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ErRHARD KREMER, Hamburg

Certain Extensions of the Chain-Ladder Technique

1. Introduction

During the past 20 years a lot has been written on how to calculate adequate
loss reserves in nonlife insurance. Certain survey books were published (see e.g.
Van Eeghen (1980), Taylor (1984), Institute of Actuaries (1989)) and the topic was
included in standard actuarial textbooks (see e.g. Sundt (1983), Kremer (1985)).
Nevertheless the field does not seem to be totally complete, further new methods
and refined techniques can be expected. Newer approaches have to be developed
further and prepared for application (see e.g. the approach of Kremer (1989)). In
practice certain methods are applied already with great success showing the high
value of newer actuarial research. In 1984 the author published a paper discussing
an important type of loss reserving techniques, the so called autoregressive
models. The given methods are generalisations of the classical, simple chain ladder
technique and consequently are in practical use. The underlying models are fairly
handy since they are affine in type. The question arises if one can give also
certain nonaffine modifications of the models that are handy and good enough for
successful practical application. This question can be answered positively as is
shown below.

2. The model

Let XA = (Xij, j=1,...,n—i+1,i=1,...,n) be the run-off triangle of
a risk or collective of risks. This means that the X,; is a random variable on the
probability space (2, A, P) describing the total claims amount of accident year
no. ¢ with respect to its development year no. j. One assumes that one has:

(1)~ functions f; ., on (0,00) depending on the development year j and a
parameter vector a; = (a1, - -, Gjp;)
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(2)  random (error) variables R;; defined on (2, A, P) such that one has the
model:

Xij = fia;(Xij-1) %5 Rij (2.1)

where “x;” is an operator on [ R x IR into IR, allowed to depend on the
development year. Suppose that:

(A1) the R;;, ¢ = 1,...,n, j = 1, ..., n are stochastically independent and
square integrable,

(A.2) the X;y, i =1, ..., n are stochastically independent and square integrable,

(A3) the R;;, e =1,...,n, j=1, ..., n are stochastically independent of the

X,,;l, 7m1,,?’b

These three conditions imply that:
the X, | <7 — 1 are stochastically independent of the R;; . (2.2)

The two relevant choices for the operator “x;” are clearly:

“*j” — sa+a7 (23)
and:
“*4” - e ”» (24)

Models of type (2.1) with the choice (2.3) are intensively explored in a paper of
Jones (1978).

3. Optimal predictions

In loss reserving the X;;, 7 > n — 1 + 2 are unknown. One has to predict them
from the run-off-triangle X » in an optimal way. For giving an adequate prediction
advice let us take two additional assumptions:

(A.4) with the expectations 7;; = E([;;) one has:

fja; (X'i,,jfl) W Ty = fJ\“—j (X‘f"f“l)

(A.5) for stochastically independent, square-integrable random variables X, Y and
a random vector Z (all defined on (£2, A\, P)) one has the rule:

E(X% Y|Z)=EX|Z) E(Y | Z)
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One knows (see e.g. Kremer (1984)) that the optimal (=adequate ) prediction )/(\}-j
of X;;, 7 > n —1i+2is just a conditional expectation:

Xy =E(Xy | Xa) (3.5)

Under the given assumptions one has as basic result:

Theorem 1

The prediction (3.5) is nothing else but:
551:3' = fja;(Xij-1), JjZn—i+2
Proof: Because of (A.1)-(A.3), (A.5) )/(:ij is equal to:
E(fja;(Xi5-1) | Xus 1 <n—i+ 1) % B(Ryj | Xu, [ <n—i+1)
The first term is equal to fj}aj (X, ;—1), the second to r;; because of (2.1), (2.2).

