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HANSPETER SCHMIDLL* Arhus

Risk Theory in an Economic Environment
and Markov Processes

1 Introduction

Already at the beginning of the century Filip Lundberg considered in his Ph.D.
thesis the model which forms the basis to the models considered in non-life
insurance risk theory. He assumed that the income process is linear with a
premium rate ¢ and the outflow forms a compound Poisson Process; i.e. the claim
arrival times form a Poisson process and the claim sizes are iid. and independent
of the arrival process. We will call this model Cramér-Lundberg model. During
the years a lot of generalizations have been considered. For instance Sparre
Andersen [1] considered the case where the claim arrival process is a renewal
process, Bjork and Grandell [4] the case of a doubly stochastic claim arrival
process and Asmussen [2] let the claim arrival process and the claim sizes be
dependent via an external continuous time Markov chain.

In the present work we are interested in so-called risk processes in an economic
environment where interest and inflation are present. Such a model was con-
sidered by Delbaen and Haezendonck [8]. As in the Cramér-Lundberg model
(technical) ruin occurs when the process first enters the negative half-plain. It
is clear that the level 0 plays here an unrealistic role. Gerber [13] considered
a risk model, where the company is allowed to borrow money and has to pay
interest for it with the same rate of interest as the company receives for positive
surplus. He introduced the notion of absolute ruin which occurs at the first epoch
where the premium income becomes smaller than the outflow for paying inter-
est. Dassios and Embrechts [5] modified the classical Cramér-Lundberg model
by allowing borrowing but not investment. They computed the (absolute) ruin
probability for the case of exponentially distributed claims. Recently Embrechts
and Schmidli [11] extended the model with the possibility of investment above
some ‘liquid reserve’ level A. Figure 1 shows a path of this process. The Laplace
transform of the ruin probabilities was computed, but explicit results were only
obtainable for special cases. The results can also be found in [19]. In the present
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Figure I: Sample path of a general risk process

paper we will recall the method and the results of [11] and we will give an explicit
inversion formula for the special case of equal interest rates for invested and
borrowed money. This will lead to a numeric procedure for computing the ruin
probabilities.

In practice there are solvency restrictions by law. It seems therefore not realistic
to allow an insurance company to borrow money. The process described above
admits another interpretation. Note that we only model one kind of insurance
contracts within a company. In the middle part between 0 and A only investment
possibilities exist to cancel the effect of the inflation. In the part above A
investments with a higher net yield are possible. In the negative part one needs
capital which cannot furthermore be invested by the company and therefore
- yields a loss for the company.

2 Piecewise deterministic Markov processes and martingales

The process introduced above has some similarities with the Cramér-Lundberg
process. Between the jump times the paths of the process are deterministic (but
no longer linear) and it is also a Markov process. This sort of processes, the so-
called piecewise deterministic Markov processes (PDMP) were introduced by
Davis [6]. It turned out, that the theory of PDMP’s yields an ideal tool in risk
theory, see for instance [5], [10] or [19]. We will give here an idea, how PDMP’s
are constructed. For an exact definition of the process see [6], [7] or [19].
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Let E be an open manifold, typically
B = U{(L,J,) cx € M,}

el

where each M, is an open subset of R% (d, € N)and I is a countable set endowed
with the discrete topology. We denote by € the Borel sets of £. The deterministic
paths of the process (X;) between the jumps are determined by the integral
curves of a vectorfield y on . We assume that through every point of the manifold
there exists exactly one integral curve, and that the integral curve can only leave
the manifold through the boundary. Note that, as in differential geometry, y is a
first order differential operator, such that % F(X¢) = (xf)(Xy) along an integral
curve for all f’s absolutely continuous along integral curves. On the path there
is given a jump intensity A : £ — RT, which determines the jump times. If the
process reaches the boundary OF of E the process jumps back into the interior
of the manifold. Therefore, denoting the jump times by (7} ) and setting Ty = 0

PlTyy1 < Ty + h|S1,]

h
1 ~exp{ - f)\(XTkJFS)dS} if X7, 45€ EVsc|[0,h]
0

1 otherwise

where (§;) denotes the natural filtration of the process (X¢). The position after
the jump will be given by a jump measure @ : € x (EUJE) — [0,1],1.e. Q(A, x)
denotes the probability that a jump from x leads to the Borel set A. We denote
by

N¢ :=inf{k e NU{0}: T} <t}

the number of jumps in the interval [0, ¢]. Furthermore we assume that /[ N;] <
oo for all t > 0.

