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Werner Hürlimann, Winterthour

Solvabilité et Réassurance

1. Introduction

Le phénomène de la solvabilité est difficile à définir étant donné la complexité du

sujet et l'abondance de la littérature traitant de cette matière. Par so/vaMJè nous
entendons l'ensemble des méthodes destinées à assurer le bon fonctionnement des

institutions d'assurance et qui permettent d'éviter les instabilités financières, voir les

faillites de ces institutions. La question de solvabilité est de grande importance dans

les marchés à libéralisme accru. Un système Je so/vaJJzfe' a pour de garantir
les engagements des contrats envers l'ensemble des assurés et de protéger le droit
des assurés. Comme les contrats d'assurance peuvent s'étendre sur de nombreuses

années, par exemple en assurance-vie, il s'agit souvent de garantir des engagements
à long-terme.
Quelle peut être la c'OMtnTmt/on Je /a science actnane//e au problème fondamental
de la solvabilité? En pratique un système de solvabilité peut être très complexe. Il se

base nécessairement sur un système J7«/cmmaficm,v, qui regroupe les données de tous

les contrats d'assurance de l'institution concernée. La science actuarielle s'occupe

principalement de la moJe/fsaJew J'zm système Je so/vaMitè. Un modèle est une

représentation mathématique de la réalité, une manière d'appréhender quelques

aspects essentiels à l'aide d'outils mathématiques appropriés. Il fournit un moyen
d'explorer les propriétés de cette réalité reflétées dans le modèle. Le critère w/t/me

d'un «bon» modèle est sa capacité de pronostiquer la réalité modelée. Dans notre

cas un moJè/e Je so/vaMité sera utile s'il permet de vérifier si le but d'un système
de solvabilité est atteint, c'est-à-dire si les engagements de l'institution d'assurance

envers les assurés peuvent être quasiment garantis.
Une étude pratique de la solvabilité a été entreprise par //erfe/ (1984). Cette

publication contient également une liste considérable de références relatives à ce

sujet. Parmi les études plus récentes, une bonne discussion de la problématique est

donnée par Eevcmen (1986).
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2. Un modèle de solvabilité en temps discret

De façon générale un modè/e ma7/zémafzc/z.ze se construit comme suit. On se base

sur une sélection judicieuse de vanad/es (rée//e,sfi à observer, disons .xy,

qui prennent leurs valeurs dans un espace d'états possibles, noté E. Puis il s'agit
de formuler un système mathématique liant les variables à observer. Ce système

est défini par des conditions s«r /es états, décrites à l'aide d'inégalités sur un
ensemble de fonctions, disons /j(xi, x„), j 1, m. De façon formelle,
un modèle mathématique est spécifié si les éléments suivants sont définis:

observables ay : £' —> iî, 7 1, n

conditions sur les états ./y(x[, ;r„) > 0, j 1, m

On notera qu'une égalité est équivalente à deux inégalités de sens opposé. Dans

ce cas on parle plutôt d'ée/zzafzon d'états que de conditions sur les états.

Un modè/e de so/vaMifé comprend au moins deux conditions d'états, à savoir

une équation d'états, qui décrit l'évo/ttt/on d'un porte/èta7/e d'asswrance au cours
du temps, un cr/tèrc de so/vadz'/z'té, ou de sfaMz'/é, qui permet de décider de la

solvabilité, c'est-à-dire du niveau de stabilité financière d'un portefeuille.
De façon tout à fait classique, considérons l'égaat/on d'éva/at/o« d'un portefeuille
d'assurance en temps discret. On dispose des observables suivantes:

zt un capital initial au temps 0, ou provision de fluctuations

P( les primes encaissées durant la période de temps [7 — 1, 7]

S) le montant aléatoire des prestations d'assurance durant la période [7 — 1, 7]

On s'intéresse à la valeur financière suivante:

77{ le montant du capital au temps 7

L'équation d'évolution liant deux valeurs consécutives du capital est décrite par
le .système dy«a/t»7/zze d/.sxret suivant:

l'o a.

+ 7 1,2,

(2.1)

Par addition successive de ces équations on remarque que

(2.2)
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La question de la solvabilité est fondamentale et essentielle pour les compagnies
d'assurance. La variabilité des risques encourus est souvent importante. C'est

pourquoi il s'avère indispensable de considérer de bonnes mesures de stabilité.
D'habitude on se base sur les critères de ruine et le critère de stabilité pour définir des

primes d'assurance stables permettant de couvrir le risque à plus ou moins long terme.
Pour un contrôle efficace du processus de l'évolution du risque, ces deux critères

peuvent être combinés. Ainsi le critère de stabilité s'utilise pour fixer le niveau des

primes d'assurance alors que le critère de ruine permet d'estimer le capital initial
(voir par exemple FW/me/er et ßerfram (1987), paragraphe 1.4). De nombreuses