The statement follows because of (A.4). [

For j > n—i+2the X; ;1 is not known, one clearly replaces it by its prediction

5511. j—1. This results in the following advice:
Complete the triangle X A to a rectangle by predicting X;;, j > n—1+ 2 by )?,;j
with the recursion:

)?z',n—i—i—Q - fn—i+2,an,i+2(Xi.n—i+l) (3 6)
Xi,n-i+k = fn—'r7+lc, (lr,_i+k(Xi,n-i+k,71) ke Z 3

When one has given the functions f; ., and knows the value of the parameter
vector a;, the completion of the triangle X 4 to a rectangle can be carried through.
Nevertheless in practice one does not know the (correct) underlying value of the
parameter-vector a;, its value has to be estimated.

4. Parameter estimation

For estimating the unknown value of the parameter-vector one can take the known
data of the run-off-triangle as in Kremer (1984). In addition to the assumptions
(A.1)-(A.4) it is assumed that for each 7 there exists a measurable mapping 71’
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on [ R into I R such that:

(A6) Tyj(f4a;(Xij—1) %5 Rig) = Ti(fj.0;(Xi j-1)) + Tj(Riz)
(A7) E(T3(Ri;)) = 0
(A.8) Var(T;(Ri;)) = s;/Vij

where s; > O and Vi arefori=1,...,n, 7=1,...,n

positive volume measures.
The assumption (A.6) implies with (2.1) that:
T.J'(X'ilj) = Tj(fj. El-j(Xi,j—l)) + TJ(Rr;) (4.1)

Because of (A.1), (A.7), (A.8) and (4.1) one is willing to calculate the desired
estimator @; for a; with the following method of least squares:

n—7j+1

Z Vij - (T3(Xi5) — j(fj,aj(Xqﬁ,jwi)))z = Fiin

(47 j

With the common method of the differential calculus one obtains then:

Theorem 2

The least squares estimator a; satisfies the normal equations:

n—j+1
Z VU 'T 13) ( iy J— 1)
= (4.2)

—J-1
= Z ‘/z'j Tj(jJ’aJ (X'i,jv'l)) . d_g','d).j (Xi,j—l) fOI’ /i p— 1, ey pjv
i}

with the derivatives:

(i(-k) _ (de(fjjaj)>. ]

L dajp
In the special case that:

s; =0 (4.3)



177

one has because of (A.7):

Ti{(Rys) =0 fs.
and consequently from (4.1):

(X)) = T (f; a;(Xij-1)), fs,foralli=1,...,n—j+1
If in addition to (4.3) one has:

pj=1

one is willing to take as estimator a; = (a;1) of a; = (a;1) the solution (assumed
to exist uniquely) of the equation:

41 n—j+1
> TiX) = Y Tilfia,(Xis-1) (4.4)

The equation (4.4) is slightly simpler than the corresponding equation (4.2) (with
p; = 1), but the estimator of (4.2) is more adequate in case that s; is larger than
Zero.

For the special choices:

(2.3),  Jia (@) =02, a;=1(a), pj=1
(4.3), Ti(z)==x forall z

one gets from (4.4) as estimator @;;:

ST Xy (4.5)
—g-41 '
Dt Xijo1

Ayl =

which defines with (3.6) the classical so-called chain-ladder loss-reserving tech-
nique.

Consequently the method (3.6) with the above parameter estimators (of (4.2) or
(4.4)) can be regarded as being a certain generalization of the classical chain-ladder
technique.
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3, Examples

Clearly many examples can be given for the model (2.1) with assumptions (A.1)—
(A.8). The most important ones shall be given in the sequel.
Example 1

Take in the above general model the more special choices given according:

(2.3), fjaj(.L) = Q41 T, aj = ((lj}), Py = 1
ri; =0 and finally Tj(x) =«

The estimator a; = (a;1) for a; = (a;1) resulting from (4.4) is already given at
the end of section 4. From (4.2) one gets the more suitable estimator:

n—j+1 3 - o
Z'L':l Vw ) XU ' Xl,rl
n—j+1lyr 2
Zizl Vw - X;

i, 9—1

i1 =

Note that this example was already given in Kremer (1984) in the context of
autoregressive models of a linear type. A