Example 1. In the classical Cramér-Lundberg model (C}) the state space of the
process is £/ = R. The deterministic paths are linear with slope c. g—t flx+ct) =

c-r(%f(m + ct), i.e. the vectorfield has the form y = c%. Because the claim times

form a Poisson process, the jump intensity A(z) = A is constant. Denoting the
claim size distribution by G the jump measure becomes Q(dy, z) = dG(x — y).
In order to get time dependent martingales one can also consider the PDMP
(C,t), where y becomes y = % - CB%. ]
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The main reason why the theory of PDMP turns out to be an ideal tool in risk
theory is the easy way one can construct martingales. To do that we first need
the following definition.

Definition 1. If for some measurable real functions f, jN E—R
t
1)~ 1)~ [ Fx, 1)
0

is an F-martingale then wet set Af = f The operator U is called the (full)
generator of (X¢) and f is said to be in the domain of the generator D(2l).

Remarks.

i) Note that 2 is in fact a multi-valued operator. We identify therefore all
versions of fN'in the image space of 2.

ii)  For a deeper understanding of the above definition let us consider the
classical definition of the infinitesimal generator. The idea is to subtract
from a process its drift in order to get a martingale. If for some measurable
bounded functions f, ]T EF—-R

lim © B[/(Xe) ~ f(z) | Xo=1] = flx) &
£10 t
in the sense of uniform convergence then the so-called Dynkin formula (see
[22, p. 129]) assures that (1) is a martingale. Therefore the domain of the
infinitesimal generator is contained in the domain of the full generator and,
the full generator restricted to the domain of the infinitesimal generator
and the infinitesimal generator coincide.
[t turns out that for many applications the restriction to bounded functions
1s not satisfactory. There exist unbounded functions f, such that a function
F satisfying (2) leads to a martingale of type (1). Some examples can be
found in [19] or [10]. Using the given definition of the full generator also
unbounded functions can be in the domain of the generator. It remains to
find conditions for a function f to be in the domain of the full generator
and formulae for computing 2 f.
iii) A third possible definition of a generator is the extended generator,
where ‘§;-martingale’ in the above definition is substituted by ‘local Ti-
martingale’. The advantage of dealing with the extended generator is that



necessary and sufficient conditions can be given for a function to be in the
domain of the extended generator. Davis [6] and [7] discusses the extended
generator for piecewise deterministic Markov processes. The approach we
use will straightforwardly yield martingales. Therefore the definition of the
full generator suffices for our purposes. The conditions in the following
proposition turn out to be easier to verify than those in [6]. W

For our purpose it is enough to know a large subset of functions in the domain
of the generator. This class is given by the following proposition. Its proof can be
found in [19]. Denote by X;_ the left-hand limit of the process (X) at time t.

Proposition 1. Let (X;) bea PDMPand [ : (EUJE) — R be a real measurable
function satisfying

1) I is absolutely continuous along integral curves,

iy fiE= JE JTW)Q(dy,x) Va € OF, (boundary condition)

i)  ER p < | f(X) — f(Xp )] <ce.

Then f € D() and the generator is given by
2/(0) = x(2) + 20| [0 - Fa)Qan)|. (3
E O
The idea is now to solve the equation 21 f(z) = 0 with 2(f given by (3) such

that conditions i) —iii) are fulfilled. Then the process (f(X¢) : ¢ > 0) will be a
martingale.

