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B. Wissenschaftliche Mitteilungen

CrLAUDIA KLUPPELBERG, Ziirich

Katastrophen — Modellierung und Vorhersage!

Immer héufiger werden wir von Katastrophenmeldungen in Funk, Fernsehen
und Presse iiberrascht. Denken Sie nur an die Hochwasserkatastrophen dieses
Sommers an der Rhone und im Tessin, die Millionenschidden verursachten. In
der folgenden Tabelle habe ich einmal einige der weltweit am bedrohlichsten
eingestuften Katastrophenszenarien aufgefiihrt:

Zerstorung der Ozonschicht und daraus resultierend eine erhohte Strah-
lung ultravioletten Lichtes

Treibhauseffekt, insbesondere die Zunahme von Kohlendioxid und ande-
ren Treibhausgasen

Saurer Regen, d.h. Verschmutzung der Luft durch Auto- und industrielle
Abgase

atomare Strahlung, d.h. Verschmutzung der Atmosphédre durch radioak-
tive Teilchen

AIDS Epidemie
Bevolkerungsexplosion, also eine Ubervélkerung der Erde
Erdbeben

Wirtschaftskrisen, wie z.B. eine weltweite Rezession

Dabei haben Katastrophen seit alters her nicht nur Besorgnis erregt, sondern
auch eine gewissermassen schizophrene Faszination ausgetibt. Echte und falsche
Propheten finden bis in unsere heutige Zeit grosse Gemeinden von Anhédngern.
Solche Propheten wollen natiirlich nicht unbedingt niitzliche Informationen
liber die Zukunft vermitteln. Im Gegenteil, seit dem Orakel von Delphi, den
romischen Vestalinnen, den Offenbarungen‘des Johannes bis zu Nostradamus,

I Antrittsvorlesung gehalten an der ETH Ziirich am 1. Dezember 1993
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waren deren prophetische Hinweise derart vage, zwiespiltig und fragwiirdig,
dass wenige ihrer Prophezeihungen interpretiert werden konnten, bevor sie sich
tatsachlich erfiillt hatten — und natiirlich erfiillten sie sich alle.

Prophezeihungen wurden im Altertum geschétzt, denn sie bestétigten die Exi-
stenz von Ordnung im Universum. Unser Schicksal liegt in den Hénden der
Gotter und alle wichtigen gegenwirtigen wie zukiinftigen Ereignisse sind ein fiir
allemal entschieden — in Stein gemeisselt sozusagen. Ein armer Sterblicher wie
z.B. Oedipus, kann noch so tapfer kdmpfen, jedoch am Ende wird er besiegt
durch das unausweichliche Schicksal. Diese Weltanschauung hielt die Menschen
zwar im Ungewissen, aber sie vermittelte auch ein gewisses Mass an Sicherheit
und Trost.

In christlicher Zeit, und besonders nach der Reformation, gewannen zusétzliche
Elemente an Bedeutung: ndmlich Begriffe wie Schuld und Siihne. Der nach-
klassische Held hat einen freien Willen; er slindigt und veriibt Verbrechen. Die
Prophezeihung beinhaltet Strafe und demonstriert somit nicht nur Ordnung, son-
dern auch Gerechtigkeitim Universum. Die Prophezeihungist eine Bekréftigung
religioser und moralischer Prinzipien. Solche Elemente scheinen bis heute ein
wichtiger Bestandteil gewisser Prophezeihungen unserer westlichen Welt zu sein.

Wiihrend wir einerseits ein ungeheures Vertrauen in unsere Technik haben und
bedingungslos glauben, dass mit geniigend Vorstellungskraft und harter Arbeit
alles erreicht werden kann, existiert doch andererseits ein beharrlicher Gegen-
strom, ndmlich die Faszination der Katastrophe. Wort- und Bilddokumente von
Katastrophen werden seit Hunderten von Jahren verfasst. Ein Beispiel dafiir ist
Bild 1, das einen Kupferstich von D. Redinger des Sihl-Hochwassers von 1732
zeigt.

Als Wissenschaftler miissen wir uns natiirlich von allen nicht wissenschaftlich
fundierten Prophezeihungen fernhalten. Wissenschaftlich fundierte Prophezei-
hungen nennen wir Vorhersagen. Jedoch Vorhersagen iiber Katastrophen sind
selten prézise. Das liegt in der Natur der Katastrophe. Die folgenden Katastro-
phentypen erscheinen mittlerweile immer 6fter in den Schlagzeilen:

- Explosionen

- Wirbelstiirme

—  Uberschwemmungen
- Chemieunfille

- Erdbeben



Hier einige Beispiele aus einem Bericht der Versicherungswirtschaft:

Die Explosion auf der Ol- und Gasplattform “Piper Alpha” im Juli 1988
belastete die internationale Versicherungswirtschaft mit 1,5 Milliarden
Dollar. Sie setzte damit einen neuen Massstab. Erstmals hat ein von
Menschen verursachter Schaden die Milliardengrenze erreicht, und “Piper
Alpha” wurde zum grossten je von Menschen verursachten Einzelschaden
der Geschichte.