applications basées sur le critère de stabilité sont présentées par ßeard, PenfiZannen

et Pesonew 1984). Le critère de stabilité est étroitement lié à la théorie de l'estimation,
branche particulière de la statistique. L'intégration des progrès dans ce domaine est

une tâche permanente pour l'actuaire. D'autre part la question «combien est assez?»,

un des trois thèmes principaux du Congrès International des Actuaires à Montréal

(1992), suggère l'étude de nouveaux modèles permettant une estimation sûre des

primes d'assurance. Dans ce travail quelques nouveaux aspects concernant le critère
de stabilité sont étudiés. Une approche rigoureuse semblable par le critère de ruine

nécessitera, en ce qui concerne les mathématiques, des techniques plus élaborées.

On dit qu'un portefeuille d'assurance satisfait le cn'/ère t/e .vtoZûfeé si la probabilité

que la compagnie d'assurance soit non-solvable à la fin de la période [0, f] est plus

petite ou égale à e(f, tt) > 0 suffisamment petit:

Pr(Ut < 0) < s(Ltt), 1.2.... (2.3)

Noter que a priori e(i, u) peut dépendre du temps et du capital initial. La question
fondamentale et le point critique de ce genre de critère résident dans un choix

«acceptable» des n/veat« Pe .îoZvaMûé e(f,u). Ce problème crucial sera quelque

peu abordé dans ce travail. La dépendance de e(i,u) par rapport au temps pour
un portefeuille d'assurance est étudiée au paragraphe 3. Au paragraphe 5 le critère
de stabilité est transformé en un critère stop-loss, qui permet d'exprimer le niveau

de solvabilité à l'aide d'un équivalent économique quantifiable. Cela permet de

définir des primes d'assurance stables ayant des propriétés attractives du point de

vue statistique classique.

Bien que le temps est variable dans notre analyse, notre étude se restreint en

fait à une période d'assurance fixée d'avance. A notre avis le calcul des primes
de solvabilité dans un modèle multipériodique devrait tenir compte des sinistres

observés dans le passé. A ce sujet un développement ultérieur tenant compte de
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la théorie de la Crédibilité, comme suggéré déjà dans ffir/imann (1988), s'avère

indispensable.

3. Prime de solvabilité - Approximation de Tehebyehev

Etant donné le caractère essentiellement .stafir/ue du critère de stabilité, il suffit
de se restreindre à l'analyse du modèle de solvabilité pour une période de temps
fixée. Pour cela considérons

£

P(f) : P„ les primes accumulées au temps t
n=l

£

5(i) : ^ 5,, les sinistres accumulés au temps /
n=l

Avec ces notations le modèle de solvabilité devient:

C/t u + P(t) - 5(f) (3.1)

Pr(î/t < 0) < c(f, ?./,)

Si i')(a) Pr(5(f) < a;) dénote la fonction de répartition des prestations
d'assurance accumulées au temps 1, alors on a Pr([/( < 0) — 1 — F)('« + P(i)).
Il suit que le critère de stabilité est équivalent à la condition suivante:

Pr([/-t < 0) < e(f,'u) 44- iy((i + P(f)) > 1 — e(f, tt) (3-2)

Si i*t(ç) minja : P)(a) > g} dénote le g-puanti/e de la variable aléatoire 5(f),
alors le critère de stabilité est encore équivalent à la condition

Pr({/, < 0) < e(i, u) o- u + P(i) > Pt(l - tr(f, u)) (3.3)

Définition. La prime aie so/vain/ité, de niveau tie jo/vaèi/ife e(f, u), dénotée par
[5(f)], est la prime minimale qui satisfait le critère de solvabilité. Par

définition on a

2/prp[5(f)] P,(l-s(f.u))-u (3.4)

L'évaluation d'une prime de solvabilité nécessite d'envisager deux cas distincts:
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(i) On dispose d'une m/ormario« comp/ète sur Fi (a:). La forme de la fonction
de répartition est connue, par exemple loi de Poisson composée, approximation
lognormale, Gamma, etc, jusqu'à un nombre fini de paramètres, qui sont à estimer

par des méthodes statistiques. Dans ce cas une évaluation analytique, le plus
souvent même numérique, s'impose.
(ii) L'in/orwario« sur Fi(.ï) est incomp/èfe. On connaît seulement quelques

caractéristiques de la fonction de répartition, par exemple la moyenne et l'écart-

type. Dans ce cas on cherche une estimation appropriée de la prime de solvabilité,
qui se base sur ces caractéristiques, et qui donne une information valable quelle

que soit la forme de Lj(x).
En guise d'illustration du deuxième cas, montrons comment la méthode de

Tchebychev permet d'obtenir une approximation de la prime de solvabilité.