Example 2

Choose in the above context:

(23)1 fj,aj = 41 - Il/Q, a5 = (G'le)’ P = 1
rij =0 and finally Tj(z) ==

The estimator @; = (a;,) for a; = (a;)) resulting from (4.4) is just:

n—7+1 »
Zizl XU

ajl - n—7j-+1 1/2 (57)
St X
and the estimator resulting from (4.2):
n—j+1 1/2
e Vi« X5 - X057

n—j+1
s Vi Xij

=
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Example 3

Take now the additional model assumptions:

(24),  fja,;(z) =explaj-x), a;=(a), p;=1
rij =1 and finally 7}(x) = In(z).

The estimator @; = (@;1) for a; = (a;1) resulting from (4.4) is given by:

Z?Qf“ In(X;;)

a'j — T 5.9
J1 Z;ll:lj+l X,iij_l ( )
and the estimator resulting from (4.2) by:
ity (X)X
Gy = Lizi g o In(Xig) - Xy A (5.10)

n—ji+1 2
2usi Vi Xi;

2,7 —1

These were examples with p; = 1. Remember that for positive s; (what mostly is
the case in practice) the estimators (5.6), (5.8), (5.10) are in principal preferable
to the estimators (4.5), (5.7), (5.9), since they are expected to be more efficient.
Nevertheless for manual computations the estimators (4.5), (5.7), (5.9) may
sometimes be preferable since they are slightly simpler and quicker to compute.
Now turn to cases with p; = 2. In these cases the equation (4.4) is not relevant
any more.

Example 4

Choose now in the context of sections 2—4:

(2.3), fj,aj (il,') =417 -+ a2, G5 = (ijl,ajz)

p; =2, ri; =0 andfinally Tj(z)=12x
From the equations (4.2) one gets as parameter estimators a; for a;; the following:

n—j+1
_ = - = (9)
aj1 = ( > Vi (Xm' - X%) ' (X'nrl —Xﬂ'fl))

i=1

n—j+1 — 2\ —1
X ( Z VU : (Xi,j—l == Xi-—l) )
=1

n—j34+1 )
o Vo Xii — G - X0
j2 = ij tNdj T Qg1 AL
=1

Q)
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with the conventions:

B —=F41
Vig = -ij/( > Vm‘) (5-11)
=1

n—I+1
X% =Y V- Xa (5.12)
4=1
Obviously for j = n the a;; is not well-defined. For j = n the model is

not applicable. Then one will take the model of example 1. Note that also this
example is contained in Kremer (1984) as a special case of an affine autoregressive
model. A

Example 5

Take the following additional conditions:
(2.3),  fia;(@) =aj - (z— aj2)'?,  aj = (aj1,a;2),
pi=2;, ry =0 andfinally Tiz)=2
The equations (4.2) give as estimator @;; of a;; the following:
St Vg - Xij - (Xig-1 — @ja)*/?
i T Vi - (X — ga)

where the estimator @2 of ajo is the zero place of the equation:

as1 =

n—j+1 n—i41
Z Vij- Xig- (Xijo1 — o) Y2 Z Vig (X j—1 —8s0)
=1 il o
e (5.13)
= D Vi-Xy - (X j1 — G3)"?
P

and the V;; is defined by (5.11).

