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WERNER HURLIMANN, Winterthour

Solvabilité et Réassurance

1. Introduction

Le phénomene de la solvabilité est difficile a définir étant donné la complexité du
sujet et ’abondance de la littérature traitant de cette matiere. Par solvabilité nous
entendons I’ensemble des méthodes destinées a assurer le bon fonctionnement des
institutions d’assurance et qui permettent d’éviter les instabilités financiéres, voir les
faillites de ces institutions. La question de solvabilité est de grande importance dans
les marchés a libéralisme accru. Un systeme de solvabilité a pour but de garantir
les engagements des contrats envers I’ensemble des assurés et de protéger le droit
des assurés. Comme les contrats d’assurance peuvent s’étendre sur de nombreuses
années, par exemple en assurance-vie, il s’agit souvent de garantir des engagements
a long-terme.

Quelle peut étre la contribution de la science actuarielle au probléeme fondamental
de la solvabilité? En pratique un systéme de solvabilité peut étre tres complexe. Il se
base nécessairement sur un systeme d’informations, qui regroupe les données de tous
les contrats d’assurance de I'institution concernée. La science actuarielle s’occupe
principalement de la modélisation d’un systéme de solvabilité. Un modele est une
représentation mathématique de la réalité, une manicere d’appréhender quelques
aspects essentiels a 1’aide d’outils mathématiques appropriés. Il fournit un moyen
d’explorer les propriétés de cette réalité reflétées dans le modele. Le critere ultime
d’un «bon» modele est sa capacité de pronostiquer la réalité modelée. Dans notre
cas un modeéle de solvabilité sera utile s’il permet de vérifier si le but d’un systeme
de solvabilité est atteint, ¢’est-a-dire si les engagements de ’institution d’assurance
envers les assurés peuvent étre quasiment garantis.

Une étude pratique de la solvabilité a été entreprise par Hertel (1984). Cette
publication contient également une liste considérable de références relatives a ce
sujet. Parmi les études plus récentes, une bonne discussion de la problématique est
donnée par Pesonen (1986).

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 2/1993
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2. Un modéle de solvabilité en temps discret

De fagon générale un modele mathématique se construit comme suit. On se base
sur une sélection judicieuse de variables (réelles) a observer, disons xy, ..., T,
qui prennent leurs valeurs dans un espace d’états possibles, noté E. Puis il s’agit
de formuler un syst¢me mathématique liant les variables a observer. Ce systeme
est défini par des conditions sur les états, décrites a 'aide d’inégalités sur un
ensemble de fonctions, disons f;(x1, ..., ), 7 =1, ..., m. De fagon formelle,
un modele mathématique est spécifié si les €léments suivants sont définis:

observables z;  F— R, 1=1,...,n

conditions sur les états fi(xy, ..., 2,) >0,5=1,...,m

7

On notera qu’une égalité est équivalente a deux inégalités de sens opposé€. Dans
ce cas on parle plutdt d’équation d’états que de conditions sur les états.

Un modele de solvabilité comprend au moins deux conditions d’états, a savoir
une équation d’états, qui décrit I’évolution d’un portefeuille d’assurance au cours
du temps, un critere de solvabilité, ou de stabililé, qui permet de décider de la
solvabilité, c’est-a-dire du niveau de stabilité financiere d’un portefeuille.

De fagon tout a fait dassique, considérons 1’ équation d’évolution d’un portefeuille
d’assurance en temps discret. On dispose des observables suivantes:

U un capital initial au temps 0, ou provision de fluctuations
Py les primes encaissées durant la période de temps [t — 1, ¢]
Sy le montant aléatoire des prestations d’assurance durant la période [t — 1, £]

On s’intéresse a la valeur financiére suivante:
U; = le montant du capital au temps ¢

L’équation d’évolution liant deux valeurs consécutives du capital est décrite par
le systeme dynamique discret suivant:

lﬁ;::u, (21)
Uf:Ut_l‘l'“P{_St, f——-l,Q,

Par addition successive de ces €équations on remarque que

t t
Uy=u+> Po=) Su, t=12,... (2.2)

=1 n=1
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La question de la solvabilité est fondamentale et essentielle pour les compagnies
d’assurance. La variabilit¢ des risques encourus est souvent importante. C’est
pourquoi il s’avere indispensable de considérer de bonnes mesures de stabilité.
D’habitude on se base sur les critéres de ruine et le critere de stabilité pour définir des
primes d’assurance stables permettant de couvrir le risque a plus ou moins long terme.
Pour un contrdle efficace du processus de I’évolution du risque, ces deux critéres
peuvent étre combinés. Ainsi le critere de stabilité s’utilise pour fixer le niveau des
primes d’assurance alors que le critere de ruine permet d’estimer le capital initial
(voir par exemple Feilmeier et Bertram (1987), paragraphe 1.4). De nombreuses
applications bas€es sur le critere de stabilit€ sont présentées par Beard, Pentikdinen
et Pesonen (1984). Le critere de stabilité est étroitement li€ a la théorie de I’estimation,
branche particuliere de la statistique. L’intégration des progres dans ce domaine est
une tache permanente pour I’actuaire. D’autre part la question «combien est assez?»,
un des trois themes principaux du Congres International des Actuaires a Montréal
(1992), suggere I’étude de nouveaux modeles permettant une estimation stire des
primes d’assurance. Dans ce travail quelques nouveaux aspects concernant le critere
de stabilité sont ¢tudiés. Une approche rigoureuse semblable par le critere de ruine
nécessitera, en ce qui concerne les mathématiques, des techniques plus élaborées.