Supposons donné

//,(/) /f[5'(î)] la moyenne des prestations d'assurance au temps i,

cr^(t) Var[S"(f)] la variance des prestations d'assurance au temps t,

et cherchons une (plus petite) borne supérieure de la prime de solvabilité basée sur

/x(t) et cr(f), valable quelle que soit Fi(x). L'méga/z'fé rie 7c/zeèyc/zev (Gneriew/co

1991, paragraphe 6.2, p. 193) implique que, pour tout £> > 0,

F,(//,(£) +Ft(/)) > l - ^2 (3-5)

En particulier, pour <5 on obtient, par définition de la prime de
y/e(f,u)

solvabilité l'inégalité

» + tfe(t,„)[S(t)] Ft(l ~ £(*, «)) < M*) + JL-a(t) (3.6)
y/e(f,u)

Définition. La prime rie «rivariri/fe rie 7c/teFyc/xev, dénotée par „) [S'(ri)], est

la borne supérieure de la prime de solvabilité donnée par l'expression

M*) + ~ "
y/e(£,ît)

Remarques. La borne supérieure dans (3.7) n'est pas la meilleure possible. En

fait il est possible de remplacer ^ ^ ^
par ^7a.!()"'' Goovaerix et al.
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[1984], théorème 1, p. 34). Mentionnons que cette dernière prime de solvabilité a

été déjà considérée dans //«r/zmanzz (1988), paragraphe 3. Lorsque e(f, u) est très

petit, l'amélioration apportée par la meilleure borne est minime.

Il est intéressant d'analyser la riépenriance par rapport aw temps- rizr nzVea« rie

so/vaMrié pour un portefeuille d'assurance dont les primes annuelles moyennes
sont déterminées par le critère de Tchebychev.
Nous supposons que Si,..., S) sont des variables indépendantes, de moyennes

P' £[S)] et de variances of Var[S)], 7 1,..., t. Notons p, la moyenne
et la variance des prestations d'assurance par une unité de temps. Alors on a

Dans ce travail nous postulons une prime de solvabilité moyenne P par unité de

temps telle que P Pi • • • Pj > p. Le financement d'un contrat d'assurance

par primes périodiques constantes peut être justifié comme suit voir p. ex. Ger/rer

[1986], chapitre 5). En pratique de l'assurance-vie, les primes de marché sont

souvent proportionnelles au capital assuré. Ceci implique qu'elles dépendent
directement d'une prime nette moyenne dérivée de façon unique du principe
d'équivalence. Ce caractère d'unicité n'est plus vérifié pour des primes périodiques
de montants variables. De plus nous supposons que pour tout » 1,..., f, P(»)
est égal à la prime de solvabilité de Tchebychev. Par conséquent on a

(3.8)

(3.10)

(3.9)

Nous distinguons deux cas
7 cas: -u, 0 (pas de capital initial)
Comme F(() 7/f une comparaison immédiate donne la relation

(3.11)

On remarque que le niveau de solvabilité est une fonction monotone décroissante

par rapport au temps, et ne dépend que du niveau de solvabilité de la première
unité de temps d'assurance.
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2^ cas: it > 0 (capital initial positif)
A l'aide des formules (3.9) et (3.10) on déduit par calcul l'équivalence

P(t) -^i= —=L= - f— (3.12)
vW-") V i

Supposons encore que f-e(f, w) est une/onction conrinne en f et u. Comme P > /,
on obtient la relation limite

1 1 M P — U
lim —p= - - > 0 (3.13)0 • e(Cw) ^(û) o- cr

Par continuité on en déduit que

lim f • e(f, u) f ^ (3.14)
\ P — /i /

Une so/nfton part/cw/zère de cette condition limite est évidemment

1 / (7 \ ~ 1 t 1, II)
tf.«) - -=

^ 3.15
fV^P-lV t (1- H ^(1-^)2

Comme dans le 1" cas, le niveau de solvabilité est une fonction monotone
décroissante par rapport au temps, et dépend explicitement du niveau de solvabilité
de la première unité de temps d'assurance.

4. Prime de marché, prime de solvabilité et réassurance

Sur le marché des assurances la prime réelle encaissée par les assureurs va rarement

coïncider avec la prime de solvabilité. C'est pourquoi il s'avère nécessaire de

considérer des méthodes qui permettent de mesurer les différences possibles. Les

résultats obtenus servent alors de base pour les décisions à prendre au niveau

des responsables des institutions d'assurance. Nous montrons qu'il existe un lien

général entre la prime de marché, la prime de solvabilité et le phénomène de

la réassurance. Comme illustration nous montrons de quelle manière le risque
d'instabilité financière peut être couvert à l'aide d'une réassurance stop-loss avec

limitation des prestations d'assurance.
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Dans ce paragraphe soit

P(f) ^ P„ les primes de marché accumulées au temps f
71=1

[5'(7)] la prime de solvabilité au temps f

Lorsque la prime de marché est strictement inférieure à la prime de solvabilité,
c'est-à-dire si

