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MARKUS BUCHWALDER , ERIC CHEVALLIER and
CrAauDIA KLUPPELBERG, Ziirich

Approximation methods for the total claimsize distribution
— an algorithmic and graphical presentation

1. Introduction

Traditionally, the distribution of the total claims in a fixed time period (e.g. in
one year) has been a central topic in risk theory. Since computers have entered
the field, the interest in many traditional approximation methods has faded away
whereas more computerintensive methods like recursions, fast Fourier transform
and Monte Carlo methods have gained importance. This change of interest retains
the field important for researchers. It manifests in the many articles published on
this subject recently in insurance mathematics journals.

Most standard textbooks on risk theory contain sections on approximation methods;
we refer e.g. to Beard et al. (1984), Gerber (1979), Heilmann (1988), Hipp and
Michel (1990). An earlier review paper is Kupper (1971) where also numerical
examples can be found. In a sense the present paper can be considered as an
update of Kupper’s work adjusted to nowadays computer technique.

We consider the classical risk model, where the whole portfolio of a certain
insurance business represents the source of risk. The number of claims /N in one
period is supposed to be Poisson distributed with parameter A and the claimsizes
(X4 )ren are a sequence of iid random variables having common distribution
function F' with F'(0) = 0, mean value p, piy, = E X* for k > 2, and variance
o?. Furthermore, N and (X} )xen are independent. Then S = Zi\rzl X, represents
the accumulated claims in one period and has distribution function

where F™* denotes the n-fold convolution of F'. Notice that F™* is explicitly
calculable only for degenerate (deterministic) or exponential claimsizes. In all
other cases numerical approximations for GG are required, where the convolutions
and the infinite sum cause problems.

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 2/1993
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If not stated otherwise, for ease of notation, we shall always approximate the
distribution function G of the density ¢ of the standardized random variable
~ S — Au

8 = 1
NGRS 2

The approximation of (7 is then obtained in the obvious way.
In section 2 we briefly review the different approximation methods and in section
3 we present the graphics together with a discussion.

2. The approximation methods

In the approximations of this section the moments of S determine the constants
in certain expansions. We use the following notation

my = E[S*], keN
my = E[S¥], keN
In the Poisson case we have in particular

my = A\

var S = Ao? + p?) = Ay
11 =m3 = p3/ )\N%
Vo =My — 3 = ,u4/()\u§)

Furthermore, the normal distribution @, its derivatives ®*), k € N, the normal
density ¢ and its derivatives ¢*), k € N, play a central role. Obviously,
pF) = @k+1) k< Ny, holds. Moreover, we need the Hermite polynomials

(k) x?/2 d* 7Y
Hil(x) = ¢ (z)/d(x) =€ 7ok , keN

There exist various recursive formulas for Hj, we shall use the following

Hyyy = —xHy(z) + Hp(z), k€N
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2.1 The normal approximation and related methods
2.1.1 The normal approximation

The most obvious approximation is to use the CLT which gives for large A
Glz) ~ &(x)

where @ denotes the standard normal distribution. In practical applications,
however, A\ is often not large enough and the accuracy of this approximation
is not satisfactory if the skewness of the claimsize distribution is large.

2.1.2 The Edgeworth approximation

The Edgeworth approximation can be considered as a refinement of the normal
approximation which also takes higher moments into account. The expansion is
obtained by means of the moment generating function

g(t) = /e““d@(:z;)
0

which exists for all ¢ < ty < oco. For those ¢ we consider the Taylor series

logg(t) =Y _ ath (2)
k=0

1 dkt:“)
=l ark T o
and o = é Again by a Taylor expansion we obtain

where oy = . Due to the standardization we have ayg = a7 = 0

o0

= 1 — .k 1 :
g(t) = exp (§t2> exp (Z ak,.t") = exp (§t2) Zak_t‘k (3)

k=3 k=0
The following result enables us to invert the terms back.

Proposition 1. For all k € Ny we have

oo

thet/2 = [et'lt(~1)ka(u)¢(u)(ifu

— O

where ¢ denotes the standard normal density.
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Proof: The result obviously holds for & = 0. Then we use induction:

oo

/ ei‘,u(ml)k+l(f)(k:-ﬁl)(u)du
— {6{,15(_1)1*-:-#1(/)(/:;)(u)} e i / etu(—l)ké(kj)('U,)du
_ O+tk+1et2/2 B

We insert this in (3) and obtain (if it is possible to interchange sum and integral)

o0

Z Q. / et (=1)* o) (u)du = / . Z ag( ) (w)du
k=0 k=0

From this we obtain
Z ak(—1)* 6" (2) and G(2) =D ar(—1)"0W (x) (4)
k=0 k=0

The following result gives the exact values for ay, k € Ny.

Proposition 2.

k
1 k _
ay =3 E ( ) H;i(O)mg—;j, for kEeNy

=0 N

Proof: From equation (3) we obtain by Taylor expansion

= By = & tAm
Zaktk =e"25(t) = ( I""Ik )(Z 779 )
k:()

(k) 103" )

Identification of the terms of the same order gives the result. g



191

Taking the first n terms in (4) gives the Edgeworth approximation of order n for
g and G i.e. for g we obtain

L, ) L o % o
+ — (4 — 3)p™W (z) + — (5 — 107m3) ™ ()

] 3
L s 7 (6)7,..
e =0 (me — 15my + 30)¢ (7)
+ R(z).