1989 wurde fiir die Versicherungswirtschaft zum Katastrophenjahr. Die
versicherten Grossschidden eskalierten gegeniiber dem Vorjahr auf mehr
als das Doppelte und erreichten die Rekordhohe von iiber 13,8 Milliarden
Dollar. Allein der Hurrikan “Hugo” richtete in der Karibik und Teilen
der USA einen Versicherungsschaden von 4,3 Milliarden Dollar an. (1990
brachte einen neuen Donnerschlag: Eine Sturmserie iiber Europa verur-
sachte Schiden zwischen 13 und 17 Milliarden SF.)
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- Sommer 1991: Wieder fegte ein Wirbelsturm iiber Bangladesh. 150000
Menschen starben. Mit tddlicher Sicherheit werden in den kommenden
Jahren weitere Hunderttausend in den Sturmfluten sterben. Eine Trend-
analyse zeigt, dass nicht nur die Anzahl, sondern auch das Ausmass solcher
Naturkatastrophen seit den achtziger Jahren steil ansteigen.

- Auslédndische Investoren errichten in Drittweltnationen riesige Industrie-
anlagen, bei denen fiir Sicherheitskonzepte und vorbeugende Unterhalts-
arbeiten of zu wenig Zeit und Geld aufgewendet wird. Die Chemiekata-
strophe von Bhopal, wo ein Rohrbruch iiber 2000 Menschenleben forderte,
hat hier ein mahnendes Zeichen gesetzt.

- Der Sommer 1987 wird in den Alpen als Katastrophenzeit in Erinnerung

bleiben. Im Puschlav ist es der Wildbach im Val Varuna, der am Anfang der
Ungliickskette steht. In seinem Ober- und Mittellauf die Ufer erodierend,
trigt er Unmengen von Erde, Steinen, Baumen und sogar Felsen von
vielen Tonnen Gewicht ins Tal und verstopft mit seinem Geschiebe das
Bett des Poschiavino. Der Fluss sucht sich einen neuen Weg und findet
thn in den Strassen und Gassen von Poschiavo. Der durch das Stiddtchen
tosende Fluss richtet gewaltige Zerstorungen an; die in ihren Héusern
blockierten Einwohnern miissen per Helikopter von den Diéchern geholt
werden. Inmitten der Aufriumarbeiten beginnt es Ende August nochmals
heftig zu regnen.
Voll getroffen vom August-Unwetter wird das Urnerland. In der Nacht
vom 24. zum 25. August brechen die Uferddmme im Gebiet der Reussmiin-
dung an mehreren Stellen. Der Fluss wihlt sich die Autobahn als zusétz-
lichen Weg und deponiert mannshoch Schlamm auf dem Betonband. Die
Nationalstrasse und weitere Verkehrswege werden an anderer Stelle fiir
den wildgewordenen Fluss zum Hindernis. Schon nach wenigen Stunden ist
die ganze untere Reussebene eine riesige Wasserfldche. Fliielen, Seedorf
und Attinghausen stehen meterhoch im Wasser. Da die Reuss im oberen
Kantonsteil (insbesondere in Gurtnellen und Goschenen) ebenfalls wiitet
und die Bahn- und Strassenverbindungen an vielen Stellen zerstort, sind
weite Teile des Urnerlandes nur noch per Schiff oder Helikopter zuging-
lich.

Wir bemerken, dass alle diese Katastrophen die folgenden Eigenschaften besit-
zen:

- sie beeinflussen einen betrdchtlichen Teil der Bevolkerung
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B sie sind von ungewohnlichem Ausmass
- die versursachten Langzeiteffekte
- sie geschehen dusserst selten.

Jeder Statistiker weiss nun, und auch der gesunde Menschenverstand sagt uns
das, dass das Prdadikat “dusserst selten” bedeutet, dass wissenschaftliche Vor-
hersagen schwierig sind, einfach aus einem Mangel an gentigend Daten, d.h. an
Informationen iiber den Ablauf dhnlicher Katastrophen in der Vergangenheit.
Dennoch gibt es Methoden, die qualitative und quantitative Aussagen iiber sel-
tene Ereignisse erlauben. Die effizientesten Methoden beruhen auf der Poisson
Approximation fiir Extrema. Wir erldutern sie hier an einem Beispiel: Fiir den
Bauvon Ddmmen und Deichen bendtigt man Aussagen liber den zukiinftigen Pe-
gelstand, die man aus Vergangenheitsdaten ableiten mochte. Diese Daten bilden
eine Stichprobe (X1, ..., X;,) von unabhingigen, identisch verteilten Zufalls-
variablen und mit X bezeichnen wir den (zukiinftigen, unbekannten, zufélligen)
Pegelstand. Was kann man iiber P(X > u) fiir grosse Werte u sagen? Bild 2
zeigt eine solche simulierte Stichprobe.