P(f)<_ff^,„,[5(i)] (4.1)

on dit qu'il y a nJgwe Je «on-so/vaMzfé ou ràgwe J'znvtaJz7zYé/z«awczère. Comme
la fonction essentielle de la réassurance consiste à couvrir de tels risques, on en

conclut qu'il y a £>e.?oz« <?« réfl.v.sz/raHce (voir GerJer [1979], p. 80). Pour décrire
le mécanisme de la réassurance, notons

5(f) les prestations de réassurance accumulées au temps f
P'*(f) fî^[5(f)] les primes de réassurance accumulées au temps f

iï^[-] un principe de calculation des primes pour la

réassurance

P^(f) les primes nettes, ou les primes accumulées après
réassurance

S^(t) 5(f) — 5(f) les prestations aléatoires nettes après réassurance

Dans un contexte solvabilité/réassurance, le prwczpa/ de la réassu-

rance consiste à trouver des formes de réassurance adéquates telles que, après

réassurance, les primes nettes de l'assureur ne soient pas inférieures à la prime de

solvabilité correspondante:

P"(t) P(f) - P*(<) > P^,„)[S"(t)] (4.2)

Souvent il est désirable d'avoir aussi peu de réassurance que possible. C'est

pourquoi on essaie de satisfaire l'égalité dans (4.2). Dans ce cas, les primes de

marché, de solvabilité et de réassurance sont liés mutuellement et implicitement
par le système d'équations suivantes:

P"(t) H^,„,[S"(t)] (4.3)

P(i) P*(f) + .ff*[5(f)] (4.4)
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On remarque que les pleins de conservation P-^(i) «optimaux» sont points fixes de

l'équation de solvabilité (4.3). Par le biais de l'égalité (4.4), la prime de marché, la

prime nette et la prime de réassurance sont directement liées.

Nous allons montrer que sous certaines conditions le système de solvabilité (4.3),
(4.4) possède toujours une solution. Pour plus de clarté nous supposons le temps t
lixé et omettons cet indice dans les notations. De plus e(£, u) est simplement noté

£. Les primes stop-loss nettes de priorité ci sont notées SX(ci) F[(A~ — d)+].
D'un point de vue pratique on peut restreindre la discussion à des primes de

marché définies comme suit:

où 0, 0H sont les marges de sécurité de l'assureur et du réassureur respectivement.
Dans cette situation, on voit immédiatement que l'équation (4.4) peut être résolue
seulement si

Cela signifie que le réassureur couvre le risque à un prix moindre ou égal au prix de

marché de l'assureur. Le résultat ci-dessous montre que le système de solvabilité
(4.3), (4.4), (4.5) est résolu pour une réassurance stop-loss avec limitation des

prestations au montant L- — u — P^ avec 0(1 — e). Une solution pour les

ressources financières m + P^ existe toujours lorsque 0r < 0. Une condition
supplémentaire sur 0r identifie le plein de conservation P^ de façon unique.

Théorème 1. Supposons que les conditions suivantes soient satisfaites:

(4.5)

0/î < 0 (4.0)

S' > 0

te 4-P<Z/£ F(l — e)

0jï < 0

(Cl)
(C2)

(C3)

Alors le système de solvabilité

P* LP[0^]
P P^ + F«[Z]

(4.7)

(4.8)

possède la solution

0 (5 - x^)+ - (5 - L^)+ (4.9)
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où x^ m + P^ est zéro de la fonction

g(x^) « + P + (1 + 6>R)SP(Le) ~ ^ - (1 + 0r)SP(x^) (4.10)

De plus, si la marge de sécurité du réassureur satisfait la condition

©A < min{0 2(0/fc) - 1. P(//)/(l - P(/i))} (4.11)

où fc cr/gt est le coefficient de variation du risque 5, alors x^e[/r, P^] existe de

façon unique.

Démonstration. La preuve comprend trois parties, notées (A), (B), (C).

(A) Montrons d'abord que P (5 —x^)+ — (S — Pe)+ est solution de l'équation
(4.7).

La fonction de répartition de la variable aléatoire 5^ S" — P min{5, x^} +
(S — Pe)+ est donnée par

piv/v, f^(p), x <

\ P(x — ;r* + Lj) X > x^

Par définition de la limite P^ on a P^(x^) P(Pe) 1 — e. On en déduit que

P^ s" - u P^(l - e) - 'M Fe[5^]

Ainsi (4.7) est satisfait.

(B) L'équation (4.8), équivalente à la condition <y(x^ 0, possède toujours une
solution x dans l'intervalle [0,Pg].
Comme 5P(0) /i (condition (Cl)) et 0r < 0 (condition (C3)), on a

5(0) u + 1 + 0/?.)ÄPj(Lf) + P — (1 + 0fl)/i > u + (1 + 0r)PP(Pc) > Il

D'autre part on a d'après (C2)

fif(Pe) M + P - Pe < 0

Puisque g(x^) est continue, l'affirmation suit immédiatement.