On dit qu’un portefeuille d’assurance satisfait le critére de stabilité si la probabilité
que la compagnie d’assurance soit non-solvable a la fin de la période [0, ¢] est plus
petite ou égale a (¢, 1) > 0 suffisamment petit:

Pe(th < 0)<elt,n), t=1,2... (2.3)

Noter que a priori £(¢, u) peut dépendre du temps et du capital initial. La question
tondamentale et le point critique de ce genre de critere résident dans un choix
«acceptable» des niveaux de solvabilité (t,u). Ce probléme crucial sera quelque
peu abordé dans ce travail. La dépendance de £(t,u) par rapport au temps pour
un portefeuille d’assurance est étudiée au paragraphe 3. Au paragraphe 5 le critere
de stabilité est transformé en un critére stop-loss, qui permet d’exprimer le niveau
de solvabilité a I’aide d’un équivalent économique quantifiable. Cela permet de
définir des primes d’assurance stables ayant des propriétés attractives du point de
vue statistique classique.

Bien que le temps est variable dans notre analyse, notre étude se restreint en
fait a une période d’assurance fixée d’avance. A notre avis le calcul des primes
de solvabilité dans un modele multipériodique devrait tenir compte des sinistres
observés dans le passé. A ce sujet un développement ult€rieur tenant compte de
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la théorie de la Crédibilité, comme suggéré déja dans Hiirlimann (1988), s’avere
indispensable.

3. Prime de solvabilité — Approximation de Tchebychev

Etant donné le caracteére essentiellement statigue du critére de stabilité, il suffit
de se restreindre a I’analyse du modele de solvabilité pour une période de temps
fixée. Pour cela considérons

t
Pii] = Z P, les primes accumulées au temps 7
n=1
i
S(t) i= Z Sy les sinistres accumulés au temps ¢

=1

Avec ces notations le modele de solvabilité devient:
Ui =u+ P(t)— S(t) (3.1)
Pr(Us < 0) < e(t,u)

Si Fy(x) = Pr(S(t) < z) dénote la fonction de répartition des prestations
d’assurance accumulées au temps ¢, alors on a Pr(U; < 0) = 1 — Fi(u + P(t)).
Il suit que le critere de stabilité est équivalent a la condition suivante:

Pr(U; <0) <e(t,u) © Fiu+ P(t)) > 1—e(t,u) (3.2)

Si Fy(q) = min{x : Fy(x) > q} dénote le q-quantile de la variable aléatoire S(t),
alors le critere de stabilité est encore équivalent a la condition

Pr(U; < 0) < e(t,u) < u+ P(t) > Fy(1 —e(t,u)) (3.3)
Définition. La prime de solvabilité, de niveau de solvabilité (t,w), dénotée par
H_(;.)[S(t)]. est la prime minimale qui satisfait le critere de solvabilité. Par
définition on a

He 4 [S@t)] = Fy(1 — e(t,u) —u (3.4)

L’évaluation d’une prime de solvabilité nécessite d’envisager deux cas distincts:
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(i) On dispose d’une information compléte sur Fy(x). La forme de la fonction
de répartition est connue, par exemple loi de Poisson composée, approximation
lognormale, Gamma, etc, jusqu’a un nombre fini de parametres, qui sont a estimer
par des méthodes statistiques. Dans ce cas une évaluation analytique, le plus
souvent méme numérique, s’ impose.

(i1) L’information sur Fy(x) est incompléte. On connait seulement quelques
caractéristiques de la fonction de répartition, par exemple la moyenne et 1’écart-
type. Dans ce cas on cherche une estimation appropriée de la prime de solvabilité,
qui se base sur ces caractéristiques, et qui donne une information valable quelle
que soit la forme de F;(x).