U000, | L W _______________________
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Bild 2: Poisson Approximation [tir Extrema
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Fiir eine Stichprobe vom Umfang n sei u, ein hoher Schwellenwert. Man
definiert

mn
Byeedidd e 1oy Xy B i b= ZI{Xi>un}’
1=1
d.h. §;, ist die Anzahl der Werte der Stichprobe, die den Schwellenwert w,
iiberschreiten; man nennt diese Werte auch Exzedenten tiber u,,. Im obigen Bild
ist z.B. Sop = 9 und S1gg = 8. Dass diese beiden Zahlen so nahe beieinander
liegen ist kein Zufall, sondern eine Konsequenz der Poisson Approximation fiir
Extrema. S, ist nach Definition eine Summe von n unabhéngigen, identisch
verteilten Zufallsvariablen, die nur die Werte 0 oder 1 annehmen und zwar gilt

P(I{x,5uny =1) = P(X; > up) =p,  firalle i=1,...,n.

Folglich ist .5;, binomial verteilt mit Parametern n und p,,. Wir wihlen nun py,
s0, dass

ES, =npy, —17>0 flir n — oo.

Mit anderen Worten, die Folge (u, ), e Wird so gewahlt, dass die mittlere Anzahl
an Exzedenten approximativ konstant bleibt. Dann konvergiert fiir n — oo nach
dem klassischen Satz von Poisson S;, gegen eine Poisson verteilte Zufallsvariable
mit Parameter 7. Man kann damit die Anzahl S;, von Exzedenten iiber einen
Schwellenwert u,, fiir grosse n durch einen Poisson Prozess approximieren.
Dieses Prinzip ldsst sich nun statistisch ausnutzen, um Schétzungen fiir P(X > u)
zu erhalten. Die folgende Formel gibt einen nichtparametrischen Schitzer, wobei
~v sowie a und b aus den Vergangenheitsdaten zu schitzen sind

un — b(n/k) —1h
fir n — oo, k = k(n) — oo, k(n)/n — 0. Parametrische Schitzungen sind
ebenfalls moglich [Kliippelberg und Villasenor (1993); Keller und Kliippelberg
(1991)].

Zahl und Ausmass von Katastrophen nehmen weltweit stindig und immer
schneller zu. Bei ndherem Hinschauen wird deutlich, dass dies weder Zufall
noch Schicksal ist: Nicht die Natur, sondern der Mensch verursacht die meisten
Katastrophen. Die Schweizerische Riickversicherungs-Gesellschaft publizierte
1988 eine ausfiihrliche Dokumentation der Ereignisse des Katastrophensom-
mers 1987. Mag man auch die rein materielle Ausrichtung der Versicherungs-
wirtschaft als Einschrinkung empfinden, so muss man doch anerkennen, dass

k
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der tdgliche Umgang mit dieser materiellen Seite von Naturkatastrophen wie
auch mit technischem und menschlichem Versagen den Blick schérft fiir die
Ungliicksursachen. Wie kaum eine andere Institution hat die Versicherungs-
branche von Berufs wegen einen detaillierten Einblick in das Ausmass und
die ndheren Umstidnde von Schadenfillen, denn sie ist auf Grund ihrer weit-
gefdcherten Risikobeteiligung praktisch in alle grosseren Katastrophen invol-
viert.

So ist in dem Bericht “Berge, Wasser, Katastrophen” (1988) nachzulesen, wie
das masslose Abholzen der Bergwilder die ohnehin diinne Humusschicht in
weiten Teilen der Alpen reduziert. Starke Bautétigkeit in den Ortschaften, neue
Hotelanlagen, Wanderwege, Skipisten und Liftanlagen lassen Regenwasser nur
schlecht im Boden versickern.

Nicht zuletzt hat der Machbarkeitswahn der Menschen zu vermehrten Schi-
den gefiihrt. So glaubte man im 19. Jahrhundert, die im Urner Miindungsgebiet
immer wieder lber die Ufer tretende Reuss durch einen schnurgeraden Kanal
einddmmern zu konnen. In der ehemaligen Hochwasserebene machte sich
Landwirtschaft breit, Einfamilienhduser schossen aus dem Boden, Bahnlinien
und Autobahn wurden gebaut. Bereits 1868, vier Jahre nach dem Kanalbau,
zeigte eine Grossiiberschwemmung die Illusion des Sicherungskonzepts. 1910
und 1987 wiederholte sich die Katastrophe.