(C) Sous la condition (4.11) l'équation <?(x^) 0 possède une solution unique
dans l'intervalle [/i, Pe].
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D'après l'inégalité de ßovver.v (1969), on a SF(//,) < <r/2. On obtient

//(//) w + (1 + (9)// f 1 + E)/?)5'L(F — // — 1 +
> u + (1 + 0/Î)5L(L,) + /*[0 - 1 /2)( 1 + 0„)Â:] > 0

D'autre part, pour x^e[/i, Z^], on a

- -1 - (1 + 0fl)5L'(^) 1 9 (1 + 0r)( 1 - F(x^))

<-l + (l + 0fi)(l-F(/i))<O
Etant donné que ,g(/.t) > 0, .g(Le) < 0, et ,g(V^) est monotone décroissante sur
l'intervalle [//., F-], l'affirmation (C) est vérifiée.

Remarque. En général une réassurance stop-Zoss «pure» Z (5 — x^) n'est

pas solution du système de solvabilité (4.3), (4.4). Ce fait se vérifie comme suit. Soit

x" w + F^ point fixe de l'équation u + P ——x^)+] et supposons

que c < 1 — F(,r^ - La variable aléatoire S — Z mm {5, } possède
la fonction de répartition

F-(,):= 1»,-,S' <,) {["'» *<^ (4.12)
t 1 X > x^

Par conséquent on a

x^ F^(l) minj.r : F^(x) > 1} > F^(l - e) d'où (4.13)

P^ x^ - « > F^(l - e) - u /F[S^] (4.14)

Dans ce cas l'équation (4.7) n'est satisfaite qu'à la limite où le niveau de solvabilité

c tend vers zéro.

5. Méthode basée sur l'inégalité de Bowers

Dans un contexte statistique moyenne-variance, il est possible de définir d'autres

primes de solvabilité, libres d'hypothèse sur la fonction de répartition des presta-
tions d'assurance. Dans un sens bien précis, et comparativement à la méthode de

Tchebychev, cette méthode produit une alternative digne d'être retenue.

Dans ce paragraphe nous supposons à nouveau le temps t fixé et omettons cet

indice dans les notations. Sur l'intervalle (—oo, oo) considérons la fonction réelle

de la variable x

SF^(x) I( yV + (.c - m)2 - (x - /i))
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Rappelons que l'inéga/ife <7<? Bowers (1969) fournit le maximum de la prime stop-
loss nette, prise sur toutes les variables aléatoires 5 de moyenne /x et d'écart-type
cr, soit

maxF[(5 — a:) + )] < S'L^(.r) (5.2)

où l'égalité est atteinte pour une variable diatomique. Pour une démonstration de

l'inégalité (5.2), on peut consulter //ei/man« (1987), (6.10), p. 177, la preuve étant

valable sans la restriction a; > //.
Considérons la fonction de répartition continue sur (—00,00)

r/i/.o _
1 A2(4+co<">

Comme on a

dSX*(a -(l-F^(a;)) (5.4)

la prime stop-loss nette associée à F®(a:) est également égale au maximum

SX®(.t). Il suit que F"(;r) (Zomine quant à la re/afion d'ordre .vfo/?-/o.v.y toutes
les fonctions de répartition de moyenne /x et d'écart-type a (voir Goovaerts et al.

[1990], p. 22, pour une définition de cette relation d'ordre).

Remarque. La densité de probabilité associée à F^(x) est donnée par

1 ^
(rr- + (.T - //)-)-

/®(x) 5 2 _ J. g (_oo, oc) (5.5)

Si X est une variable aléatoire de densité /®(x), alors la variable standardisée

Z (X — jiz)/cr possède la densité de probabilité

/# (z) ^ —J e (-00, 00) (5.6)

(l + z2)5

fonction étroitement liée à un cas spécial de la densité de Fisher-Snedecor (voir
p. ex. M«7/er [1991], p. 127).

Si l'on considère seulement l'espérance mathématique d'une réassurance stop-loss,
et si l'on se place dans un contexte moyenne-variance, alors F^(x) constitue la
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fonction de répartition la plus «dangereuse» du point de vue d'une réassurance stop-
loss. Dans cette situation, il s'avère judicieux de considérer une prime de vo/vaM/fé
de Bowers, de niveau de solvabilité e, définie et notée par

1 - e) - « /r + I a - « (5.7)
2 /r l - e)