For j = n (5.13) does not give a solution since both sides of the equation are
equal. Then one will take the model of example 1 or 2 instead. A

Example 6

Choose in this final case:

(2.4), f; o (z) = a;1 - explajz - x), a; = (aj1,a;2),
pj =2, m =1 andfinally T;(z)=In(z)
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In this case it is more practical to introduce a transformed parameter a3, = In(a;1)

and then to give a parameter estimator a; = (a afis ajy) for ay = (aj,,aj2). The

adequate estimator a; = (a;i,a;2) for a; is then given 51mply by
o S5
aj = exp(a), @2 =a

The slightly modified equations (4.2) give as estimator a ; for af; the following:

= ), Vi In(Xy)—a- X5,

n—j+1 B n—j+1 N
Bezl, =1

n—7-+1 ) 2N —1
X (X.,;’j_LX J—l)) ( Z Vl}'( jl__X(_J;.)_l) )

with again the conventions (5.11), (5.12). Obviously for 7 = n the Eil*z is not well
defined. Then one will take the model of example 1 or 3. A

It is the author’s conviction that models with p; larger than 2 are of limited
practical usefulness because parameter estimation becomes unwieldy.

6. Practical procedure

For practical calculations the author proposes the following combination of the
models of part 5:
For 7 = n take the model of example 1. For each previous j adapt each model
of the examples 4-6. Then calculate for each adapted model the mean squared
prediction error:

n—j+1 - n—j+1
pif =

For the prediction from development year no. j — 1 to development year no. j one
will take that model with the smallest ().S-value then.

Sometimes the models of examples 4-6 are inadequate. One can find this out with
the values of the parameter estimators. The model of example 4 can be judged as
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being inadequate when @;; is not positive. The model of example 5 can be judged
as being inadequate when the ;o is very small (negative!). Finally the model of
example 5 can be judged as being inadequate when @7 is not positive. Instead of
those models one can take the model of example 1. One expects to get slightly
improved predictions in case one applies the above proposed procedure instead of
carrying through simply the chain-ladder loss reserving advice.

7. Numerical example

For demonstration of the procedure proposed in section 6 a numerical example is
given below. It is assumed that:

Vij =1, forall 7 and j

The run-off triangle of the total claim amounts (X;;, j = 1,...,n — @+ 1,
i=1,...,n)is given in Table 1. Carried through are the chain-ladder method and
the procedure proposed in section 6. For each development year the calculations
are given. Table 2 contains the predictions with the chain-ladder technique, Table
3 the predictions with the procedure of section 6.

Table 1: The run-off triangle

26.50 50.05 6254 76,57 87.50  93.05
31.28 4898 6739 79.14 8543

2647 4753 6451 7447

3777 4939  62.65

27.06 4549

29.58

First take the chain-ladder technique given at the end of section 4. The estimator
of (4.5) is given by:

| j=2 3 4 5 6
G | 1.6195  1.3120  1.1838 1.1106  1.063
and the ()S-values

| j=2 3 4 5 6
QS | 43.3902  7.2005 34769  6.0620  0.0000
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One gets the predicted lower light triangle:
Table 2: Predictions with the chain-ladder method

90.85

82.71  87.95

74.16  82.37 87.59

59.68 70.65 7847 83.44

4791 6285 7440 82.63 87.88

Now take the procedure of section 6.

1) Development year j = 2:

For the model of example 4 one gets the estimators:
a2 = 0.1490, dge = 43.8458

and the ()S-value: QS = 2.2176.
For the model of example 5 one gets the estimators:

as; = 3.8057, @y = —131.26

and the QS-values: Q.5 = 2.2176.
Finally for the model of example 6 one gets the estimators:

oy = 43.9471, age = 0.00314

and the QQ.S-value: QS = 2.2185.
Obviously the models of examples 4 and 5 are equally good. One will prefer for
predicting the development year j = 2 the simpler model of example 4.

2) Development year j = 3:

For the model of example 4 one gets the estimators:
631 = —(0.83&4, &;32 == 105.3437

and the QS-value: QS = 3.2521.
For the model of example 5 one gets the estimators:

a1 = 0.2032, Q32 = —99999.5



184

and the @QS-value: Q.5 = 3.8528.
Finally for the model of example 6 one gets the estimator:

az; = 122.6007, ase = —1.3192

and the Q.S-value: QS = 3.2620.