In unserer modernen und erschreckend komplexen Welt sind zuverldssige Vor-
hersagen kiinftiger Ereignisse von eminenter Wichtigkeit. Entscheidungsiréger
in Regierung und Wirtschaft hdngen von solchen Vorhersagen ab — sowohl
in ihren tdglichen Aktivitdten als auch in ihren langfristigen Planungen. Un-
ter diesen Bedingungen ist es fiir uns Wissenschaftler ganz entscheidend klar-
zustellen, was wir unter der Vorhersage von Katastrophen verstehen. Oder
mit anderen Worten, wofiir oder ob tiberhaupt Vorhersagen formuliert werden
kénnen.

Ich mochte Thnen das am Beispiel der Erdbebenforschung verdeutlichen. Erd-
beben gelten mit als die am meisten Terror verbreitenden Katastrophen unserer
Erde. Sie kdnnen immensen Schaden anrichten und sie geschehen praktisch ohne
jede Vorwarnung zu jeder Stunde des Tages, zu jeder Jahreszeit, und wenige Orte
dieser Welt sind sicher vor ihnen. Sie hidngen wie ein Damoklesschwert tiber un-
seren Kopfen und konnen jeden Moment iiber uns hereinbrechen (oder besser
unter uns hervorbrechen). Fiir die Forschung haben sie den Vorteil, dass sie seit
den frithesten Perioden der Geschichtsschreibung auf der ganzen Welt sorgfiltig
dokumentiert wurden. Zum Beispiel gibt es einen Katalog aller substantiellen
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Erdbeben in Zentralchina seit 3000 Jahren; vollstindige Dokumentation der
Erdbeben in Japan, Europa und dem Nahen Osten gibt es seit ungefdahr 2000
Jahren.

Was wissen nun Wissenschaftler tiber Erdbeben heutzutage? Die Ursache von
Erdeben, das ist mittlerweile eine allgemein akzeptierte Theorie, ist die Konti-
nentaldrift. Nach dieser Theorie schweben oder schwimmen ungefédhr 10 giganti-
sche Platten von Erdkruste, jede ca 75 km dick auf weicherem Material darunter.
Ein stetiger Fluss von geschmolzenem Fels schiebt sich entlang wohldefinierter
Rinder vom Innern der Erde aufwirts. Dies versursacht, dass die Platten sich be-
wegen, ihre Riander reiben aneinander. Dort finden die meisten Erdbeben statt.
Leider kann man diesen Prozess nicht hinreichend genau beobachten, um eine
zuverldssige Theorie zu entwickeln. Man hat bis heute nicht einmal ein zufrie-
denstellendes Modell; zufriedenstellend in dem Sinn, dass man einigermassen
zuverlédssige Vorhersagen machen kann.

Seit Beginn unserer Geschichte haben Menschen versucht, mit Hilfe von Sternen,
Pflanzen, Tieren und irgendwelchen anderen natiirlichen Anzeichen — mittels
mehr oder weniger dubioser Methoden — Ort, Zeit und Intensitit von Erdbeben
vorherzusagen. Die folgenden Signale werden auch heute noch als ernstzuneh-
mende Vorwarnungen von Erdbeben angesehen. Natiirlich glauben wir, in un-
serer Zeit eine bessere (wissenschaftliche) Begriindung fiir unser Vorgehen zu
haben.

- Verdnderungen im Grundwasser
(Druckinderungen verursachen ein Heben oder Senken des Grundwas-
serspiegels)

- Elektromagnetische Phidnomene
(Felsen unter hohem Druck erzeugen manchmal elektrische Strome)

- Deformationen in der Landschaft
(Erdbeben gehen manchmal Aufwerfungen und Verdnderungen im Ge-
fille der Erdoberfliche voraus)

- Seismographische Beobachtungen
(Héufig gehen einem grossen Erdbeben kleinere Erschiitterungen voraus)

- Tierverhalten
(Manche Tiere fithlen das Nahen eines Erdbebens und brechen im Panik
aus.)
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Aus keinem dieser obigen Signale kann man allerdings einen zuverldssigen
Vorhersagemechanismus ableiten. Zur heutigen Strategie gehort es, weiterhin
die Ursachen zu studieren und sorgfiltig Daten zu sammeln, auch iiber kleinste
Beben. Dabei scheint Ubereinstimmungen zu herrschen, dass viele kleine Beben
ein grosses unwahrscheinlicher machen. Kleine Beben bedeuten viele kleine
Korrekturen fiir die Kontinentaldrift. Wenn diese ausbleiben, ist irgendwann
eine grosse Korrektur fallig. Jahrelange Dokumentation ldsst auch in manchen
Erdbebengebieten auf eine gewisse Periodizitédt schliessen. Beide Phdnomene
fiihren zu Vorhersagen, die bestenfalls Approximationen sind.