Comparé à la prime de solvabilité de Tchebychev, pour un même niveau de

solvabilité e, le facteur proportionnel à a est réduit approximativement de moité.
Pour être utile, il est nécessaire de s'assurer que la prime de Bowers est plus
grande ou égale à la prime de solvabilité définie par (3.4). Si F"®(x) domine

rioc/tariigMement F(x), c'est-à-dire .F(x) > F^(x) pour tout x, cela est vrai de

façon évidente. Si F®(x) estp/ns dangeren.se que F(x), c'est-à-dire s'il existe x'o

tel que

F(x) < F"(.r) pour x < Xq

/''(x) > F"(x) pour x > Xo

cela est encore vrai pour autant que le niveau de solvabilité est suffisamment petit,
soit

£ < £o £o(~o) q
1 - \/,, I -o (•'() - d)/cr. (5.9)

2 \ V 2 + ^o

On notera que (5.9) est la résolution de la condition F^(l — e) > xq. Les

deux conditions ci-dessus ne sont que trop rarement satisfaites. Comme condition
suffisante plus faible, il suffit de trouver xo tel que

ri'(x) > ri"(x) pour x > xo (5.10)

Cela signifie que la queue de la fonction de répartition F(x) décroît plus rapidement

que celle de F^(x). Dans ce cas > ^[5] pour autant que £ < £o comme
dans (5.9). Pour des fonctions de répartition données, il est possible de vérifier (5.10)

en appliquant des méthodes analytiques ou numériques. Un critère probabiliste plus

général s'obtient à l'aide de l'inégalité de ÎVagaéV (1965) (p. ex. M«7/er [1991], p.

509). Cette inégalité est un des nombreux résultats sur la convergence concernant
le «théorème central limite». Elle nous dit que l'erreur d'approximation, lorsque

l'argument croît, dépend de la variance et du troisième moment de la fonction de

répartition. Dans la suite nous supposons que ces caractéristiques existent pour la

fonction F(x).
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Lern me. Supposons que la condition suivante soit satisfaite:

vTT~?
A" < 30.52,

TV(-) la fonction de répartition de la variable normale centrée réduite,

Alors on a A(/t + rrz) > f-®(//. + trz).

Démonstration. Posons C AT • £jSp/cr'. L'inégalité (5.11) s'écrit aussi

Il suit que (5.11) implique A^(/r + crz) < A(/i + uz).

Nous montrons que l'inégalité (5.11) est toujours satisfaite pour z suffisamment

grand, a fortiori (5.10) l'est aussi. De plus il est possible d'obtenir une borne effective

A) (A) — /-O/c en termes du coefficient de variation, de l'asymétrie et de la

constante A".

Proposition. Soit /c <r//i le coefficient de variation et 7 A[(S — /i)^]/o~^

l'asymétrie d'un risque non-négatif S > 0. Soit encore la fonction

A^(/z + rrz) < 7V(z) -
Or, d'après l'inégalité de Nagaëv, on a, quel que soit z,

iV(z) jriï < < ^(=) + 7x7131 + |zp 1 + |z|

(5.12)

et supposons que zq > V2 soit tel que

(5.13)

Alors on a

A(/i + crz) > A"® (/i + crz) pour z > zq (5.14)
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Démonstration. Soit z positif. La substitution f (1/2).t;^ fournit l'égalité

oo oo
1 /' -i, '-' I /' e

~~ '
iVYz) 1 / e 2 (ix 1

v^./ /2TT ./
1 X

2

Comme V2i > z, on a l'inégalité

/' f~' 1 -i~'2/ —-= f// < - 0 '
./ \/2t " z

1 2
2

d'où

1
' -2

AAz) > 1 - 2

V^TTZ

Ainsi, au lieu de (5.11), il suffit de satisfaire l'inégalité plus forte

i V,x ^'"1
\/2tt.: 2\ /I + z- / rC(l + z'')

ou encore

2/v • £[S^]/V* < /i(z) (5-15)

Or, on a

fc'(z) — y {3(1 + z-)^ - z(4 + 3z~ )} + -iL c^V _ g)

Lorsque z est positif, le premier terme entre parenthèse est toujours positif Le

second terme est non-négatif sous l'hypothèse z > \/2- Par conséquent A(z)
est monotone croissante. Le résultat suit tenant compte de la relation 15 [S^]

+ 3/ra" + 7CT
*

et du fait que A' < 30.52.

Dans la suite posons

£?=/<+- (5-16)
2 v/F(T^7)
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Un calcul immédiat montre que

SL*(Lf) i<7y/III (5.17)

Par 5® on dénote une variable aléatoire de moyenne //, E[S], de variance

a" Var[5], et de fonction de répartition P^(.t) définie par (5.3). Par définition
de la prime de solvabilité de Bowers dans (5.7), on a les relations

iP[S^] [5] p"( 1 - £) - u Lf - u (5.18)

En vertu de la propriété de monotonicité d'une prime stop-loss, le critère de

stabilité pour la prime de marché P, soit

tt + P > u + iïf [5] Lf (5.19)

est équivalent au critère stop-loss

SL*(u + P) < SL*(Lf ('^20)

Une décision basée sur (5.20) a l'avantage d'être exprimée à l'aide d'une mesure
financière quantifiable. Par exemple, on a PL^(L^ox) ~ 0.05a, SL*(L£ool) «
0.016(7.