Remark. The equation 2 f(z) = 0 for the Cramér-Lundberg model can also
be found in [15, p. 317]. Application of our techniques often leads to increasing
functions f. In [15] f is interpreted as an utility function in the sense that f(X})
becomes a ‘fair game’, i.e. a martingale. W

Example 1 (continued). For the Cramér-Lundberg model we have to solve
O(,)
q%m+A[/wu—ywamﬂwGw>=o.
0

compare also [15, p. 317]. We try a function of the form f(z) = ¢~ ¥ with R > 0
which leads to the condition

—cR+MG(-R)—1)=0
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where G f > e 4G(x) denotes the Laplace-Stieltjes transform (LS-
transform) of (. The constant /R above has to be therefore the so-called Lundberg
exponent (if a solution exists). Condition i) is easily seen to be fulfilled, condition
ii) becomes trivial since 0F = () and a straightforward calculation shows that
also iii) is fulfilled. The martingale (exp{—RX;}) was first computed by Gerber
[14]. W

3 The risk process with the possibility of investment and borrowing

We now turn back to the process introduced in Section 1. We assume as before
that the claim arrival process is a Poisson process with rate A and that the claim
sizes are iid. with distribution function G and independent of the claim arrival
process. Therefore the parameters for the corresponding PDMP become as in
the Cramér—Lundberg model A(z) = A and Q(dy,x) = dG(x — y). We denote
by G =[5 e7 5% dG(x) the LS-transform of G. It remains to determine
the correspondmg vectorfield. Consider a starting point zg € (—o0,0). Denote
the force of interest for borrowed money by (35, that means that after some
time ¢, zg has changed to zoeﬁzt. The premium income and its interest become
f(; ceP2(t=3) s = ¢/3y(eP2t — 1). If no jump occurs in [0, ¢] then the process
starting in g can be written as

_ Bas _ ©
s (LO+(32) 5

which leads to
(XF)(Xs) = (c + Bawo)e™ f/(Xs) = (¢ + BaXs) ' (Xs)

orxy = (c+ ,621’)-(% if z < 0. Denoting by 3 the force of interest for invested
money and by A the liquid reserve level we get for the vectorfield of the
considered process

Br(z—A)+c) 2 A<z,

(B + ¢) 1 z<0.

It follows immediately that if X; < —c/02 then the deterministic paths are
strictly decreasing and because only downward jumps are possible, the process
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Figure 2: Simulated example of a risk process taking borrowing (J2 = 0.095) and investment
(81 = 0.058, A = 250) into account. Exponential claims.

(X¢) converges to —oo a.s.. Hence we call the time point
r:=inf{t > 0: X} < —¢/B2}

ruin time. Note that 7 is the first time where the premium income is strictly smaller
than the outflow for paying interest. So the considered ruin time is identical with
the absolute ruin time in [13] and [5].

As an illustration we have simulated 50 paths of the above defined process over
30 units of time. The parameters were u = Xp = 150, A = 250, A = 2 and
c = 12. As force of interest we have used (31 = 0.058 and 32 = 0.095 which
corresponds to a rate of interest of 6.0 % (10.0 % respectively). Figure 2 shows
paths with exponential claims with mean 5. Here the classical net profit condition
c > Ap is fulfilled and most paths are lying between 0 and A. A more illustrative
picture is derived by using heavy-tailed claim sizes. Figure 3 shows the case of
lognormally distributed claims with mean 7.39 and variance 2981, that means the
classical net profit condition is not fulfilled. Above the liquid reserve level A the
paths are exponentially increasing. Between 0 and A their behaviour is as in the
classical case and below 0 the slopes of the paths are smaller. Under a certain
level there is practically no chance to survive.
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Figure 3: 1dem as in Fig. 2. Lognormal claims.