Vom mathematischen Standpunkt aus ist ein Erdbebenmodell ein Raum-Zeit-
Modell. Ublicherweise zerlegt man das Problem in mehrere Komponenten, die
man einzeln untersuchen kann. Eine solche mehrstufige Analyse erfordert ein
Studium sowohl des raumlichen als auch des zeitlichen Ablaufs des Bebens. Erd-
beben haben ihren Ursprung in einem Punkt, entlang von Linien oder innerhalb
von Zonen. Sie haben verschiedene Stidrken (gemessen auf der Richterskala),
verschiedenen rdumlichen Umfang und geschehen zu verschiedenen Zeitpunk-
ten.

Ein naiver globaler Modellsansatz wire der folgende: Es gibt eine Quelle und
die von ihr verursachten Beben verteilen sich nach einem Poissonprozess in
einem Gebiet. Die Stédrke der Einzelbeben kann man als unabhingige exponen-
tialverteilte Zufallsvariablen ansehen, und die Intensitdt der Bewegung an den
einzelnen Punkten féllt mit der Stirke und der Distanz von der Quelle ab.

Dieser Modellansatz wird nun ergénzt durch einen zeitlichen Aspekt, man kann
die Zeitreihe der Beben als Punktprozess auf der Zeitachse modellieren. Nach-
beben konnen z.B. mittels Geburtsprozessen modelliert werden. Nach jedem
grosseren Beben werden Messungen in der Umgebung vorgenommen und u.a.
die Quelle dort lokalisiert, wo der grosste seismische Ausschlag festgestellt
wurde. Es werden isoseismische Karten erstellt (Isoseismische Linien sind Li-
nien gleicher Intensitit). Solche Karten sollen den Zusammenhang zwischen
Bodenerschiitterungen und Schiden aufzeigen. Zeitliche und rdumliche Vergan-
genheitsdaten werden nun in die Modelle eingebracht, um zu qualitativen und
quantitativen Aussagen zu gelangen. Keines der bisherigen Modelle fiihrt indes
bisher zu zuverlédssigen Vorhersagen. Dies macht das Gebiet natiirlich auch zu
einem sehr lebendigen Forschungsgebiet; so schreibt Brillinger (1993): “There
is a need for models, for parameter estimates and for the recognition of statical
regularities.” Viele Wissenschaftsgebiete sind hier herausgefrodert wie z.B. die
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Geologie, Geophysik, Seismologie, Ingenieurwissenschaften und eben auch die
Mathematik.

In der folgen Tabelle sind die Erdbeben der letzten 20 Jahre aufgefiihrt, die mehr
als 1000 Todesfélle zur Folge hatten.

Zeit Ort Starke Todesfalle
Juni 1990 Iran 7.7 40000
Dezember 1988 Armenien 6,8 25000
September 1985 Mexiko 7,9 9500
Oktober 1983 Tiirkei 6,9 1300
Dezember 1982 Jemen 6,0 2800
Juli 1981 Iran 7.3 1500
Juni 1981 Iran 6,9 3000
November 1980 [talien 7,2 4 800
Oktober 1980 Algerien 7,7 25000
Mirz 1977 Ruminien 7.2 2000
November 1976 Tiirkei 7,9 4000
August 1976 Philippinen 7.8 8000
Juli 1976 China 7,6 242000
Februar 1976 Tiirkei 6,8 2300
Dezember 1972 Nicaragua 6,2 5000
Mai 1970 Peru 7,8 66000

Alle diese Beben haben eines gemeinsam: Nicht ein einziges wurde vorhergesagt.
Sie kamen alle vollstindig unerwartet.

Etwas provokant mochte ich Sie bitten, einmal die beiden folgenden Vorhersagen
zu vergleichen:

Nostradamus formulierte im 16. Jh. diesen Vierzeiler:

Im Jahre 1999, im 7. Monat,

wird ein Konig des Schreckens vom Himmel herabsteigen,

und der grosse Konig von Angolmois wird wieder auferstehen.
Um diese Zeit wird Mars regieren zum Nutzen der guten Sache.

Wie interpretiert man diese Prophezeihung heute? Stewart Robb (1979) bietet
die folgende Interpretation an: “In diesem bemerkenswerten Vierzeiler —bemer-
kenswert weil Nostradamus nicht nur den Luftkrieg erwéhnt, sondern ihn fiir das
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20. Jh. prophezeit —sieht Nostradamus Armageddon voraus fiir 1999. Mars offen-
sichtlich représentiert Krieg. Sein wohlmeinender Aspekt (fiir die gute Sache)
bedeutet, dass der Krieg fast vorbei ist mit einem Sieg fiir die richtige Seite, fiir
jene die fiir die gute Sache kimpfen.”