En guise d’illustration du deuxiéme cas, montrons comment la méthode de
Tchebychev permet d’obtenir une approximation de la prime de solvabilité.
Supposons donné

E[S(t)] la moyenne des prestations d’assurance au temps {,

=
S
I

o?(t) = Var[S(t)] la variance des prestations d’assurance au temps t,

et cherchons une (plus petite) borne supérieure de la prime de solvabilité basée sur
1(t) et o(t), valable quelle que soit Fy(x). L’inégalité de Tchebychev (Gnedenko
1991, paragraphe 6.2, p. 193) implique que, pour tout & > 0,

Fi(u(t) + 80(2)) > 1 — = (3.5)

En particulier, pour 6 = ﬁ on obtient, par définition de la prime de
e(t,u

solvabilité I’inégalité
1

ok Ha S0 = il = () < lt) + —=—0( (3.6)

Définition. La prime de solvabilité de Tchebychev, dénotée par Hg;t’u) [S(t)], est
la borne supérieure de la prime de solvabilité donnée par I’expression

HZ, ,[8@)] = p(t) + ———=0(t) —u (3.7)

Remarques. La borne supérieure dans (3.7) n’est pas la meilleure possible. En

1—e(t,u)
e(t,u)

fait il est possible de remplacer ﬁ par (voir Goovaerts et al.
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[1984], théoreme 1, p. 34). Mentionnons que cette derniere prime de solvabilité a
été déja considérée dans Hiirlimann (1988), paragraphe 3. Lorsque (1, u) est tres
petit, I’amélioration apportée par la meilleure borne est minime.

Il est intéressant d’analyser la dépendance par rapport au temps du niveau de
solvabilité pour un portefeuille d’assurance dont les primes annuelles moyennes
sont déterminées par le critere de Tchebychev.

Nous supposons que S1,...,S; sont des variables indépendantes, de moyennes
w; = E[S;] et de variances 7 = Var[S;], i = 1,...,t. Notons fi, 6° la moyenne
et la variance des prestations d’assurance par une unité de temps. Alors on a

b
p(t) = > i =t
= (3.8)
& =¥ g =i

Dans ce travail nous postulons une prime de solvabilité moyenne P par unité de
temps telle que P = Py = --- = P; > ji. Le financement d’un contrat d’assurance
par primes périodiques constantes peut étre justifi€é comme suit (voir p.ex. Gerber
[1986], chapitre 5). En pratique de 1’assurance-vie, les primes de marché sont
souvent proportionnelles au capital assuré. Ceci implique qu’elles dépendent
directement d’une prime nette moyenne dérivée de fagon unique du principe
d’équivalence. Ce caractere d’unicité n’est plus vérifié pour des primes périodiques

de montants variables. De plus nous supposons que pour tout n = 1,...,t, P(n)
est égal a la prime de solvabilité de Tchebychev. Par conséquent on a
B B o PR = b e B, (3.9)
Ve(l u)
Pt il &~ il = 1= t{,a P B 5} Cu (3.10)
e(t,u) t-e(t,u)

Nous distinguons deux cas
1¢" cas: u = 0 (pas de capital initial)
Comme P(t) = tP, une comparaison immédiate donne la relation

. 2
£(4,0) g(lt, 0) _ %(Piﬂ) (3.11)

On remarque que le niveau de solvabilité est une fonction monotone décroissante
par rapport au temps, et ne dépend que du niveau de solvabilité de la premicre
unité de temps d’assurance.



2€ cas: u > 0 (capital initial positif)
A l'aide des formules (3.9) et (3.10) on déduit par calcul I’équivalence

e P m<t_1)9 (3.12)
Vioe(t,u) Je(t,u) t Jo ’

Supposons encore que ¢-£(t, u) est une fonction continue en t et u. Comme P > Ji,
on obtient la relation limite

P(t)

. 1 1 P — i
lim - S ) (3.13)
t—oo \ /t - e(t, u) e(l,u) o o

Par continuité on en déduit que

e e Bl il = (If _)2 (3.14)

t—co — [

Une solution particuliere de cette condition limite est évidemment

R O N SR () 5
A= t(ﬁ—ﬁ> t(1—2\/e(1,u))? (3.15)

Comme dans le 1% cas, le niveau de solvabilité est une fonction monotone
décroissante par rapport au temps, et dépend explicitement du niveau de solvabilité
de la premiere unité de temps d’assurance.

4. Prime de marché, prime de solvabilité et réassurance

Sur le marché des assurances la prime réelle encaissée par les assureurs va rarement
coincider avec la prime de solvabilité. C’est pourquoi il s’avere nécessaire de
considérer des méthodes qui permettent de mesurer les différences possibles. Les
résultats obtenus servent alors de base pour les décisions a prendre au niveau
des responsables des institutions d’assurance. Nous montrons qu’il existe un lien
général entre la prime de marché, la prime de solvabilité et le phénomene de
la réassurance. Comme illustration nous montrons de quelle maniére le risque
d’instabilité financiére peut étre couvert a I’aide d’une réassurance stop-loss avec
limitation des prestations d’assurance.
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Dans ce paragraphe soit

&
P{t) = Z P,, les primes de marché accumulées au temps ¢
=1
H ) [S(8)] la prime de solvabilité au temps ¢

Lorsque la prime de marché est strictement inférieure & la prime de solvabilité,
c’est-a-dire si