We are interested in the probability of ultimate ruin P[r < oc|. So we do not
have to care about what is happening with the processin (—oo, —¢/ 33 ) and hence
we are only looking for functions f with f(x) = 0 for & < —¢/3. Because the
behaviour of the process is different in the three regions [—c¢//32,0), [0, A) and

[A, o0) we split the function f into three parts

f(@) = [il@) > Ay + fa(o)lo<acny + F3(2) L /gy <ac0} -

In order to get a solution of 2L f = 0 we have by (3) to solve the system

X
v
—A

&€

z—A

(c+ﬁ1<x—A>>f{<ac)+A[ | ne-yacw)
0

z+c/ B2

fa(w —y) dG(y) + f3(z —y)dG(y) — fi(z)

=)




T z+c/ B2 i
csfé(:c)+>\[ffz(:c—y)dc<y>+ | Ra-nicw-nw=0 ©
0 T -

z+c/B2 )
(cwza:)fg(:c)H[ [ Ba-picw-nw|=0
J _

Considering condition i) of Proposition 1 we assume that fi(A) = fo(A) and

f2(0) = f3(0). Regarding (7), it follows that the integro-differential equation

restricted to {x < 0} can be solved independently from its solution on {z > 0}.

This restricted solution is independent of the parameters 7 and A. The same

observation applies to the restriction on {x < A}, hence we proceed in three

steps:

1) The special case of no liquid reserve (A = 0) and equal interest rates
(1 = [2), which was first considered by Gerber [13].

ii)  The Dassios-Embrechts (absolute ruin) model, where no investment is
allowed (A = ).

1))  The general model, as defined above.

We will only show how to find the function f3. fo and f can be found in a similar
way. For the details see [11] or [19]. Let f3(s) := ffi/& f3(x)e %" dx denote
the Laplace transform of f3 and assume that it exists. Multiplying equation (7)
with e~ ** and integrating it from —c/J3 to oo yields

o~

& (fgm #5F3(0) ) + esfale) = a1~ G(s) = 0.

This linear differential equation has the solution

~ : A [1-@
fs(s):K%eXp{é%e‘Xp{* B:szLbf_@dg} (8)

where K is a (strictly positive) constant. The factor exp{c/fB2s} is due to
integrating from —c¢/f to oo instead from 0 to oco. The factor s~ ! shows that
the solution is the integral of the inverse transform of the last factor. Using the
theory of completely monotone functions one can show that in fact ]/”;5 is the
Laplace transform of a positive increasing and bounded function which satisfies
the conditions of Proposition 1. Furthermore f3(—c/B#2) = 0. The functions
fi(i € {1, 2, 3}) have the following Laplace transforms.
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Lemma 1. Denote by 90 = sup{s > D s — M1 —G(s)) < 0} and let f1(s) =
I fu@)e™3% da, fa(s) = [o° fa(z)e™ 5 da, fa(s) = [ )5, F3()e™ % dx
denote the Laplace transforms of the function f1, fo, f3. Let furthermore g(s) :=
exp{,ﬁf cs—Afy e (1— G(€)) dé)Y. Then

. T ol C __a\_ 1‘6(5)
1) f3(s)kf(;exp{gs}exp{ 32/ —c d&}
0

2204 As o0 o Ar
i) Fi(s) = 9(6)8615 / cfa(4) g(g)l(??)f : .
where
oo e r+c/ B2
hy(s) = )\f [ / falz —y)dG(y) / fa(x —y)dG(y)| e ** dz .
A z—4A

O

Remark. In the Dassios-Embrechts model the net profit condition ¢ > Ap of the
classical Cramér-Lundberg model is equivalent to P[7 < oc] < 1. It will turn out
that this is equivalent to fo(co) < oo. Note that sp > 0 corresponds to ¢ < A
which implies (see the classical model) P[r < oc] = 1. In this case

cf3(0) — ha(s0) sz
¢+ G (s0)

fg(::) ~

The functions f3 and f; will be bounded in any case and therefore P[r < oo] < 1
forany ¢ > 0if A < oo provided Xg > —c¢/F2. B

The computed martingale is positive. We know from martingale convergence
theorem [9, Thm. 6] that the martingale must converge for { — oo. But there
are only the two possible convergence points {0, f(o0)}. Hence limy 00 X¢ €
{—00,00}. Furthermore if in the Dassios-Embrechts model ¢ < Ap (which is
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equivalent to f(oo) = oo) then 7 < oo a.s.. If f(oo) < oo then

f(00) P[T = o0] = E[f(Xoo)] :1131;@ E[f(Xt)]
= f(Xo)

and we get the following Proposition.