Alternatively, Gerber (1979) and Beard et al. (1984) approximate in (3)

4 co
=N 1 2 R\ I 2 K
g(t) ~ exp (§t ) exp ( E oyl ) = exp (51‘ ) E ayt

k=3 k=0

Truncation of the infinite series on the rhs to 2223 apt® vyields to different
coefficients giving the approximation

N 1
g(w) = (z) = =m ¢ ()

1 T w5 -
A @y 26 (5)
+ 24’de> () + 72’71@ ()

+ R(x)

This expansion is traditionally used for the normal power approximation below.
The first line of approximation contains terms up to the order A~'/2, the second
line up to A~*, and R(z) up to A~3/2,

Notice that for heavy-tailed distributions like the Pareto or loggamma the Edge-
worth approximation is not possible. Also, in general the series in (4) are diver-
gent and hence the approximation does not necessarily improve by taking terms
of higher order. Nevertheless, taking a suitable number of terms, the Edgeworth
approximation gives acceptable results in the neighbourhood of the mean as we
shall see in section 3.
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2.1.3 The normal power approximation
The basic idea of this approximation is to find a function p such that
S £ p(N)
where /V is a standard normal random variable. Then approximate
Glx) ~ (p™ (1)) (6)
where p™ 1s the inverse (or locally inverse) function of p. A suitable transformation

in polynomial form can be obtained using the Edgeworth expansion, e.g. of order
6. We take Gerber’s version (5) which yields

~

1 : 1 1 ,
Gw) = ela) = B() = =1 @) + 5:9200() + 59700 ()

The problem reduces then to find a function p such that

Set p(x) = = 4+ Az, then (7) can be rewritten as
0=®(z) — e(z + Az) =: q(Ax)

and we have to find the root Az. We apply Newton’s method of second order
with starting value 0. The one-step approximation is then

Axg_qm)_1¢ﬂn(ﬂm)2 ®)

7 (0)  24¢(0) \¢(0)
where
G) L a@ L 2506
q(0) = 671@ () ~ “2'1’7/2@ () ?57’1@ ()
1 1 1
¢(0) = =% (z) + z12W (2) — 57127 (2) — =179 (x)
7 7 1 1 1
q"(0) = —@"(z) + -1 9 (z) — ﬁ’w@(ﬁ) (x) — ﬁ“ﬁ@(g) ()
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Now we use the fact that ®*) = ¢(*=1) — FH, |4 holds for all k € N and
approximate the two terms of the righthand side of (8) as follows:

B q(0) _ %'Yl (z® — 1)+ %')’2(1‘3 —3z) + %7%(:65 — 1023 + 15z)

(9)

¢'(0) 1+ %71(:1:3 — 3x)
1¢"(0) (qO)\* 1 5 5 4
= R iy [ 2 T

At first sight the approximations above seem rather arbitrary. They are, however,
motivated by the fact that they are asymptotically exact up to the order O(\~%/2)
for the Poisson claim number N as the parameter A — oo [Kauppi and
Ojantakanen (1969)].

We expand (1 + 71 (z® — 3z))~"! of (9) in a Taylor series and, taking only the

terms up to order 712 into account, we obtain

~q(0) N<1 2

6

(I D Grg ook
- 1)+ ﬂvg(w‘s — 3x) + 7—27f(:L —10z° + 15:1:))

1 1 -
>< (1 — M (z3 — 3z) + %'yf(ajj - 3$)2>

o | o
yo(z® — 3x) + oyi (2 — 22° + 92)

~ -y (2 —1 =
g — D+ o 72

This together with (10) gives by (8)
plz) =z + Ax
1

1 i : .
/x4 6’\/1(:1';2 - 1)+ 422’*/2(:17‘3 —3z) — %7?(2:6‘5 — 5z) (11)

If we use only the first two terms in (11) we obtain

p(x) & \/9/4 + 62/ +1 - 3/

and, inserting this in (6), we obtain the normal power approximation of second
order

o) ~ @ \fod + 6o/ -+1-3m)

For the normal power approximation of the third order equation (11) has to be
inverted; e.g. by Cardano’s formula.
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2.2 Approximations using orthogonal polynomials
2.2.1 The Hilbert space setting

Suppose I C R is an interval and w a positive continuous (weight) function.
Furthermore, denote by L2 the Hilbert space of all L2-integrable functions with
respect to the measure w(x)dx. Then for f, g € L? we define the scalar product

(J5 g) = / f(z) g(x)w(z)dx
T

and the induced norm

LIl = V<S5 )

Certain orthogonal polynomials (I7;);ey constitute a basis of L2 and every
f € L2 has the representation

= ZAin‘(@’w(m)

i=0
where
1

A=t
” <-r[’fa H?)