Il est possible maintenant de considérer un système de solvabilité du type (4.3),

(4.4) modifié tel que l'assureur et le réassureur évaluent le risque selon la fonction
de répartition p"(.'/;), et tel que la prime nette après réassurance est stable quel

que soit la fonction de répartition P(ie) du risque de moyenne yt et d'écart-type
a. La solution explicite de ce système de solvabilité dépend en plus de /i et a du

niveau de solvabilité et de la marge de sécurité du réassureur.

Pour une formulation précise, notons les prestations de réassurance et

les prestations nettes après réassurance, où les deux quantités aléatoires

sont évaluées à l'aide de p-®(x). Les primes nettes après réassurance sont définies

et notées par P*-" 7P[S^'''] et dépendent de F'*(.»r).

Théorème 2. Supposons que les conditions suivantes soient satisfaites:

(Cl) La prime de marché de l'assureur ne satisfait pas le critère stop-loss, c'est-
à-dire

«"(« + ri >
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(C2) < 0
(C3) La prime de marché du réassureur est donnée par // ®[Z] (1 + 0ß)E® [Zj

(1 + 0h)F[Z®], où F [•] dénote l'espérance mathématique évaluée par
rapport à P®(x).

(C4) La distribution de Bowers domine de façon stochastique partielle la distri-
bution du risque à couvrir, c'est-à-dire il existe xq tel que P(x) > F®(x)
pour x > X().

(C5) Le niveau de solvabilité est suffisamment petit, c'est-à-dire on a

VâTï)' *» (*»-;<>/"

Alors le système de solvabilité

p®5® fF[fi®®®] > (5.21)

P P®®® + ff"[Z] (5.22)

possède la solution de réassurance Z (5 — x^'®)+ — (5 — P® + où x®5®

w + P®f® est défini de façon unique comme suit:

/ cö.V: 0/,> 0

X®'® X* — f—— ^ •<'* « + p + 7Ç
CT /-- (5.23)

4 \x* — //y 2 y 1 — s

2^ cc/.s : 0/f > 0

A'®"'® M + ~{ " ^ \ 0.-V''| (5.24)

;C' tt + P — /i + — 1 + 0/,>)(T^/
-

Démonstration. La preuve comprend trois parties notées (A), (B), (C).

(A) Montrons d'abord que P®'>® ff®[fi^] se laisse satisfaire. Par définition de

Z® on a Z® (5® — x®-®)+ — (5® — P®) + La fonction de répartition de la

variable aléatoire fi® -® fi'® - Z®' min{fi'®. x® ®} + (fi® - Pf + est donnée

par

P®'®(x)
F®(X) < X®'®

P® (x - X®'® + P®) x>.r®"'®
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Par définition de la limite if, on a • 'fx'""'' ") F^(if) 1 — £. Par

conséquent on obtient

piv.ii ^ ^.JV.B _ y ^ ^ __ „ ^ [S*.*]

(B) Montrons que les primes nettes sont stables, c'est-à-dire P^>-® > FfSf.
On sait que la variable aléatoire 5'"'^ é? — Z miii{S,;r*"'*} + (S* — if) +
possède la fonction de répartition

F" (te)
F(x) a: < x^'"
F(x — + if), x > .r*-"

d'où F^fx-'i-f F(if). Comme remarqué après (5.9), la condition (C5)

implique que F-®(1 — e) if > xq. Il suit que

F"(X^) F(if)>F*(if) 1 £

ce qui implique x''^'" > F^(l — s). Par conséquent on a

.7;^"® - u > F'f 1 - f) - M iL[S^]

(C) Il reste à résoudre (5.22) par rapport à sous la condition (C3). Posons

x u + P. Alors (5.21) est équivalent à

x + (1 + 0n)Si*(if - .r*-" + (1 + 6f?)Sifx'^'f (5.25)

Un calcul montre qu'il faut résoudre l'équation quadratique

46>/Ï(x^"® - //)" + 4:( 1 - - //) + (1 + 6>/?)V" - 4^ 0

avec c ./• — //,+^(1+ (-);,») rry(5.26)
Les solutions (5.23) et (5.24) sont immédiates.

Remarques

(i) Il est intéressant de noter que la solution (5.23) possède également une

inteprétation dans le cadre des moûfè/es Fcma/yve /mandère <F( rit/Me
considérés dans F«r//ma«n 1991 a/91 b).
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Ainsi lorsque 0/î 0, la prime stop-loss ± ^

correspond à la formule (4.12) dans Pù'r/ùna«« [1991a]).
(ii) Lorsque a 0, c'est-à-dire 5 est sans risque, on obtient de (5.23) et (5.24)

que P^-® P, comme il se doit.