Soviel zu mittelalterlichen Prophezeihungen. Vorhersagen unserer Zeit sind zu-
mindest vollig anders formuliert. Jede Zeit hat ja ihre ganz zeitgeméisse Aus-
drucksweise. Eine sehr ernst zu nehmende und ernst genommene Erdbebenvor-
hersage lautet z.B.

“Mit 35 % -iger Wahrscheinlichkeit wird es in den nichsten 50 Jahren ein
grosseres Erdbeben in Siidkalifornien geben.”

Eine Interpretation dieser Aussage in 500 Jahren wiirde mich schon interessie-
feh.

Lassen Sie mich zuriickkommen zum Problem der Modellierung und Vorhersage
von Katastrophen. Ich mochte [hnen einen vielleicht typischen Entwicklungspro-
zess von Modellen, Theorien und mathematischen Methoden beschreiben, und
zwar an Beispielen aus der Versicherungs- und Finanzmathematik. Katastrophen
im Sinne dieser Kategorien haben den Vorteil, dass sie messbar sind; sie werden
im wesentlichen in Geldeinheiten ausgedriickt.

In der Versicherungsmathematik ist ein Katastrophenrisiko im Prinzip durch den
Umfang seines Schadens definiert. Es erzeugt Verluste, die bei weitem die Ka-
pazitit einer einzelnen Versicherungsgesellschaft {ibersteigen. Typischerweise
konnen sie nicht durch lokale Versicherungsgesellschaften und einige Riickver-
sicherungen abgedeckt werden, sondern sie werden weltweit plaziert.

An eine Katastrophe in der Finanzmathematik erinnern Sie sich sicher alle noch,
ndmlich an den Borsenkrach 1987, als innerhalb weniger Tage, ja Stunden, fast
alle Aktienkurse in den Keller sanken. Auch hier ldsst sich der Schaden ebenfalls
am finanziellen Umfang messen, aber es findet auch ein nicht zu unterschétzender
Vertrauensverlust in gewisse Anlagen statt, der sich wohl nicht so leicht beziffern
ldsst.

Katastrophen, die beide Branchen betreffen, gab es z.B. bei Kreditversicherun-
gen fiir Junk Bonds oder fiir Hypotheken in USA und Grossbritanien. Infolge
der Rezession verloren Grundstiicke und Héauser an Wert, und zwar teilweise in
solchem Umfang, dass die darauf lastenden Hypotheken den Eigentumswert bei
weitem liberstiegen.

Die Geschichte der Versicherungs- und Finanzmathematik beginnt ungeféhr
gleichzeitig Anfang dieses Jahrhunderts: In der Versicherungsmathematik 1903
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mit dem kollektiven Modell von Lundberg und in der Finanzmathematik 1900
mit der Doktorarbeit von Bachelier.

Waihrend in der Versicherungsmathematik ein stetiger Entwicklungsprozess
folgte, der bis heute anhiilt, gab es in der Finanzmathematik eine schopferische
Pause bis in die 60er Jahre. Danach allerdings setzte insbesondere in den 70er
Jahren ein Boom ein, der bis heute ungebrochen anhilt. Mittlerweile erfolgt
mehr und mehr ein Zusammenwachsen beider Gebiete. Versicherungs- und
Finanzmathematiker haben erkannt, dass sie voneinander profitieren kdnnen.
Die Versicherungsmathematik hat mit ihren jahrzehntelangen Erfahrungen im
Risikomanagement und mit Katastrophenrisiken ein reiches Wissen erlangt und
Methoden erarbeitet, die in der Finanzmathematik von immensem Nutzen sein
konnen. Ein mathematisches Beispiel ist die beriihmte Black and Scholes Formel
zur Preisbestimmung von Optionen, die vom versicherungsmathematischen
Standpunkt eine Stop-loss-pridmie darstellt. Andererseits kann insbesondere
die Lebensversicherungsmathematik von den Methoden der Finanzmathematik
profitieren; ein mathematisches Beispiel sind hier stochastische Zinsmodelle.

Lassen Sie uns ein paar ausgewihlte Modelle zusammen anschauen.

Das klassische Risikomodell in der Versicherungsmathematik betrachtet ein
Kollektiv von Vertridgen, das Risiken produziert. Bild 3 zeigt einen typischen
Pfad des klassischen Risikoprozesses, der zu jedem Zeitpunkt ¢ die Bilanz eines
Portfolios darstellt:

N(1)
R(i:):uviwct~ZX@-, t>0.
i=1

Dabei sind

u das Anfangskapital

i die Primienrate

11,75, ... die Schadenankunftszeiten
N(t) = #{n e N;T;, <t}, t>0: Poissonprozess

X1,Xo9, ... dieSchadenhdhen (unabhéngigidentisch verteile Zufallsvariablen,
unabhingig von (7});cn)

T der Ruinzeitpunkt.