/ Ti(x) f(x)dz, i€ No

I

Hence the approximation of order n for f € L2 is given by

Fl) e falm) = ZA IT;(z) w(

=0

Different intervals I and different weight functions w yield different approxima-
tions. In our case f is the density of a random variable, say Z, and hence
A ! E[11;(2)] e N

= ———— i i 1

YO, )T
Since [1; is a polynomial of degree ¢ this implies that for an approximation of
order n the n-th moment of Z has to be finite. Furthermore, for I we take the
support of Z and for the weight function w a probability density.
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2.2.2 The Gamma approximation of Bowers

We approximate the density g of the standardized random variable

~ ES

Lg == S

var S

which is in the Poisson case equal to S = %S. S is a non-negative random
variable and we choose I = R™. Furthermore, we choose w(x) = I'(x; 1, b) =

ﬁfﬂb*leﬂs, x>0, and b = FS/var S. Then the Laguerre polynomials

b B o 2 F
II;(z) = (=1)'z" I(JE(J +b=1,-2)
! 7 S 1

j=0

constitute a basis of L? . Due to the normalization we obtain

Apg=1, A =Ay=0

and

I (b)

P . N
57 6I(b+3)

(s = (b+2)(b+ 1)b)

where fi5 = F[S?]. In the Poisson case fiz = /\5/2#3/13/#3/2. Consequently, for
n =0, 1, 2 we obtain a simple Gamma approximation, i.e.

5(1) = ’L()(;’Ij) — ﬁamb—le—w x>0

and for n = 3 we obtain
g(x) = w(x) + Azllz(z)w(x)

IR
S S o G St O | T 4T B
F(b)q’ € + 6(}“5 ( )( ) )

7° 3z . 3r 1 }'I;b”le_‘“
“A\Tw+3) Th+2) Th+1) I0mJ
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2.2.3 The Gram-Charlier approximation

We approximate the density g of the standardized random variable

- S = BS
vvar S

which is in the Poisson case given in (1). The support of Sis R, consequently we
take [ = R. Furthermore, we take w(x) = ¢(x) the standardnormal density. Then
the Hermite polynomials

II;(x) = Hi(x)

as defined in the beginning of this section constitute a basis of L. Due to the
normalization we obtain

Ap=1, A1 =A3=0, As3=-7/6, Ag=y/24.

Consequently, for n = 0, 1, 2 we obtain a simple normal approximation; i.e.

and for n = 3 we obtain

g(x) = w(x) + AsHs(x)w(zx)

= 6(z) — M)

and for n = 4

g(z) = w(x) + AsHz(x)w(x) + AgHy(x)w(z)
1 1 y
= ¢(z) — 67105(3)(33) + ﬂ”Yz(b(i) (z)
Notice that for n < 4 the Gram-Charlier approximation is exactly the Edgeworth
approximation of the corresponding order. Only higher order approximations
differ.
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2.2.4 The Esscher approximation

Most of the preceding approximations are sufficiently precise around the mean
but perform poorly in the tails. Exponential tilting shifts the mean to an arbitrary
large x-value and hence improves the approximation in the tail considerably. Then
the density or distribution function is estimated for this value x. We describe the
method in detail: For the random variable S with distribution function G define
for h € R such that g(h) < oo the exponentially tilted random variable .S;, with
distribution function Gy, by

1 T .
Th = —— ot ;P
Gy, ) /f dG(y), >0 (12)

0

(3}, is called the Esscher transform of GG. Then GG, has moment generating function
gn(t) =gt + h)/g(h) (13)

i.e. gy, is essentially a translation of g.

Proposition 3. [Gerber (1979), Section 4.7]
(a)  Suppose S is compound Poisson with parameter A and claimsize distribution

~

F, then also Sy, is compound Poisson with parameter \f(h) and claimsize
distribution Fj,.
(b)  The function h v E[S}] is increasing.

Proof: (a) The moment generating function of S is

o~

g(t) = exp(A(f(£) = 1)

and using (13) one obtains

o~
>

Gn(t) = exp(A(F(t+h) — 1) = A(f(t) — 1))
X

= exp(Af(t)[f1 fi

(O)fE+h)/f(E) = 1)

(b) Observe that

E[Sp] = g, (0) = g"(h)/g(h)
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and hence

d

Bl = {a" 0030 - @00 /50

1

=3y, (0) — (g1 (0)? = var S} > 0 ]

Remark. Denote by x := sup{z; G(z) < 1} and by hg := sup{h; g(h) < co}.
Then in all cases we consider we have

lim ES), = xp (14)

h—-ah.()

For a precise mathematical result and an example where (14) does not hold see
Petrov (1965).

Then for a given = € supp S determine h € R such that
E[Sh] =T

and apply the Edgeworth approximation to (&, or its density g;,. Traditionally, the
Edgeworth approximation of third order is taken and one obtains

o Sy—x E[(Sy —x)?] s (y—= _
w0 ) ( a(h) ) T em O (W> "

where o (h) = var Sj,. Considering densities in (12) we obtain

g(y) = g(h)e " gn(y)
and inserting (15) gives an approximation for g(y), which is good as long as y is

in the neighbourhood of x. From this one obtains the distribution function
G(w) =5(h) [ ¢ gny)dy (16)
—o0
or

L= Gla) =) [ e Mgu)ay (17)
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For numerical reasons for h < 0(z < ES) formula (16) is preferable and for
h > 0(x > ES) formula (17). E.g. substituting (15) in (17) one obtains for h > 0

-G 300 [ e (o) - AT g0 )ay s
0

Define the so-called Esscher functions as

o0

BEgle) == /e‘mycb(k)(y)d.y, k € Ny
0

then (18) can be rewritten as

) —z)3
I —G{z) re Glh)e™ (Eo(’u») = %Eﬂ(@)

where u := ho(h) and Ey and F3 can be rewritten as

Eo(z) = [1 — ®(2))/V2rp(x)

1 ; a1l —P(x
E3(z) = Jon (1 o B o 1%——&#)

These considerations generalize easily to higher order approximations. Obviously,
this method is more sophisticated than the previous ones. One important point 1s
that one needs to know or to approximate the moment generating function and the
quality of the approximation of g(x) depends on the quality of the approximation
of g(h). Moreover, g(x) has to be estimated pointwise. But the great advantage
of this method is its accuracy in the tails.