(iii) Les primes nettes après réassurance satisfont la condition de marché suivante

P*'* > (1 + 0)P[5^] (1 + 0)£®[S*] (5.27)

En effet, puisque P[5] (utiliser la forme centrée réduite (5.6) de

la densité de Bowers), on voit que

P*"® P - P"[Z] (1 + 0)£[S®] - (1 + 0ß)P[Z®]
I + 0)P[S"'®] + (0 - 0ß)£[Z"]

d'où (5.27) par la condition (C2). Cela signifie que les primes nettes après
réassurance sont compatibles avec un principe de calculation des primes de

l'assureur, où celui-ci évalue le risque relativement à la mesure de Bowers

et opère avec la marge de sécurité initiale.

(iv) Il est important de noter que les solutions de réassurance analysées dans

ce travail ne résolvent en aucun cas de façon unique le problème de la

couverture du risque de nonsolvabilité. A ce sujet mentionnons qu'il est

possible d'imaginer d'autres contrats de réassurance capables de couvrir ce

risque, comme suggéré récemment par Anw/er (1991). Outre la probabilité
de l'événement et l'effet du temps, il s'avère judicieux de considérer aussi

le montant de la ruine pour définir une mesure adéquate du risque de ruine

comme dans Ams/er (1992). L'inclusion de cet élément dans la modélisation

et son effet méritent d'être examinés.
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Résumé

Nous analysons le modèle de solvabilité en temps discret qui se base sur le critère de stabilité. A l'aide
de l'approximation de Tchebychev, on montre qu'un choix «acceptable» du niveau de solvabilité dépend
du temps. La notion de prime de solvabilité, déduit du principe percentile de calculation des primes,
fournit un critère de décision pour une réassurance éventuelle du risque de non-solvabilité et un système

d'équations à résoudre en cas de réassurance. On montre qu'en général la réassurance stop-loss n'est une
solution faisable qu'à la limite où le niveau de solvabilité tend vers zéro. Pour un niveau de solvabilité
donné, on montre qu'une réassurance stop-loss avec limitation des prestations de réassurance est solution
faisable sous des conditions bien déterminées. Par application de l'inégalité de Bowers et de la relation
d'ordre stop-loss, le niveau de solvabilité est exprimé en terme d'équivalent économique, ce qui peut être

utile pour les décisions pratiques. Dans un contexte moyenne-variance, cette dernière méthode permet
d'évaluer les pleins de conservation de l'assureur en ayant recour à des hypothèses restreintes sur la

fonction de répartition des prestations.

Zusammenfassung

Wir untersuchen das Solvabilitätsmodell, das auf dem Stabilitätskriterium basiert. Anhand der Approx-
imation von Tchebycheff wird gezeigt, dass eine „annehmbare" Wahl des Solvabilitätsniveaus von der

Zeit abhängt. Der Begriff der Solvabilitätsprämie, der von einem Quantilprämienprinzip abgeleitet wird,
liefert ein Entscheidungskriterium für eine mögliche Rückversicherung des Solvabilitätsrisikos und ein

Gleichungssystem, das im Fall einer Rückversicherung zu lösen ist. Im allgemeinen ist die Stop-Loss-

Rückversicherung nur dann eine mögliche Lösung, falls das Solvabilitätsniveau gegen Null strebt. Für

ein gegebenes Solvabilitätsniveau, und unter wohlbestimmten Bedingungen, ist eine Stop-Loss-Riick-
Versicherung mit begrenzten Leistungen eine Lösung des Solvabilitätsmodells. Durch Anwendung der

Ungleichung von Bowers und der Stop-Loss-Ordnungsrelation wird das Solvabilitätsniveau mit Hilfe
eines ökonomischen Äquivalents ausgedrückt, was für praktische Entscheidungen nützlich sein kann.

In einer Erwartungswert/Varianz-Umgebung kann anhand dieser Methode und. falls gewisse technische

Bedingungen erfüllt sind, der Selbstbehalt des Erstversicherers verteilungsfrei bestimmt werden.

Summary

We analyze the solvability model in discrete time, which is based on the stability criterion. Using

Tchebychev's approximation it is shown that an "acceptable" choice of the solvability level depends

upon time. The notion of solvability premium, which is derived from the percentile premium calculation

principle, yields a decision criterion for an eventual reinsurance of the risk of non-solvability and a

system of equations to be solved in case of reinsurance. In general a stop-loss reinsurance is a feasible

solution only as limiting case when the solvability level goes to zero. For a given solvability level, and

under certain conditions, a stop-loss reinsurance with a limited payment liability is a solution to the

solvability equations. Through application of the inequality of Bowers and the stop-loss order relation

one expresses the solvability level in terms of an economic equivalent, which can be useful for practical
decisions. In a mean-variance framework, and provided some technical conditions are fulfilled, this

last method allows to evaluate in a distribution-free manner the retention of the first insurer.
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