P(t) < ‘F[E(t7’t1,)[s(t)] (41)

on dit qu’il y a risque de non-solvabilité ou risque d’instabilité financiére. Comme
la fonction essentielle de la réassurance consiste a couvrir de tels risques, on en
conclut qu’il y a besoin en réassurance (voir Gerber [1979], p. 80). Pour décrire
le mécanisme de la réassurance, notons

Z(t) les prestations de réassurance accumulées au temps ¢

BE(E) = HPZ()] les primes de réassurance accumulées au temps ¢

HE[] un principe de calculation des primes pour la
réassurance

PN (1) les primes nettes, ou les primes accumulées aprés
réassurance

SN (t) = S(t) — Z(t) les prestations aléatoires nettes aprés réassurance

Dans un contexte solvabilité¢/réassurance, le probléeme principal de la réassu-
rance consiste a trouver des formes de réassurance adéquates telles que, aprés
réassurance, les primes nettes de 1’assureur ne soient pas inférieures a la prime de
solvabilité correspondante:

PY(t) = P(t) = P(t) 2 Hea[S" (t)] (4.2)

Souvent il est désirable d’avoir aussi peu de réassurance que possible. C’est
pourquoi on essaie de satisfaire I’égalité dans (4.2). Dans ce cas, les primes de
marché, de solvabilité et de réassurance sont li€s mutuellement et implicitement
par le systeme d’équations suivantes:

PY(t) = He ) [S™ ()] (4.3)
P(t) = PN (t) + HR[Z(¢)] (4.4)
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On remarque que les pleins de conservation P (1) «optimaux» sont points fixes de
I’équation de solvabilité (4.3). Par le biais de I’égalité (4.4), la prime de marché, la
prime nette et la prime de réassurance sont directement liées.

Nous allons montrer que sous certaines conditions le systeme de solvabilité (4.3),
(4.4) possede toujours une solution. Pour plus de clarté nous supposons le temps ¢
fixé et omettons cet indice dans les notations. De plus (¢, u) est simplement noté
e. Les primes stop-loss nettes de priorité d sont notées SL(d) = E[(X — d)].
D’un point de vue pratique on peut restreindre la discussion a des primes de
marché définies comme suit:

P = (1+O)E[S]
PN > (1+6)E[SV] (4.5)
HR[Z] = (1 +©R)E[Z]

ou @, O sont les marges de sécurité de I’assureur et du réassureur respectivement.
Dans cette situation, on voit immédiatement que I’équation (4.4) peut étre résolue
seulement si

Op <O (4.6)

Cela signifie que le réassureur couvre le risque a un prix moindre ou égal au prix de
marché de I’assureur. Le résultat ci-dessous montre que le systeme de solvabilité
(4.3), (4.4), (4.5) est résolu pour une réassurance stop-loss avec limitation des
prestations au montant L, — u — P avec L. = F(1 — ¢). Une solution pour les
ressources financieres u 4+ P existe toujours lorsque @r < @. Une condition
supplémentaire sur @ identifie le plein de conservation PV de facon unique.

Théoréme 1. Supposons que les conditions suivantes soient satisfaites:

S >0 (C1)
44+ P < L, = F{l—¢€) (C2)
Op <6 (C3)

Alors le systeme de solvabilité
PN = H,[SY] (4.7)
P PN o B2

possede la solution

Z=(S—a)y = (5L (4.9)
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oit zV = u + P" est zéro de la fonction

ga¥)=u+ P+ (14+6g)SL(L.) — 2 — (1 + Or)SL(z") (4.10)
De plus, si la marge de sécurité du réassureur satisfait la condition

Orp <min{O, 2(60/k) -1, F(u)/(1 —F(u))} (4.11)

ol k = o/u est le coefficient de variation du risque S, alors x™Ve[u, L.] existe de
facon unique.

Démonstration. La preuve comprend trois parties, notées (A), (B), (C).

(A) Montrons d’abord que Z = (S —x"), — (5~ L.) est solution de I’équation
(4.7).

La fonction de répartition de la variable aléatoire S» = S — Z = min{S, 2"V} +
(S — L) est donnée par

P¥(X) = { '

Par définition de la limite L. on a F¥(z%) = F(L.) = 1 — . On en déduit que
PV =gV —y=FN(1—-¢)—u=H,[SV]
Ainsi (4.7) est satisfait,
(B) L’équation (4.8), équivalente 2 la condition g(xz™) = 0, posséde toujours une
solution v dans I’intervalle [0, L.].
Comme SL(0) = p (condition (C1)) et @ < @ (condition (C3)), on a
g(0) =u+(14+6r)SL(L.)+P—(1+Og)u > u+(1+6g)SL(L:) > 0
D’autre part on a d’apres (C2)
g(Le)=u+P—-L. <0
Puisque g(z") est continue, I"affirmation suit immédiatement.