2.3 The saddlepoint method

The saddlepoint method has originally been developed by Daniels (1954) as an
approximation of the density of the mean of n iid observations. The basic idea is
an explicit inversion of a Fourier transform which can be obtained in form of an
asymptotic expansion in powers of n~!. Its dominant term is called saddlepoint
approximation and has the advantage that for an important class of densities the
relative error is uniformly n~! over the whole support of the random variable.
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The idea of a saddlepoint approximation has since then been applied to many
other areas of statistics, see e.g. Fields and Ronchetti (1990). For compound
Poisson and Polya process the method has been used by Embrechts et al. (1985)
to approximate tail probabilities P( Zj\il Mg :13), where NV is either Poisson or
negative binomial distributed.

In the next paragraph 2.3.1 we explain the general idea for the tail probability of
the mean X = - 3" | X; and discuss its extensions to random sums in 2.3.2.

2.3.1 Saddlepoint expansions for tail probabilities

We follow Jensen (1988). Suppose we want to approximate the distribution tail
Gn(z) = P(% woy X > x) where (X} )gen are iid with common distribution

function F' and Fourier-Laplace transform
o(h +iu) = Eexp((h + iu)X1)

defined for A~ < 7 < oo. Then we shall use the following inversion formula
[Widder (1941), Theorem 7.6.b, p.70]

F(z) 1 [ @lh+iu)
T) = — T
2T h+

0

exp(—(h + iu)z)du (19)

which holds for 0 < h < 7 if @(h +iu)/(h + iu) is integrable. Furthermore, we
assume that ¢(h + iu) — 0 for |u| — oo. By a change of variables we obtain for
G

— gp’”‘(h/)exp(—nhx)i D?[ U du

Gnlz) = vnha(h) 21 _/ “h ( ﬁ) 1+ u/(v/nha(h)) 20]
where

on(w) = ZAFX TR oo iuefo(n)) (21)

w(h)

Notice that ¢(h +it)/p(h) is the characteristic function of an exponentially tilted
random variable as defined in (13). Again A is chosen such that x is equal to
the mean, i.e. h is the solution of (d/dh)Iny(h) = x. Furthermore, we have
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introduced a new scale (h), which we choose to be equal to the standard deviation
of the exponentially tilted random variable, i.e. 0?(h) = (d?/dh?)In@(h). The
point A is the saddlepoint and the saddlepoint expansion is now obtained by
expanding the cumulant generating function lny,(u); we denote by pi(h) its
cumulants; i.e. pg(h) = &¥(h) /(5" (h))*/? with k(h) = In¢(h). Then a Taylor
expansion gives

(1) = e (o (e 22 ) et - )

-~ exp{n(hw(h) () (o

iu)? 175y
+ (lngp)"(h)wi-;(igy}m + vis —Ingplh) — m>}

u? o ()
-e{ = 3

We expand exp { Yoies k'[\);,sh—) (L’Ll,)k} and consider all terms up to order O(,—i)

this gives

wﬁ(%) e /2 {1 - ’;\(/hﬁ)('u):‘ 4 2 ey "’?(h/) (z'u)“}

If we set now

1
Bi(z) = ?

. _ul)2 (iu)*du
1+iu/z

8\8

then

\/15% “0( )Hw/((fumo()

= 5ol - 2By 0) + 2 o)+ BBt R (2

where z = \/n ha(h), and expressions for By (z) can be found e.g. in Abramovitz
and Stegun (1970), pp. 297-330:

Bo(z) = V2r ze* /2(1 — &(2)) Ba(z) = 2°Bo(z) — (2% — 2)
84(2) =2z ]33(2) B(;(Z) = ZQEB;;(Z) = 322



202

2.3.2 Saddlepoint expansions for a compound Poisson sum

The situation we are interested in is the approximation of G(z) =
P(Zﬁ;l Xy > :c) where N is Poisson with mean A, where A is fixed, and

we consider the limiting behaviour of G(x) as & — oo [Embrechts et al. (1985)].
We denote by

wx (h+iu) = Eexp((h + iu)Xq)

the Fourier-Laplace transform of X, then the Poisson sum S has Fourier-Laplace
transform

ws(h+iu) = exp(—A(1 — px{(h + iu)))

Now assume ¢y satisfies, as required for fixed n in section 2.3.1, that px(h +
i) — 0 as |u| — oo, then

ws(h +iu) — e*)‘, lu| — oo

This effect which arises from thf, discretfgless of N in 0 has to be removed
and it can be done by defining N by P(N = k) = pr/(1 — po), k € N, and

S = chv:l X} This implies, that

P(S > ) = (1 — o) P(S > z) (23)

and with P(N = 0) = 0 we obtain

(¢s(h +iu) — po)

o0
0z (h +iu) :;(p/ (h + iu) (Nﬂk):l_po

which tends to 0 as |u| — oc.
We apply the inversion formula (19) and obtain together with (23)