Die Ruinwahrscheinlichkeit

PY(u) = P(1 < oo | R(0) = u)
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R(t)
u A/
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o | | 1[
Tl T2 T3 T t
0 10 20 30 40 50 60 70 80

Bild 5: Ein Plad des klassischen Risikoprozesses

dient als Mass fiir die Stabilitit des Prozesses. Wie wirken sich nun Gross-schdaden
(oder Katastrophenrisiken) aus? Fiir moderate Schiaden (z.B. exponentialver-
teilte) fillt die Ruinwahrscheinlichkeit exponentiell schnell (mit wachsendem
Anfangskapital u) gegen 0.

Fiir Paretoverteilte Schiden, eine der klassischen Grossschadenverteilungen,
fillt dagegen die Ruinwahrscheinlichkeit wie eine Potenzfunktion gegen 0, d.h.
der Prozess ist bedeutend unstabiler. Das wird auch sichtbar in den Simulationen
von Bild 4 und 5.

Mittlerweile wurde der klassische Risikoprozess in viele Richtungen verallgemei-
nert, um bestimmte 6konomische Zusammenhénge in das Modell einzubauen.
Der Poissonprozess als Schadenankunftprozess impliziert z.B. dass eine feste
Anzahl an Schiden in einem gegebenen Zeitintervall gleichverteilt sind. Clu-
sterbildung in den Ankunftzeiten modelliert man durch andere Punktprozesse.
Ein Beispiel ist das Polya-Eggenberger-Modell, wo der Poissonprozess durch
einen negativen Binomialprozess ersetzt wird; damit werden zeitlich gehdufte
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Bild 4: Pfade des klassischen Risikoprozesses mit exponentialverteilten Schiden

Schiden, also Ansteckungsmodelle, beschrieben. Eine wichtige Klasse bilden
Risikoprozesse in Markovscher Umgebung. Dabei verdndert sich die Umge-
bung im Laufe der Zeit. Sie ist definiert durch einen Intensitdtsparameter, der
die Schadenanzahl beschreibt, und durch eine Schadenhohenverteilung. Falls
auch nur in einer dieser Umgebungen eine Grossschadenverteilung auftritt, so
bewirkt sie eine Instabilitédt des ganzen Prozesses. Technisch bedeutet dies, dass
sie die Ruinwahrscheinlichkeit bestimmt. Eine weitere 6konomische Erweite-
rung des klassischen Prozesses sind Modelle mit Investmentmoglichkeiten und
der Moglichkeit, Geld am Kapialmarkt zu borgen.

Insbesondere fiir Katastrophenrisiken spielen sogenannte IBNR Modelle eine
wichtige Rolle. Dabei wird beriicksichtigt, dass einige Schidden erst lange nach
ihrer Entstehung bekannt werden oder auch dass die zukiinftige Kostenentwick-
lung von Einzelschiden unbekannt ist. Die entscheidende Frage dabei ist, Riick-
stellungen zur Deckung zukiinftiger Schiden zu schatzen.
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Bild 5: Pfade des klassischen Risikoprozesses mit Pareto verteilten Schiaden

Das klassische Modell in der Finanzmathematik ist die geometrische Brownsche
Bewegung. Der Preis einer Aktie wird als dynamischer Prozess modelliert:

dY (t) =rY (t)dt + oY (t) dB(t),

dabei sind
r die risikolose Zinsrate
o die Volatilitat

(Bt)i>0 eine standard Brownsche Bewegung

Bild 6 zeigt einige simulierte Pfade einer standard Brownschen Bewegung.
Mittels Ito-Calculus erhélt man die Losung

Y(t) = Ypexp {ch(t)w(fzt/Q—l—Tt}, t>0,

also eine geometrische Brownsche Bewegung.
Dieses Modell ist allerdings ungeeignet zum Modellieren von grossen Fluktua-
tionen wie sie z.B. der Aktienkurs in Bild 7 manifestiert.
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Bild 6: Plade einer Brownschen Bewegung B

Die grossen Fluktuationen werden deutlich, wenn man den Differenzprozess in
Bild 8 betrachtet. Fiir die Log-Differenzen wiirde man kaum an eine Folge nor-
malverteilter Zufallsvariablen glauben, was eine Konsequenz der Modellierung
mit der geometrischen Brownschen Bewegung wire. Eine Moglichkeit, solche
grossen Fluktuationen zu modellieren, bieten stabile Prozesse. Fiir den Preispro-
zess der Aktie bedeutet das, dass man die Brownsche Bewegung ( B(t));>q durch
eine sogenannte alpha-stabile Bewegung (Sa (t));>0 fiir o < 2 ersetzt.

Bild 9 zeigt einige simulierte Pfade von S fiir @« = 1.7. Charakteristisch sind
dabei die Spriinge. Dieser Effekt schlédgt auf den Preisprozess (Y'(¢));>( durch.