(C) Sous la condition (4.11) I'équation g(z"V) = 0 posséde une solution unique
dans I'intervalle [y, L.].
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D’apres I'inégalité de Bowers (1969), on a SL(jit) < /2. On obtient

g(p) =u+ 1+ )u+ (1+Or)SL(L:) — pp — (1 + Or)SL()
2 u+ (14 ORr)SL(Le) + p[@ — (1/2)(1 + Or)k] > 0

D’autre part, pour :ZJN&"[,U,, L.],ona

g(zV) = ~1-(1+65)SL'(z") = =1+ (1+6r)(1 — F(z"))
< -1+(1+6g)(1-F(u) <0

Etant donné que g(p) > 0, g(L.) < 0, et g(2’V) est monotone décroissante sur
intervalle [y, L.|, I'affirmation (C) est vérifiée.

Remarque. En général une réassurance stop-loss «pure» 7 = (S — a™¥) n’est
pas solution du systeme de solvabilité (4.3), (4.4). Ce fait se vérifie comme suit. Soit
zN = u+ PN point fixe de I"équation 2V = u+ P — HE[(S—2™) 1] et supposons
que £ < 1 — F(2V~). La variable aléatoire SV = S — Z = min{S, =™V } possede
la fonction de répartition

F(x) <l
e = PrlSY €5) = ’ 4.12
7 (z) :=Pr(S" <z) {17 > g ( )
Par conséquent on a
N=FNQ)=min{z: FN(z)>1} > FN(1-¢) don (4.13)
PY =2V —4> V(1 —¢) —u= HJ[SY] (4.14)

Dans ce cas 1’équation (4.7) n’est satisfaite qu’a la limite ol le niveau de solvabilité
¢ tend vers zéro.

5.  Méthode basée sur I’inégalité de Bowers

Dans un contexte statistique moyenne-variance, il est possible de définir d’autres
primes de solvabilité, libres d’hypothese sur la fonction de répartition des presta-
tions d’assurance. Dans un sens bien précis, et comparativement a la méthode de
Tchebychev, cette méthode produit une alternative digne d’étre retenue.

Dans ce paragraphe nous supposons a nouveau le temps ¢ fixé et omettons cet
indice dans les notations. Sur I’intervalle (—oo, o0) considérons la fonction réelle
de la variable x

SLE(x \/02 (x — )2 —(z—p)) (5.1)
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Rappelons que I'inégalité de Bowers (1969) fournit le maximum de la prime stop-
loss nette, prise sur toutes les variables aléatoires S de moyenne p et d’écart-type
o, soit

max E[(S — z)4)] < SLP () (5.2)

ou I’égalité est atteinte pour une variable diatomique. Pour une démonstration de
I’inégalité (5.2), on peut consulter Heilmann (1987), (6.10), p. 177, la preuve étant
valable sans la restriction = > pu.

Considérons la fonction de répartition continue sur (—o00, 00)

FB(z) = %(1 + \/({L‘i;)’;’uw?_) (5.3)
Comme on a

dSLE(x) B ) /

—= —(1 — FB(x)) (5.4)

la prime stop-loss nette associée & ['Z(x) est également égale au maximum
SLB(z). Il suit que F?(x) domine quant a la relation d’ordre stop-loss toutes
les fonctions de répartition de moyenne p et d’écart-type o (voir Goovaerts et al.
[1990], p. 22, pour une définition de cette relation d’ordre).

Remarque. La densité de probabilité associée & F'?(x) est donnée par

0,2

(02 + (x = 1)?)

fB(:F) e T & (—OO, OO) (5'5)

1
2

ralw

Si X est une variable aléatoire de densité f¥(z), alors la variable standardisée
Z = (X — u)/o possede la densité de probabilité

fZ(2) = % : ———1-7 z € (—00, 00) (5.6)
(1+22)2

fonction étroitement liée a un cas spécial de la densité de Fisher-Snedecor (voir
p.ex. Miiller [1991], p. 127).

Si I’on considere seulement 1’espérance mathématique d’une réassurance stop-loss,
et si ’on se place dans un contexte moyenne-variance, alors F'2(x) constitue la
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fonction de répartition la plus «dangereuse» du point de vue d’une réassurance stop-
loss. Dans cette situation, il s’avere judicieux de considérer une prime de solvabilité
de Bowers, de niveau de solvabilité e, définie et notée par

o 1 1=2
HE[S)= FB(l —&) —u=p+ S sl (5.7)

2./e(1—¢)

Comparé a la prime de solvabilité de Tchebychev, pour un méme niveau de
solvabilité , le facteur proportionnel a ¢ est réduit approximativement de moité.
Pour étre utile, il est nécessaire de s’assurer que la prime de Bowers est plus
grande ou égale a la prime de solvabilité définie par (3.4). Si F'P(x) domine
stochastiquement F'(x), c’est-d-dire F'(z) > F'Z(x) pour tout z, cela est vrai de
facon évidente. Si F'®(x) est plus dangereuse que F(x), ¢’est-a-dire sl existe x
tel que

{ F(z) < FB(:'L') . pour x < xq (5.8)
B.