Proposition 2. For any A € [0, ],

JS(w)

P[T<OO|X():’U,}:1-JL,(OO)

where f is determined by Lemma [. [

Remarks.

i)

In the notation of [15] v(u) = 1 — f(u)/f(c0) and because v(X;) = 1 on
{T < oo} Proposition 2 is identical with Theorem 1 of [15].

In the above model with A < oc one does not need a net profit condition
as in the classical case to assure P[r < oo| # 1. The reason for this is
that, whenever the surplus is large enough, then the income rate becomes
¢+ (31X > A and there is a positive probability for reaching this level.

If one sets hy := 0 (or equivalently, f3(x) = 0 for x < 0) in Lemma 1
one recovers the martingale for the classical risk model which also can be
found in [5].

The only case, where the function f and (9) can be calculated explicitly,
seems to be when the claim-sizes are distributed corresponding to an
Erlang-distribution, e.g. a I'(«, n)-distribution for o > 0 and n € N. For
more general distribution functions one has to invert the LS-transforms
numerically. Alternative numerical techniques based upon the theory of
matrix-exponential distributions, are to be found in [3]. W
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Example 2. Consider the case of exponentially distributed claims G (3] ==
(1 + ps)~ L. Then the Laplace transforms of Lemma 1 can be inverted explicitly

z+4c/ B2
falm) = K / s(AMB2)—1,=s/p ds ,
0
N f%(O) 1~/ =N/

fz(l)*f3(0)+m(l e ) (10)

and
Zd-e) Py —24
(A/B1)—1
f1(z) = fa(A)+ (@) e/ (BLi) g (A) f sMBLems/n s,
¢/ B

The functions f; and f3 are of Gamma-type and the function f7 is similar to the
solution in the Cramér-Lundberg model (compare with Example 1 and note that
R=1/p— A/e).

Figure 4 shows as an example the ruin probabilities, calculated via above
martingale, depending on the liquid reserve for exponential claims with mean
jt = 1, initial capital v = 50, hazard rate A\ = 8, premium rate ¢ = 8.2, force
of interest 31 = 0.058 (6.0 %) for invested money and F2 = 0.095 (10.0 %)
for borrowed money. The ruin-probability tends asymptotically to the (absolute)
ruin probability in the Dassios-Embrechts model. The straight line is the ruin
probability in the classical Cramér-Lundberg model. W

Remarks.

i) The solution for f3 in (10) was first computed by Gerber [13, p. 65].

ii)  Considering the surplus process Xy = X, + ¢/ the model can be
interpreted as a Cramér-Lundberg model with a state dependent premium
rate

Box 0<7z <c/fa,
elx)= £ & c/Ba<zT<A+4c/f2,

c+pP1(z—A—c/B2) A+c¢/Ba<T.

For exponentially distributed claims such a model was considered by
Gerber [15]. A general formula ([15,p. 320]) was obtained for the probability
of ruin. Unfortunately this formula cannot be directly applied to our model
because [ ¢(s)"1(c(s) — 1) ds = oo. But the method of [15, p. 319] also
works for the above model. B
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P17 «es]

0.1571

100 200 300 400 500 A
Figure4: Ruin probabilitics for an example ol a risk process with exponential claims taking borrowing
(F2 = 0.095) and investment (31 = 0.058) into account. Initial capital S0.

In the Cramér-Lundberg model one can show that (in the small claim case) the
ruin probability decreases exponentially fast. (See for instance [12, p. 378] or [16,
p.7]). The exponent is called Lundberg exponent. A similar theorem is also valid
in our model. The exponent can be found from the Laplace transform of the ruin
probability. For a proof see [11] or [19].