Solche Modelle dienen z.B. als Grundlage zur Berechnung von Optionspreisen
und anderen derivativen Instrumenten. Eine (Européische) Kaufoption bein-
haltet das Recht, eine Aktie an einem bestimmten zukiinftigen Tag zu einem
vorher festgelegten Preis zu kaufen. Der Preis K heisst Auslibungspreis und
der Tag 7" heisst Filligkeitstermin der Option. Fiir dieses Recht muss man nun
einen Preis bezahlen und zwar am Tag des Kaufes der Option, also lange vor
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Bild 7: Tageskurse einer Aktie (1983 —1987)

dem Filligkeitstermin. Man weiss am Kauftag nichts iiber den Kurs der Aktie
am Filligkeitstermin.

Der Wert der Option zum Zeitpunkt 7" ist
Cr =max{Y(T) — K,0}.

Als Preis der Option am Filligkeitstermin erhélt man im Falle der geometrischen
Brownschen Bewegung die berithmte Black-Scholes-Formel

P =Emax{Y(T) - K,0} = 2®(dy) — Ke "1 &(dy),

wobei x der Tageskurs der Aktie ist, @ die Standardnormalverteilungsfunktion
und

dy = (log(z/k) + oc>T/2 +vT)/oVT
dy = (log(x/k) + 02T/2 — rT)/oVT
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Bild 8: Der Log-Differenz-Prozess [iir obige Aktienkurse

Im Falle der stabilen Bewegung lédsst sich P nicht in solch expliziter Form
darstellen. Ein Vergleich der Dichte von C'p fiir (B(t));>0 und (Sq (t));>0 zeigt,
dass diese im «a-stabilen Fall fiir o < 2 bedeutend langsc_hwéinziger ist als im Fall
der geometrischen Brownschen Bewegung. Als Konsequenz wird man den Preis
P deutlich hoher wédhlen miissen, um das héhere Risiko zu kompensieren.

Mathematischen Methoden in der Versicherungs- und Finanzmathematik sind
gerade fiir die komplexeren Modelle heutzutage hochinteressant. Einige Schlag-
worte sind SDE und Diffusionsprozesse, Martingalmethoden und Punktpro-
zesse, Extremwerttheorie und Zeitreihen, und eben insbesondere stabile Pro-
zesse zur Modellierung von grossen Fluktuationen in Versicherungs- und Fi-
nanzdaten.

Zusammenfassend kann man sagen, dass die Grundlage fiir alle unsere wissen-
schaftlichen Bemiithungen der Glaube ist, die Welt verstehen zu konnen, indem
wir iber sie nachdenken. Indem wir die Welt um uns beobachten und unseren
Verstand gebrauchen, konnen wir erkldren, weshalb Dinge geschehen und wie
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Bild 9: Pfade einer «-stabilen Bewegung fiir . = 1,5

sie geschehen. Je linger wir die Welt beobachten, umso besser verstehen wir sie
und umso besser werden unsere Modelle und damit unsere Vorhersagen. Die
Modellierung und Vorhersage von Katastrophen stellt sicherlich ein sehr bedeu-
tendes, und auch mathematisch reizvolles Problem dar. Eine weitaus wichtigere
Aufgabe ist jedoch die Verhinderung von Katastrophen, und dieses Ziel diirfen
wir iiber der Faszination unserer mathematischen Modelle weder vergessen noch
versaumen.

Claudia Kliippelberg
Departement Mathematik
ETH-Zentrum

CH-8092 Ziirich
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Graphiken

Die Graphiken wurden von K. Binswanger mit Hilfe des Programmpaketes S-
PLUS erstellt. Ich danke ihm hierfiir sehr herzlich.
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Zusammenfassung

Die Modellierung und statistische Analyse von katastrophalen Ereignissen erfordern spezielle
Methoden. Wir stellen einige Modelle aus der Versicherungs- und Finanzmathematik vor und
beschreiben den Effekt von extremalen Ereignissen. An einem einfachen Beispiel erldutern wir
die Poissonapproximation fiir Extrema, auf der die wichtigsten statistischen Methoden basieren.

Summary

Modelling and statistical analysis of catastrophic events require special methods. We introduce some
insurance and finance models and describe the cffect of extremal events. For a simple example we
explain the Poisson approximation for extremes, which is the basis of the most important statistical
methods in this field.

Résumé

La modélisation et ['analyse statistique des événements catastrophiques reposent sur des méthodes
spécifiques. Nous présentons des modéles mathématiques de 'assurance et de la finance et nous
décrivons les effets des événements extrémes. Dans le cas d’un exemple simple nous expliquons
I'approximation de Poisson pour les valeurs extrémes, approximation sur laquelle se basent les
méthodes statistiques les plus importantes de ce domaine.
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