F(x) > FB(x), pour x > x

cela est encore vrai pour autant que le niveau de solvabilité est suffisamment petit,
soit

20
2 + 20

1
€ <ep=¢€o(z) = 3 (1 -

) , zp=(xg—p)/o. (5.9)
On notera que (5.9) est la résolution de la condition F®(1 — ¢) > x. Les
deux conditions ci-dessus ne sont que trop rarement satisfaites. Comme condition
suffisante plus faible, il suffit de trouver x tel que

F(z) > FB(x) pour x>z (5.10)

Cela signifie que la queue de la fonction de répartition F'(x) décroit plus rapidement
que celle de FB(z). Dans ce cas HP[S] > H.[S] pour autant que ¢ < £y comme
dans (5.9). Pour des fonctions de répartition données, il est possible de vérifier (5.10)
en appliquant des méthodes analytiques ou numériques. Un critere probabiliste plus
général s obtient a ’aide de I’inégalité de Nagaév (1965) (p.ex. Miiller [1991], p.
509). Cette inégalité est un des nombreux résultats sur la convergence concernant
le «théoréme central limite». Elle nous dit que I’erreur d’approximation, lorsque
I’argument croit, dépend de la variance et du troisieme moment de la fonction de
répartition. Dans la suite nous supposons que ces caractéristiques existent pour la
fonction F'(x).
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Lemme. Supposons que la condition suivante soit satisfaite:

1 2z E|5P o
N(Z)Zi(l“rﬁ)—'—f(m,ouz-(t,LL)/O', (511)

K < 30.52,

N (-) la fonction de répartition de la variable normale centrée réduite,
Alorsona F(p+ 0z) > FB(u+ oz).

Démonstration. Posons C' = K - E|S|? /3. Linégalité (5.11) s’ écrit aussi

¢’
FB z) < N —
(4+02) < NG) ~ 1

Or, d’apres I'inégalité de Nagaév, on a, quel que soit 2,

C C
— < Flu z) < N
EREE (u+o0z) < N(z)+ T+ 2P

N(z)

11 suit que (5.11) implique FB(ji + 02) < F(p + oz).

Nous montrons que I’inégalité (5.11) est toujours satisfaite pour z suffisamment
grand, a fortiori (5.10) I’est aussi. De plus il est possible d’obtenir une borne effective
290 = (xg — p)/o en termes du coefficient de variation, de I’asymétrie et de la
constante K.

Proposition. Soit & = o/u le coefficient de variation et v = E[(S — p)’]/o”
I’asymétrie d’un risque non-négatif S > 0. Soit encore la fonction

% 22 1,2
h(z):z3(l—m>-\z/ﬂe 2 (5.12)

et supposons que zy > /2 soit tel que

(61.04)-{% +%+~/} < h(z0) (5.13)

Alors on a

Flp+02)> FB(u+0z) pour 2> z (5.14)
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Démonstration. Soit z positif. La substitution ¢ = (1/2)z? fournit 1'égalité

o0
-t

N(z) —lm/()——ldfzmlm\/l_/f/_dt

v] |

Comme /2t > z, on a I"inégalité

ffit 122
/ ——dt < —€ *
\/ﬁ P
L2
2
d’ou
1 1.2
N(z)>1- e 27

o V2mz

Ainsi, au lieu de (5.11), il suffit de satisfaire I'inégalité plus forte

1 -1z 1 z ) E[S3]
- g 2 | e oy | i Bt
V22 2( V14 22 a3(1 + 23)
ou encore
2K - E[S?%]/0® < h(z) (5.15)
Or, on a
B(z) = ——{3(1 + 2z%)2 443 2" -9
()= ——3 B+ — 2@ +32)} + = (-
(1+ 22)2

Lorsque z est positif, le premier terme entre parenthése est toujours positif Le

second terme est non-négatif sous I’hypothése z > +/2. Par conséquent h(z)

est monotone croissante. Le résultat suit tenant compte de la relation F[S?] =

w4 3uc? + yo? et du fait que K < 30.52.
Dans la suite posons

1 1—-2¢

2./e(1—¢)

LB=p+t+-—rr——o (5.16)
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Un calcul immédiat montre que

1 €
LB(EB Yy = = &,/

Par SP on dénote une variable aléatoire de moyenne p = FE[S], de variance
o? = Var[$], et de fonction de répartition F'Z(x) définie par (5.3). Par définition
de la prime de solvabilit¢ de Bowers dans (5.7), on a les relations

(5.17)

H.[SP)=HP[S]=FB(1-¢e)—u=LZ —u (5.18)

En vertu de la propriété de monotonicité d’une prime stop-loss, le critere de
stabilité pour la prime de marché P, soit

u+P>u+HE[S|=LF (5.19)
est équivalent au critere stop-loss

=
o

l=g

812y 4 Py < LR (LS )= -;—a (5.20)
Une décision basée sur (5.20) a I’avantage d’étre exprimée a I"aide d’une mesure
financiére quantifiable. Par exemple, on a SLE(LF ;) ~ 0.050, SLB(LE ) =~
0.0160.