Theorem 1. Define R by

R:=sup{reR: G(—r) < oo}

For A < oo, R is the Lundberg exponent for (Xy) in the sense that, for all ¢ > 0,

lim Plr <oc| Xg= u]e(R—E)u — 1),
U—CO
and
U— 0

The question arises, what happens in the case ¢ = 0.



64

Example 2 (continued). Using(10)in the case of exponentially distributed claims
one obtains for the limit

lim P[r < oo | Xg = ule™
U—Co

0 fr<%or (r:ﬁand)\<[ﬁ1)5
—\C rziand)\zﬁl, (11)

oo otherwise,

for & = eA/”(,Gl/c)()‘/ﬁl)*lufé(A)/fl (00). This example shows that in fact
we cannot say anything about the case e = (0. W

Remarks.

1) Lundberg exponents in the sense above also appear in context of other
generalizations of the classical risk model (see for instance [16]).

ii)  Itisnotsurprising that the right end point of the interval where the moment
generating function exists takes the role of the Lundberg exponent. This
could be also obtained by considering the Lundberg exponent of the
classical model and then to let the premium rate ¢ tend to infinity.

iii) The dependence of A/ of the limit in the example above is surprising.
But it turns out, that this holds not in general. For Gamma distributed
claims G(s) = (R/(R + s))Y one obtains (see [11])

0 if y<1,
lim Plr<eo| Xg=4ule"™ =+ (A1) # vy=1,
U—00

00 if y>1.

iv)  The correct asymptotic behaviour of the ruin probability must entail
another factor besides the exponential one. For the case of state dependent
premium income the problem for the Lundberg inequality is partially
solved by Sgren Asmussen and Hanne Nielsen (private communication).
Note that we can consider the risk process with the possibility of interest
and borrowing as a risk process with state dependent premiums.

v)  The question arises, how to estimate R. By restriction on a certain set, a
solution was found in [17]. Recently it was shown [20] that the problem
is equivalent to the problem of estimation of the coefficient of regular
variation. But in any case the rate of convergence is slow. W
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g An inversion formula for f3

We consider in this section the case A = 0 and 31 = B2 = . This particular
model was also considered by Gerber [13]. He obtained the relation between
f3 and S (see below) and computed the characteristic function of S. His results
are crucial in this section, thus we derive these results again. Furthermore we
compute an inversion formula for f3.

Because all the time the same (constant) force of interest is valid, the process
(X¢) can be expressed explicitly as

2 Nt
X; = uePt + 3(661ﬁ —-1) - Z Yy, e (t=Tk)
k=1

5]
Therefore
c 2l - c
{r<t}={Xg<—E}z:{Z:nwﬂ”*>u+—}
, it 5}
and
> T C
{T:OO}_—_{ZY,CQ*W*: Squf;}. (12)

k=1
Setting S = > 77, Vie Pk we see that
fslz— <) = P[S < 2]
3 3 = i

It is well-known in shot-noise theory (see for instance [18, p. 46]) that the
characteristic function of S is given by (see also Lemma 1)

9
Ye(¥) = E[eiﬁs] = exp{ - %fL)G(é) df}
0

!

where 1z denotes the characteristic function of the claim sizes. Hence we get
the following inversion formula for fs.

Theorem 2. Let f3 be as above and define

B /\ v oo} 1 ‘ _"
C(ﬂ)—B/O /O £ (1 —coséz)dG(z)dE
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and

A ) o0
ﬁﬁ./()/o ¢ (sin&2) dG(z) dE .
Then

f3 (7; — %) - _]‘_ /OO (—1 - (;;)ST% sin D(9) + 5111}1}13 cos D(z9)>
0 v
x exp{—C(9)} d¥. (13)

Proof. We first want to show that f(S g (9) /9] dd = [ |c/)5(?9)/19| did < o0
for all § > 0. Because |1 g(17)| < 1 it suffices to show the relatlon to be true for
one value of 6. Denote by [x| the largest integer smaller or equal to z. Choose
zo > Osuch that G(zp) < 1. Let z > zg and ¥ > 27 /2. Then

