 0.214 —-0.11% 50 0.0497 0.0487 - 2.06%
60 0.167 | 0.167 —-0.25% 60 0.0310 0.0302 - 2.57%
70 0.130 0.130 —0.38% 70 0.0193 0.0187 —3.07%
80 0.101 0.101 —-0.51% 30 0.0120 0.0116 —3.57T%
90 0.0784 0.0779 —-0.63% 90 0.00746 0.00715 —4.06 %
100 0.0605 0.0601 —0.75% 100 0.00464 0.00442 —4.55%
110 0.0466 0.0462 — 0.86 % 110 0.00288 0.00273 —5.03%
120 0.0356 0.0353 - 0.97% 120 0.00178 0.00169 - 5.50%
130 0.0270 0.0268 —1.06 % 130 0.00110 0.00104 - 5.96 %
140 0.0203 0.0201 - 1.13% 140 0.000679 0.000635 | — 6.40 %
150 0.0151 0.0149 -1.19% 150 0.000415 0.000386 | —6.81%
160 0.0109 0.0108 —1.21% 160 0.000250 0.000232 | —7.18%
170 0.00770 0.00761 - 1.18% 170 0.000148 0.000137 | — 7.49%

For exponentially distributed claims the parameters of the model have the
following values: G'(s) = (1 +su) "1, v0 = p~ 1 (1 — \/A\i/c) (the latter because

G(—s) is not defined for s > p ). This leads to

G (_ne) = 25 [EH
(=v0) RTASY

and therefore the parameters of the diffusion are

C (&
d=2¢ s/ ——1 d n?=2cu,/—.
c( 57 ) and 7 Cll v
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Table 3: Comparison of a risk process with
exponentially distributed claims with mean . =
1.25, A = 3and ¢ = 4 (i.e. p = 0.067) with
its diffusion approximation.

Table 4: Comparison of a risk process with
exponentially distributed claims with mean pp =
1.25, A = 1.1and ¢ = 1.5 (i.e. o0 = 0.091)
with its diffusion approximation.

u exact approx. Error u | exact approx. Error
—20 0.999 0.994 —0.48 % — 20 | 1.000 1.000 - 0.00%
—10 0.913 0.900 -1.38% — 10 | 0.998 0.984 - 1.33%

0 0.599 0.606 1.14 % 0 ] 0.652 0.664 1.96 %

10 0.363 0.364 0.33% 10 ] 0.334 0.336 0.49 %
20 0.220 0.219 —0.48% 20 | 0.172 0.170 - 0.95%
30 0.134 0.132 —-1.28% 30 | 0.0882 0.0861 — 2.38%
40 0.0810 0.0794 —-2.06% 40 | 0.0453 0.0436 — 3.78%
50 0.0492 0.0478 —2.85% 50 | 0.0232 0.0220 — 517%
60 0.0298 0.0287 —3.63% 60 | 0.0119 0.0112 — 6.53%
70 0.0181 0.0173 —4.40% 70 | 0.00613 0.00564 — 7.88%
80 0.0110 0.0104 —5.16 % 80 | 0.00314 0.00286 — 9.20%
90 0.00664 0.00625 —-5.92% 90 | 0.00161 0.00144 - 10.51%
100 0.00402 0.00375 —6.66 % 100 | 0.000828 0.000731 - 11.79%
110 0.00243 0.00225 —7.39% 110 | 0.000425 0.000370 —13.05%
120 0.00147 0.00135 —-8.10% 120 | 0.000218 0.000187 —14.28%
130 0.000884 | 0.000807 —8.79% 130 | 0.000112 9.43 107° | - 15.49%
140 0.000530 | 0.000480 —0.45% 140 | 5.69 107° | 4.74 107° | — 16.65%
150 0.000315 | 0.000283 -10.07% 150 [ 2.89 107° | 2.38 107° | — 17.76 %
160 0.000185 | 0.000165 —10.63 % 160 | 1.45 107° | 1.18 107° | — 18.79%
170 0.000106 | 0.0000940 | —11.09% 170 | 7.11 1078 | 571 1070 | — 19.70%

Note that n? > 2\u? in the case of a positive safety loading and therefore the
variance of the Brownian motion in a unit time interval is larger than for the
approximation used in [16].

The Tables 1-4 show examples with forces of interest 3; = 0.058 (interest
rate 6.0 %) for invested money, 32 = 0.095 (10.0 %) for borrowed money and
liquid reserve barrier A = 200. Remember, that © denotes the initial capital. The
relative error is the quantity

approximation — exact value
PP 100 % .

exact value
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Table 1 and Table 2 are the examples also discussed in [16]. A comparison shows
that the error for the corrected diffusion approximation is less than half the error
of the approximation used in [16]. Note that in all four examples the relative
error lies under 11 % for P[r < o] < 1072 and it is even smaller if the safety
loading is smaller as in the example of Table 4. The claim arrival intensity A is
rather small in the cases of Table 3 and 4. Because A("™) — oo as n — oo one
may expect that the approximation fits better if A is chosen larger. But playing
with the parameters it turns out that A does not hardly influence the fit of the
approximation. It was necessary to choose A small because otherwise P[7 < o0
decreases too quickly as u increases (see Table 4).

These examples show that the approximation gives a ‘good’ estimate of the real
ruin probability for the most interesting values of w. If the distribution function
of the claims and the claim arrival rate are known, it is easy to calculate a rude
estimate of the ruin probabilities, which tells us for instance how quickly the
ruin probabilities go to zero. The disadvantage of the method is that it yields no
bounds for the ruin probability. So the method is only suitable in order to get an
impression where the exact values lie.
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Summary

In many situations in insurance risk theory one has the problem that exact values for the ruin
probability are hard to obtain. Therefore approximations are called for. It turns out that to get
crude estimates for the ruin probability the so called diffusion approximations are useful. Recently a
method to combine diffusion approximations for the classical Cramér-Lundberg model and diffusion
approximations for more general models was worked out ([16]). In the present paper it is shown that
the method can be improved by using corrected diffusion approximations.

Zusammenfassung

In der Risikotheorie steht man oft vor dem Problem, dass exakte Werte fiir die Ruinwahrschein-
lichkeit nur sehr schwer zu erhalten sind. Man versucht sich deshalb mit Approximationsmethoden
auszuhelfen. Um grobe Schétzwerte fiir die Ruinwahrscheinlichkeiten zu erhalten, stellen die so-
genannten Diffusionsapproximationen eine niitzliche Methode dar. Kiirzlich wurde eine Methode
entwickelt ([16]), die es erlaubt, Diffusionsapproximationen fiir das klassische Cramér-Lundberg
Modell und Diffusionsapproximationen [iir allgemeinere Prozesse zu kombinieren. In diesem Ar-
tikel wird gezeigt, dass eine Verbesserung der Approximation erreicht werden kann, indem man
korrigierte Diffusionsapproximationen benutzt.

Résumé

Dans la théorie du risque on est souvent confronté au probléme, que les valeurs exactes de
la probabilité de ruine sont trés difficiles a obtenir. On cherche alors a utiliser des méthodes
d’approximation. Les approximations par processus de diffusion se révellent étre une méthode
efficace pour obtenir des estimations grossiéres de la probabilité de ruine. Une méthode développée
récemment [16] permet de combiner des approximations par processus de diffusion pour le modéle
classique de Cramer-Lundberg et des approximations par processus de diffusion pour des processus
plus généraux. Dans ce papier on montre que I'approximation peut étre améliorée en utilisant des
approximations par processus de diffusion corrigées.
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