Il est possible maintenant de considérer un systeme de solvabilité du type (4.3),
(4.4) modifi€ tel que I’assureur et le réassureur évaluent le risque selon la fonction
de répartition ['P(x), et tel que la prime nette aprés réassurance est stable quel
que soit la fonction de répartition F'(z) du risque de moyenne p et d’écart-type
o. La solution explicite de ce systeme de solvabilité dépend en plus de p et o du
niveau de solvabilité et de la marge de sécurité¢ du réassureur.

Pour une formulation précise, notons Z 7 les prestations de réassurance et SV =
SB — 7B les prestations nettes aprés réassurance, ol les deux quantités aléatoires
sont évaluées A I'aide de F'?(x). Les primes nettes aprés réassurance sont définies
et notées par PV B = H_[SNB] = HB[SY] et dépendent de F'Z(x).

Théoréme 2. Supposons que les conditions suivantes soient satisfaites:
(Cl) La prime de marché de ’assureur ne satisfait pas le critere stop-loss, c’est-
a-dire

m

1
SLE(u 4+ P) > Zo.
(u+ P) 20 T

™



(C2) Or< O

(C3) La prime de marché du réassureur est donnée par H*[Z] = (1+6g)EP[Z]
= (1+OR)E[Z7], ot EB[] dénote I'espérance mathématique évaluée par
rapport a [P (x).

(C4) La distribution de Bowers domine de facon stochastique partielle la distri-
bution du risque & couvrir, ¢’est-a-dire il existe x( tel que F(z) > F&(x)
pour x > .

(C5) Le niveau de solvabilité est suffisamment petit, ¢’est-a-dire on a

1 20
Legg=~—|1-—. = (xg — I
e < g 2( \/;), 20 = (w9 — p)/o

Alors le systeme de solvabilité

o8 = H.[SVP] > H.[SV] (5.21)
p=pNE 4 gz (5.22)

posséde la solution de réassurance Z = (S — 2N'B), — (S — LP),, ou 2B =
w4 PN'B est défini de fagcon unique comme suit:
1€ cas: Or =0

2 Or

1
t* =u+P—pu+=(1+6g)
r" =u+ MF2(+ R)O -
Démonstration. La preuve comprend trois parties notées (A), (B), (C).
(A) Montrons d’abord que PN'B = HB[SY] se laisse satisfaire. Par définition de
ZB ona ZB = (88 — 2MB), — (58 — LB),. La fonction de répartition de la
variable aléatoire SVF = §P — 7B = min{SB, 2™V P} + (S8 — LB), est donnée

par

FN’B(ZL') = {FB(TC) ) z < g8

FB(:L' — VB Lf) , z > VB
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Par définition de la limite L2, on a FM:P(2M:B) = FB(LB) = 1 — . Par

conséquent on obtient
PNB = gNB _ oy = FNB(] _g) — gy = H.[SNE]

(B) Montrons que les primes nettes sont stables, c’est-a-dire PMB > H_[S¥].
On sait que la variable aléatoire SV = S — Z = min{S,2V?} + (S - LE),
possede la fonction de répartition

F - ; T < r-N,B
F¥ () = { o] N,B B I LV B
Flx —a™P +L2), T
don FN(zNB) = F(LP). Comme remarqué apres (5.9), la condition (C5)

implique que £'2(1 —¢) = LB > x0. 1l suit que
FY (XY = P(LE) » FR(LF) =1-¢

N.B ~ ‘FN

ce qui implique x (1 — ¢). Par conséquent on a

pN:B — oN.B _ 4y > FN(I — &) = .= HE[SN]

(C) Il reste a résoudre (5.22) par rapport a PN:B sous la condition (C3). Posons
x =u+ P. Alors (5.21) est équivalent a

z+ (14 60g)SLE(LE) = 2P 4+ (1 + Or)SLE (2™:B) (5.25)

Un calcul montre qu’il faut résoudre I’équation quadratique

40p(a™MP — 1?2 +42(1 — OR) (NP — )+ (1 + Or)%0%? — 422 =0,

25

1 €
avec z=2x — i+ 5(1 + OR)o - (5.26)

Les solutions (5.23) et (5.24) sont immédiates.

Remarques

(1) Il est intéressant de noter que la solution (5.23) posséde également une
inteprétation dans le cadre des modéles d’analyse financiere du risque
considérés dans Hiirlimann (1991a/91b).
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2
Ainsi lorsque O = 0, £ = 0, la prime stop-loss SLZ (2V:5) = = (T|-UP——,1)
correspond a la formule (4.12) dans Hiirlimann [1991a]).
(1)  Lorsque o = 0, c’est-a-dire S est sans risque, on obtient de (5.23) et (5.24)
que PV:B = P comme il se doit.