— 1 (ps(h +iu) — po) .
T)= — —{h+ d
G(x) 5 [ Wi exp(—(h +iu)x)du

for h < 7 < oo where (pg(h + tu) — pp)/(h + tu) can be shown to be
integrable if @x satisfies this condition. The saddlepoint A is chosen such
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that (d/dh)Inpg(h) = A¢'x(h) = x and the normalizing scale as o?(h) =

(d?/dh*) Inps(h) = A" (h), ie. the exponentially tilted random variable S,
has been standardized. Then we obtain
— h) —- —hz) 1 T ,
G(.ZC) _ (995( ) p())exp( ”5) = / (;Dl(u) . du
ho(h) 27 1 +iu/ho(h)
where
¢s(h+iu/o(h)) — po .
100 = expl—izu/olh
p1(w) e exp(iaufa(h)
Write
h+w/olh 1
o1 (1) = (905( 1/o(h)) o )
ps(h) ws(h) ) 1—po/es(h)

ignore py/@g and set

ws(h+iu/o(h))
ws(h)

wo(u) = exp(—izu/o(h))

Notice that vy = ¢y g of (21), and if we approximate

—/ « _ (ps(h) —po)exp(—hz) 1 r , du
G(z) =~ ha(h) 2m / gDz(u)l+iu/h0(h)

then we obtain for the integral of the righthandside the same expansion as for the
integral in (22) with n = 1, with

pe(h) _ Belh) e (h)
k=2 VAR2 S (R))FAR?

If 33(h) — 0 and B35(h)/B4(h) — 0as h — 7 then for a large class of distributions
F the expansions of (22) are of order O(B3(h)/VA) and O(Bs(h)/N3/?),
respectively, as y — 00.

A short version of the saddlepoint approximation can be obtained replacing By(z)
in (22) by their asymptotic equivalents for z — oo.

Bo(z) = 1, Bs(z)~3/z—0, Ba(z)—3, Bg(z)—=15
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Consequently,

— v _ (ps(h) —po)exp(—hz) 1
Gl e h c(r)(h) \/ﬁ{

The advantage of the saddlepoint method is that for a large class of distributions
the error is uniformly bounded [see Embrechts et al. (1986)].

1+ S0 — 5530 |

2.4  Discrete methods

The methods we discuss in this section start with an arithmetic claimsize
distribution; i.e. there exists some > 0 such that

fG)=PY =jd), jeNo

If ¥ has an absolutely continuous distribution function F', then a discretisation
procedure 1s applied as e.g.

10 =ro. s=r(3)-ro

2 j—
f(j)mF( J;]‘d) wF(z“'g 1d) for j>2

[see Feilmeier and Bertram (1987), p.48]. Notice that the approximation methods
of this section all work on a finite support. Furthermore, the number of calculations
increases as well with a finer discretisation (smaller d) as with a greater support
(for heavy tailed distributions).

We also want to emphasize the fact, that for all approximation methods introduced
in sections 2.1.1-2.2.3 only A and the first few moments of the claimsize
distribution have to be known (or estimated); for the Esscher and saddlepoint
approximation a transform has to be calculated. For the discrete approximations
in this section the whole claimsize distribution has to be known.

2.4.1 The Panjer approximation

We derive the recursion formula for NV Poisson distributed, i.e.

A

= PiN=ki=g o

for ke N



Notice that p;, satisfies the following recurrence relation

A

po=er, p= ZPE-1) keN

Furthermore, the distribution of the total claim amount S is
oo
g(j) = P(S =jd)=> pr f**(j), j€Ng
fe==10

For instance we have

g(0) =e i AR 7R (0) /Kt = =D (24)

k=0

Now the moment generating function satisfies for t < 7 < oo

gty =Ee" =3 pe [F(1)
k=0

Taking the derivative yields

g = ke N F ()
k=1
= AP () pea FFHE)
k=1

Since §(t) = 122 9(j) 94 and J(1) = Y57, f(Jj) €9, we obtain

i.}dg Ud'—"AZjdf t}d i (l)etld

Je=l 1=0

We compare the coefficients of e’/¢ and obtain for j € N

_/\sz g(j = 1)
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which gives together with (24) the Panjer recursion formula:

j
Z g(j =1, j7€eN

Notice that the important point is the recurrence relation for pi, k& € Ny; the
method works for all p, satisfying

b
pk::(ﬂ‘l‘k) pr_1, keN

for some a, b € R.

2.4.2 The fast Fourier transform method

Using the fact, that for the characteristic functions of f and ¢ the following relation
holds

ps(t) = exp[A(py (1) — 1)]
we proceed according to the following diagram

exp[Aey (t)—1)]
/ Yy s g

This means we have to determine the characteristic function and its inverse.
The method we use can be explained as follows: For a given vector a =
(ag, -+, an_1)T, the vector b = (bg, - -, b,_1)" with

b=Wa, where W = (ekj'gm/n)k TN J—

is the Fourier transform of a. Now we have for W = (e~ki-27i/m)
that

k,j=0,...,n—1

W-W =nl
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where [ is the unit matrix, which provides the inversion procedure. Thus we obtain

b=Wa & FFT*(q)