According to what was said in section 6 all models can be judged to be inadequate.
One will take the model of example 1 instead. From (4.6) one gets the parameter
estimator:

31 = 1.3112

with the Q.S-value: QS = 7.1991.

3) Development year j = 4:

For the model of example 4 one gets the estimators:
641 - 06100, 642 = 371880

and the )S-value: QS = 2.1710.
For the model of example 5 one gets the estimators:

as1 = 9.6981, @40 = 2.2052

and the Q)S-value: QS = 2.1902.
Finally for the model of example 6 one gets the estimators:

aq1 = 46.0933, @42 = 0.00785

and the QQS-value: Q.S = 2.1528.
Obviously for predicting the development year ; = 4 the model of example 6 is
the best one.

4) Development year j = 5:

For the model of example 4 one gets the estimators:
as1 = —0.8054, @se = 149.1731

and the @.S-value: QS = 0.0000.



For the model of example 5 one gets the estimators:
a5, = 0.3266, 59 = —70000

and the QQS-value: QS = 1.07282.
Finally for the model of example 6 one gets the estimators:

as1 = 178.564, ase = —0.00931

and the QS-value: @S = 0.0000.

Obviously all models can be judged as being inadequate. One will take the model
of example 1. One gets from (4.6) as estimator:

as; = 1.1101

with the QQS-value: QS5 = 6.0603.

5) Development year j = 6:

One has to take the model 1 with the estimator (4.5) of the chain-ladder method,
given already above.

Combining the steps 1-5 one arrives at the following predicted triangle:

Table 3: Predictions with the procedure of part 6

90.85

82.67 87.88

7541  83.71  88.98

59.65 73.65 81.75  86.90

48.25 6327 7578 84.12 89.42



136

References

Institute of Actuaries (1989): Claims reserving manual. London.

Jones, D.A. (1978): Nonlinear autoregressive processes. Proceedings of the Royal Statistical Society,
A., 7T1-95.

Kremer, E. (1984): A class of autoregressive models for predicting the final claims amount. Insurance:
Mathematics & Economics, 111-119.

Kremer, E. (1985): Introduction to Actuarial Mathematics. (In German). Vandenhoeck & Ruprecht,
Gottingen.

Kremer, E. (1989): Loss reserving by kernel regression. Mitteilungen der Vereinigung Schweizerischer
Versicherungsmathematiker, 143-155.

Sundt, B. (1983): An introduction to nonlife mathematics. Verlag Versicherungswirtschaft. Karlsruhe.

Taylor, G.C. (1986): Claims reserving in nonlife insurance. North-Holland, Amsterdam.

Van Eeghen, J. (1981): Loss reserving methods. Nationale Nederlanden, N.V., Rotterdam.

Erhard Kremer

Institut fiir Mathematische Stochastik
Universitdt Hamburg

Bundesstrasse 55

D-20146 Hamburg

Summary

The problem of calculating adequate loss reserves is reconsidered. Certain simpler, not necessary
affine autoregressive models are introduced and with them optimal loss-development predicting advices
derived. The resulting methods are in some sense extensions of the classical chain-ladder loss-reserving
technique.

Zusammenfassung

Das Problem der Bestimmung adiquater Schadenriickstellungen wird betrachtet. Bestimmte einfachere,
nicht notwendigerweise affine autoregressive Modelle werden eingefiihrt. Mit ithnen werden optimale
Prognosen zur Entwicklung des Schadenverlaufs abgeleitet. Die resultierenden Methoden sind in
gewissem Sinn Erweiterungen der klassischen Chain-ladder-Schadenreservierungstechnik.

Résumé

Le probléme du calcul de réserves de sinistres adéquates est présenté. Certains modéles plus simples,
pas nécessairement affins autorégressifs sont introduits, avec lesquels des prévisions optimales de
I'evolution des sinistres sont dérivées. Les méthodes résultantes sont en quelque sorte des extensions
de la technique classique <chain-ladder> du provisionnement des sinistres.
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