(i)  Les primes nettes apres réassurance satisfont la condition de marché suivante
PYE > (1 4+ 0)E[S™B] = (1+O)EB[SY] (5.27)

En effet, puisque F[ST] = E[S] (utiliser la forme centrée réduite (5.6) de
la densité de Bowers), on voit que

PNB = p_ HE[Z] = (14 ©)E[S®] — (1 + OR)E[ZB]
= (1+ ©)E[SV'P] + (6 — Op)E[Z"]

d’ou (5.27) par la condition (C2). Cela signifie que les primes nettes apres
réassurance sont compatibles avec un principe de calculation des primes de
I’assureur, ou celui-ci évalue le risque relativement a la mesure de Bowers
et opere avec la marge de sécurité initiale.

(iv) Il est important de noter que les solutions de réassurance analysées dans
ce travail ne résolvent en aucun cas de facon unique le probléme de la
couverture du risque de nonsolvabilité. A ce sujet mentionnons qu’il est
possible d’imaginer d’autres contrats de réassurance capables de couvrir ce
risque, comme suggéré récemment par Amsler (1991). Outre la probabilité
de I’événement et I'effet du temps, il s’avere judicieux de considérer aussi
le montant de la ruine pour définir une mesure adéquate du risque de ruine
comme dans Amsler (1992). L’inclusion de cet élément dans la modélisation
et son effet méritent d’étre examinés.
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Résumé

Nous analysons le modele de solvabilité en temps discret qui se base sur le critére de stabilité. A I"aide
de I'approximation de Tchebychev, on montre qu’un choix «acceptable» du niveau de solvabilité dépend
du temps. La notion de prime de solvabilité, déduit du principe percentile de calculation des primes,
fournit un critére de décision pour une réassurance éventuelle du risque de non-solvabilité et un systéme
d’équations a résoudre en cas de réassurance. On montre qu’en général la réassurance stop-loss n’est une
solution faisable qu’a la limite ol le niveau de solvabilité tend vers zéro. Pour un niveau de solvabilité
donné, on montre qu’une réassurance stop-loss avec limitation des prestations de réassurance est solution
faisable sous des conditions bien déterminées. Par application de I’inégalité de Bowers et de la relation
d’ordre stop-loss, le niveau de solvabilité est exprimé en terme d’équivalent économique, ce qui peut étre
utile pour les décisions pratiques. Dans un contexte moyenne-variance, cette derniére méthode permet
d’évaluer les pleins de conservation de 'assureur en ayant recour & des hypotheses restreintes sur la
fonction de répartition des prestations.

Zusammenfassung

Wir untersuchen das Solvabilititsmodell, das auf dem Stabilititskriterium basiert. Anhand der Approx-
imation von Tchebycheff wird gezeigt, dass eine ,,annchmbare™ Wahl des Solvabilititsniveaus von der
Zeit abhingt. Der Begriff der Solvabilititsprimie, der von einem Quantilprimienprinzip abgeleitet wird,
liefert ein Entscheidungskriterium fiir eine mogliche Riickversicherung des Solvabilititsrisikos und ein
Gleichungssystem, das im Fall einer Riickversicherung zu losen ist. Im allgemeinen ist die Stop-Loss-
Riickversicherung nur dann eine mégliche Losung, falls das Solvabilititsniveau gegen Null strebt. Fiir
ein gegebenes Solvabilitdtsniveau, und unter wohlbestimmten Bedingungen, ist eine Stop-Loss-Riick-
versicherung mit begrenzten Leistungen eine Losung des Solvabilititsmodells. Durch Anwendung der
Ungleichung von Bowers und der Stop-Loss-Ordnungsrelation wird das Solvabilitdtsniveau mit Hilfe
eines konomischen Aquivalents ausgedriickt, was fiir praktische Entscheidungen niitzlich sein kann.
In einer Erwartungswert/Varianz-Umgebung kann anhand dieser Methode und, falls gewisse technische
Bedingungen erfiillt sind, der Selbstbehalt des Erstversicherers verteilungsfrei bestimmt werden.

Summary

We analyze the solvability model in discrete time, which is based on the stability criterion. Using
Tchebychev’'s approximation it is shown that an “acceptable™ choice of the solvability level depends
upon time. The notion of solvability premium, which is derived from the percentile premium calculation
principle, yields a decision criterion for an eventual reinsurance of the risk of non-solvability and a
system of equations to be solved in case of reinsurance. In general a stop-loss reinsurance is a feasible
solution only as limiting case when the solvability level goes to zero. For a given solvability level, and
under certain conditions, a stop-loss reinsurance with a limited payment liability is a solution to the
solvability equations. Through application of the inequality of Bowers and the stop-loss order relation
one expresses the solvability level in terms of an economic equivalent, which can be useful for practical
decisions. In a mean-variance framework, and provided some technical conditions are fulfilled, this
last method allows to evaluate in a distribution-free manner the retention of the first insurer.
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