1 ger 1
“WbhE = FET(b)
T n

=
Il

Now consider the characteristic function ¢y of the distribution f(k) = P(Y =

kd), k € No. If we compute ¢y (t;) for t; d , j € Ny, we obtain
e ) . ;m
. :E:,f(k)etkdlgﬁj/nd :E:kf
k=0
If we set

:Zf(lc—l—ln), B=0,1; ;s =1

we obtain by periodicity

n—1 Si

=3 ke

k=0

~

We define the vectors ¢, = (oy(to)s ..., py (tn_1))T and j (f(0), ...,
f(n —1))T. Then we may rewrite the last formula as

o, = FFT*(f)

Applying this result to the compound Poisson distribution we obtain with the
corresponding notation

~

¢, = FFTH(§) = exp\(EFTH(f) — 1)

and solved for g

= %FFT“(exp[/\(FFTJF(f) - 1)])

This way to calculate g from the given values f is called the fast Fourier transform
method, even it is not yet fast. To justify its name, let us return e.g. to the
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transformation F FT". The complexity of the algorithm can be represented by
the number of complex multiplications which is of the order O(n?), because we
need n? multiplications to compute the product Wa. If n is even, the algorithm
can be accelerated. For n = 2m, m € N, let w,, be the n-th unit root w,, = >/,
We compute boy:

n—1 m—1
_ 2kj __ 2kj S 2k(F4+m
ka = a; w, ™~ = E (aj w,, + Qj4m Wy ( )
j=0 Jj=1
m—1
_ _ ) kg
= E (@5 + Qjpm) Wy
j=1
) 51 ‘ o Jof )
since w2 = wh™ = 1 and wi¥ = (w2)” = wh!. In the same way, with
W= —1 we pet
n—1 m—1
o 2k4+1)7 __ 2k-+1)3 2k+1)(74+m
bZR?-H- - a; wigi, i = § : (a’j w':(“r, & + Aj4+m w?% ) )>
j=0 Jj=1
m—1
- AT J apld
= § (aj — ajrm) W, wy;
J=1

It we denote a] = a; + aj,m and af” = (aj — ajpm)wd, 0 <7 <m—1, we
n.

may replace one Fourier transformation of order n by two of the order m = 5

m—1 m—1
ba = E a;wyy, , bokt1 = E a; w),
§=0 7=0

A considerable reduction of the number of calculations can be achieved by
choosing 7 = 2'. One can prove, that in this case the complexity of the algorithm
is of the order O(n - I) = O(n - logyn) [see Bithlmann (1984)]. Obviously the
same is true for the transformation /"F1.

If n = 2!, the fast Fourier transformation can be programmed recursively according
to the following Nassi-Shneiderman diagram
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procedure FFT(k, s)

m — n/|2s]

yes

no

forj—0tom-—1

h = ary; = aryjim
Qktj  Qhtj T Qhetjtm

Qhtjtm < h - w,;

FFT(k,2s)

FFT(k+ m, 2s)

Herein £ represents the index of the first element and n/|s| the order of the fast

: : : : ; def o
Fourier transformation. s is also needed to pick the correct unit root wy; = w;/.

If we define w; = ¢

2lmi/n

—n/2<l<n/2 we get

FFTY(a) « FFT(0, 1)

FFT(a) «— FFT(0, —1)

To illustrate, how the procedure FI'T works, we give an example with n = 8

(ie, [ = 8);
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p! b,. (s
000 ag ) [ ap by o @b FFTO4 yqap = by 000
001 a; a, b2 FFT(0,2) a; by *¥xag = b4 100
010 a *4 as b4 ag bz FFT(2,4) g = bg 010
*k R —
011 a3 ! FFT(0,1) | a3 be ay be *%kdg = be 110
e
100 a4 [ ap b JJ aoby FFTU4) 4 =35, 001
101 as ay by FFT(42) ay bs xxap = bg 101
ok —— 0 5
110 a¢ as b ag by FFT(84) xap = bz 011
111 a7 | [ a3 b7 o ay by **xap = by 111

The b-rows show, which elements b, are computed with the help of the corre-
sponding a-values. After the completed transformation, the element with index r
is at a different place, say r’. The two numbers 7 and 7’ are related in the following
way: If we reverse the digits in the binary representation of » (with [ positions)
we get a binary representation of r’ [for a proof see Schwarz (1977)]. To get the
right order of the elements of the Fourier transform, we have to renumber them,
after finishing the procedure F'F'T".

In the sequel we shall abbreviate fast Fourier transform by FF'T. For a recent
summary of the F'F'T" method in insurance mathematics see Embrechts et al.
(1992).

2.4.3 The Monte-Carlo method

Monte-Carlo simulation is nowadays a well established tool in almost all fields of
applied mathematics. Random number generators are installed on every computer,
generating standard uniform random numbers. From these one can derive random
numbers of any distribution. In our case we have to generate random numbers for
the claimsize distribution F' and also for the Poisson distribution.

The simplest method to generate random numbers from a distribution /' is by
means of the generalized inverse

F*= () = inf {ap Flx) > u}

if it can be calculated explicitly. This is easy e.g. for the exponential distribution.
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For uniform distributed U
X ! In(1-U0U)
= e T} —
a

is exponentially distributed with parameter a.