[9z/2x] K2m/z

fl—c;sfzd€> Z / 1—cos,gy€

0 — (k=1)2n/z
. Vz/2m k27 /z [92/27] .
2— Z / (1 —coséz)dé = Z z
s (k 1)2r/2 il
vz

> log([¥z/2n] + 1) > log 5
m

We choose 6 = 27/zp. Then
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It follows (see for instance [12, p. 511]) that

1 7 1 — et
Pa=c/f) =5 | —o—ws(@)ds.

Note that the complex part of the integrand is an odd function in ¢ and vanishes
therefore, while the real part of the integrand is an even function. [

Remark. In order to obtain formula (12) no assumptions on (N¢) and (Y;) are
necessary. In any case where the distribution of S can be computed we get

the solution of the corresponding ruin problem. For further literature on S see
[21]. W

To compute the functions fy, f2 and f3 one might solve equations (5), (6) and
(7) numerically. But the question how to control the error and how to choose
f'(—¢/B2) arises. In fact, considering (10) shows that f’(—c/32) may be 0, finite
or infinite depending on the parameters. But it suffices to find an alternative
method to compute f3. We would propose the following algorithm.

° Compute f3 using (13).

o Solve equations (6) and (5) numerically in order to get fo and f;.

5 Final Comments

The method of piecewise deterministic Markov processes has turned out to be
an ideal tool to model risk processes of bounded variation. The easy way one
can construct martingales (see also [19], [5] or [10]) makes it easy to compute
ruin probabilities or exponential bounds of the ruin probabilities. In more
general models, like the one considered in this work, the corresponding integro
differential equations are hard so solve. One has to resort to Laplace transforms
and to use Tauberian theorems in order to get some properties of the process. The
problem of inverting the obtained expressions is hard. The numerical procedures
work slowly. The method proposed in the previous section only works well, if
C(¥) and D(49) can be computed explicitly (as it is the case for exponentially
distributed claims). Therefore quicker methods to compute f3 numerically are
called for.
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Summary

Two models of the collective theory of risk, one introduced by Gerber [13] and the other by Dassios
and Embrechts [5], where borrowing is allowed, are extended with the possibility of investment
above a certain level. An application of Davis’ method of piecewise deterministic Markov processes
[6] yields the Laplace transform of the ruin probabilities as well as a ‘Lundberg exponent’ for the
model. For the case of equal interest rates for invested and borrowed money an explicit inversion
formula is given.

Zusammenfassung

Zwei Modelle der kollektiven Risikotheorie (das eine geht zuriick auf Gerber [13], das andere auf
Dassios und Embrechts [5]), in denen die Moglichkeit von Geldanleihe besteht, werden durch die
Moglichkeit von Investition des Kapitals iiber einer gewissen Schranke erweitert. Durch Anwendung
der Methode der von Davis [6] eingefiihrten stiickweise deterministischen Markov Prozesse lasst
sich die Laplace-Transformierte der Ruinwahrscheinlichkeiten sowie ein ‘Lundberg Exponent’
bestimmen. Fiir den Fall von gleichen Zinsraten fiir geliechenes und investiertes Kapital ldsst sich
eine explizite Umkehrformel herleiten.

Résume

On propose une extension de deux modeles de la théorie du risque collectif (I'un introduit par Gerber
[13], Fautre par Dassios et Embrechts [13]) incluant la possibilité d’emprunter, en prenant en compte
la possibilité d’investir le capital supérieur a une certaine limite. La méthode des processus de Markov
déterministes par morceaux, introduite par Davis [6], permet d’obtenir la transformée de Laplace
de la probabilité de ruine ainsi qu'un “exposant de Lundberg”. Dans le cas ol les taux d’intérét du
capital emprunté et du capital investi sont égaux on donne une formule d’inversion explicite.
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