To generate Poisson distributed random numbers n, we create an array p with
L

Blk) = PN £ k] = e > ?—, for 0 < & < Nyax. The following binary search

i=0
algorithm returns n.

l*_—]-: n"_Nma:::

u +— random

m — [(1 +n)/2]

u > p(m)
yes no

l—m ne—m

until n—-1<1

Herein, “random” generates standard uniform random numbers and [z] denotes

the integer part of x.
For more sophisticated algorithms see e.g. Morgan (1984) or Ripley (1987).

To simulate values sy, so, ..., S;m, m € N, of the total claimsize S we first
simulate Poisson random numbers n1, no, ..., 7;,, and then n; random numbers
Ypi» © = 1, ..., ng, k = 1, ..., m, according to the claimsize distribution F'.
Then

n
S == E s E=1; oi0s Ty
i=1

are simulated values of S. An approximation for the total claimsize distribution
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(- is now given by

1 T
G(x) =~ — Z brgwtwyy; GER,

T
k=1

We did not include any figures of the outcome in section 3, the reason beeing that
the method can be made arbitrarily exact. Nevertheless, the computertime needed
to gain comparable exactness as for other discrete methods is considerably higher.
A more detailed discussion of the pros and cons of this method can be found in
Feilmeier and Bertram (1987).

3. Examples

This section is devoted to a graphical presentation of the approximation of the tail
G(z) =1 — G(x) of the total claimsize distribution by the methods described in
the previous section. As one can imagine it was not easy to choose an appropriate
sample of the graphics: On the one hand we wanted to show some typical pictures,
but also on the other hand show how wrong things can go. The graphics are
collected at the end of the section. The underlining explanations to the figures are
in the same order as the approximating curves; i.e. top to bottom.

We restrict ourselves to the Poisson model, so we have to specify the Poisson
parameter A and the claimsize distribution. The methods are of particular interest
for small samples and hence we decided to take always A = 10 and to choose the
parameters of the claimsize distributions appropriately; the expected total claim
amount ES ranges for our examples from 10 to 27.

For the two discrete methods, the Panjer approximation and the F'F'I" method,
the error is uniformly bounded and can be made arbitrarily small by taking a
sufficiently small discretisation parameter d. Furthermore, both methods show
virtually the same curve. So we only show here the F'/"I" approximation and
we consider it as a reference curve for the quality of the other approximation
methods.

3.1  Exponential claimsizes

The one exception where we did not take A = 10 is for exponentially distributed
claimsizes with density

flg) =ae™, z=0, a>q.
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It is well-known that in this case it is possible to calculate explicitly the distribution
function G of the total claim amount which is given e.g. in Heilmann (1988)

o'} )\k: k 1 )
G(z) = 1 — e~ (AFaz) Z e 2

| T
k=1 =0 I

I
o

So we had hoped for an excellent reference curve for all our approximation
methods, namely the true distribution. Unfortunately, the analytical representation
as an infinite series caused numerical problems and we did not obtain sufficient
exactness for A = 10. On the other hand for A = 1 and a standard exponential
claimsize distribution we obtained a very accurate tail 1 — (G and we present it
in Figure 1 and 2 together with some approximation results. We also calculated
the relative error ’@(.’1’)) — ﬁ(f)‘/a(m) for different approximations H. Whereas
for the F'F'T" approximation the error remains bounded for the normal power
approximation it is increasing and becomes rather large in the tail.

3.2  Gamma distributed claimsizes

The gamma density is given by

1 2\ ¢!
e e - ,—-'L/b " > b )

In our example we took @ = 5 and b = 1/5 which implies with A = 10 that
ES = 10. All methods performed rather well around the mean whereas in the
extreme tails the approximations by orthogonal polynomials perform rather poorly
as can be seen in Figure 3 where the range from 20 to 30 has been chosen. Since
the moment generating function is explicitly given, approximations like Esscher
and saddlepoint are easily computed and almost coincide with the F'FT" curve.
Our reference curve, the F'F'T approximation, has been calculated with d = 0.02
and n = 2'2 = 4096.

3.3 Weibull distributed claimsizes

The Weibull density is given by

) a—1
f(z) = %(%) e~ @) £>0,a,b>0
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For our examples we took two different parameter sets such that the tail decreases
for one set of parameters faster than exponential and for the other slower.

For ¢ = 2 and b = 3 we obtain quite reasonable approximations also for the far
end tail (Figure 4). For the 'F'T" approximation we took d = 0.05 and n = 4096.
The situation is different in the subexponential case, here we took a = 0.5 and
b = 0.75. Figure 5 shows approximations in the range 10 — 60. Here the Gram-
Charlier approximation shows a rather strange behaviour between 25 and 45.
Figure 6 shows that in the far tail, which is noticably heavier than in Figure 4, the
approximations are further apart from each other. For the F'/'T" approximation we
took d = 0.03 and n = 8192,

3.4 Lognormal claimsize

The claimsizes have density

, 1 (11‘11:—(1)2}
- expd — 0TG4 L 50 030, 551
1) = o p{ oz [0 TF

Notice that the moment generating function is infinite for all positive arguments,
hence approximation methods like Esscher and saddlepoint are no longer possible.
All moments are finite, but grow very fast for certain parameter values which can
cause serious trouble. Edgeworth expansions of different order make this very
obvious.

For a = 1 and b = 1/5 the F'F'T approximation and the Edgeworth expansions
of orders 3, 4, 5 and 6 seem to amalgamate into one curve (Figure 7). Even in the
tails they are very close (Figure 8).

This is not very surprising by the following table which shows the first six moments
of S and the coefficients of the Edgeworth expansion.

EX EX? EX? EX* EX® EX®
2.77319 8.00447 24.0468 75.1886 244.692 828.818
as a4 ag Qe
-0.055963 0.004889 -0.0003557 0.001588

Moments and Edgeworth coefficients for lognormal claimsizes with (a, b) = (1, %)
Table 1
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The graphics change gradually when one decreases a and increases b gradually.
The moments grow faster and for a = 1/5 and b = 1 the disaster is shown in
Figures 9—12. The plain line is obtained by FF'T" approximation with d = 0.05
and n = 4096. Figure 13 shows 9-12 together.

The first six moments of .S and the coefficients of the Edgeworth expansion are
given in the following table.

EX EX? EX3 EX* EX® EX*
2.01375 11.0232 164.002 6634.24 729416  2.17-108
as ay Qs ag

-0.236206 0.227492 -0.476461 2.28838

Moments and Edgeworth coefficients for lognormal claimsizes with (a, b) = (
Table 2

S

,1)

3.5 Pareto distributed claimsizes

The Pareto density is given by

b a bkl
f(:z:)mm( ) ., 220, 08,b>0.

Also here the moment generating function has its singular point in 0. We took the
parameters a = 6 and b = 5 which guarantees the existence of 4 finite moments.
Some approximations are shown in Figure 14.

3.6 Monte Carlo simulation

As mentioned in section 2 also simulation methods provide useful approximations.
Indeed they give good results but as ad hoc methods they proved to be slow. Also
the many textbooks on simulation methods show clearly that there is a lot more
to say to this subject than we are prepared to do in this paper.

Nevertheless, we show some examples in Figures 15-18. As Poisson parameter
we took A = 10 and simulated the Poisson variable N by the binary search
algorithm described in section 2.4.3. Then we simulated 1000 total claims, where
we used Marsaglia’s polar method to simulate normal random numbers which
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we transformed into lognormal ones. The other distributions we simulated by
inversion.

It should be noted, that the heavier the tails are the less points determine the tails.
Therefore particular methods have been developed to simulate distribution tails
[see e.g. Keller and Kliippelberg (1991)].

Markus Buchwalder
Eric Chevallier

Claudia Kliippelberg

Department of Mathematics
ETH Ziirich
CH-8092 Ziirich
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Figure I Exponential distribution
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Normal power approximation of 2nd order
......... Esscher approximation of 3rd order

Exact distribution and FFT approximation
............ Saddlepoint approximation of 3rd order

Figure 2 Exponential distribution
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Normal power approximation of 2nd order
......... Esscher approximation of 3rd order

Exact distribution and FFT approximation
............ Saddlepoint approximation of 3rd order
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Figure 3 Gamma distribution
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Figure 4 Weibull distribution (@ = 2, b = 3)
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Figure 5 Weibull distribution (a = 0.5, b = 0.75)
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Figure 6 Weibull distribution (a = 0.5, b = 0.75)
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Figure 7 Lognormal distribution (a = 1, b = 1/5)
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Figure 8 Lognormal distribution (a =1, b =1/5)
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Figure 9 Lognormal distribution (a = 1/5, b = 1)
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Figure 10 Lognormal distribution (e = 1/5, b = 1)
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=

Figure 11 Lognormal distribution (@ = 1/5, b= 1)
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Figure 12 Lognormal distribution (¢ = 1/5, b= 1)
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Figure 13 Lognormal distribution (@ = 1/5, b= 1)
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Figure 15 Standard exponential distribution
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Figure 16 Standard exponential distribution
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Figure 17 Lognormal distribution (@ = 1/5, b= 1)
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Summary

The present paper is an outcome of a seminar in insurance mathematics at ETH Ziirich in SS 92.
The aim was to introduce the students to the traditional algorithms using modern computer tools.
Since graphical representations are more intuitive than rows of numbers the students were encouraged
to use programs offering graphical aids as e.g. MATHEMATICA. The resulting graphics were most
interesting and we hope that this opinion is shared by our readers.

Zusammenfassung

Die vorliegende Arbeit ist das Ergebnis eines Seminars fiir Versicherungsmathematik an der ETH
Ziirich im Sommersemester 1992. Ziel des Seminars war es, die Studenten mit den traditionellen Algo-
rithmen bekanntzumachen, wobei zeitgemiisse Computermoglichkeiten einbezogen werden sollten. Da
graphische Darstellungen intuitiver sind als Zahlenreihen, wurden die Studenten ermutigt, Programm-
pakete wie MATHEMATICA zu verwenden, die gute graphische Moglichkeiten bieten. Wir fanden die
priasentierten Graphiken hochst interessant und hoffen sehr, dass unsere Leser diese Meinung teilen.

Résumé

Le présent article est le produit d’un séminaire de mathématiques d’assurance qui a eu lieu a 'EPF de
Ziirich durant le semestre d’été 92. Le but était de présenter aux étudiants les algorithmes classiques en
utilisant les outils modernes de I'informatique. Les représentations graphiques donnent une meilleure
intuition que les tableaux de valeurs numériques et les étudiants ont €té encouragés a utiliser des
logiciels permettant des représentations graphiques tels que MATHEMATICA. Les résultats graphiques
sont particulierement intéressants et nous espérons que cette opinion sera partagée par nos lecteurs.
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