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Erhard Kremer, Hamburg

Certain Extensions of the Chain-Ladder Technique

1. Introduction

During the past 20 years a lot has been written on how to calculate adequate
loss reserves in nonlife insurance. Certain survey books were published (see e.g.
Ca« Peg/zen (1980), Cay/or (1984), /«jrirwre o/Actaanes (1989)) and the topic was

included in standard actuarial textbooks (see e.g. Snndr (1983), /Wremer (1985)).
Nevertheless the field does not seem to be totally complete, further new methods

and refined techniques can be expected. Newer approaches have to be developed
further and prepared for application (see e.g. the approach of ATemer (1989)). In

practice certain methods are applied already with great success showing the high
value of newer actuarial research. In 1984 the author published a paper discussing

an important type of loss reserving techniques, the so called autoregressive
models. The given methods are generalisations of the classical, simple chain ladder

technique and consequently are in practical use. The underlying models are fairly
handy since they are affine in type. The question arises if one can give also

certain nonaffine modifications of the models that are handy and good enough for
successful practical application. This question can be answered positively as is

shown below.

2. The model

Let À'a (A'a, j 1, « - 2 + 1, i 1, «) be the run-off triangle of
a risk or collective of risks. This means that the A), is a random variable on the

probability space (S2, A, P) describing the total claims amount of accident year

no. i with respect to its development year no. j. One assumes that one has:

(1) functions on (0, oo) depending on the development year j and a

parameter vector aq (ayi, ßjp^

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 2/1993



174

(2) random (error) variables defined on (12, A, P) such that one has the

model:

— l) 5 (^*^)

where is an operator on JP a //? into 7P, allowed to depend on the

development year. Suppose that:

(A. 1) the Py i 1, n, j 1, n are stochastically independent and

square integrable,
(A.2) the X,;i, i 1, n are stochastically independent and square integrable,
(A.3) the Pij, i 1, n, j 1, n are stochastically independent of the

A"»i, 2 1,..., n.

These three conditions imply that:

the X,/, Z < j — 1 are stochastically independent of the P,>; (2-2)

The two relevant choices for the operator are clearly:

"*j" "+ ' (2.3)

and:

"*/' (2.4)

Models of type (2.1) with the choice (2.3) are intensively explored in a paper of
Jonex (1978).

3. Optimal predictions

In loss reserving the X^, j > n — î + 2 are unknown. One has to predict them

from the run-off-triangle Xa in an optimal way. For giving an adequate prediction
advice let us take two additional assumptions:

(A.4) with the expectations P(P,,) one has:

,/j,Oj (Aj /j.rtj (A"-gj_l)

(A.5) for stochastically independent, square-integrable random variables X, A and

a random vector A (all defined on (17, A, P)) one has the rule:

p(x a, y A) p(x I a) *j- p(y | A)
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One knows (see e.g. Bremer (1984)) that the optimal (^adequate prediction Xg,-

of Xjj, j > n — 1 + 2 is just a conditional expectation:

X,q £(Xy |XA) (3.5)

Under the given assumptions one has as basic result:

77more/?f /

The prediction (3.5) is nothing else but:

/j, Oj (-^i, j — i «7— ^ ^ H~ 2

Prop/: Because of (A.1)-(A.3), (A.5) Xg,- is equal to:

/t(A',-.,_i) I X,,. /<»-/+ 1 *J A(/f,q I Xjz, z < n - i + 1)

The first term is equal to /j, eg (ATg y-i), the second to rg,- because of (2.1), (2.2).
The statement follows because of (A.4).

For j > n — i + 2 the Xg y_i is not known, one clearly replaces it by its prediction

Xg 7 — i. This results in the following advice:

Complete the triangle Xg to a rectangle by predicting Xg-, j > n — z + 2 by Xg
with the recursion:

Xi,n—z+2 — /n—i+2, a^_i_i_2 i+l)^n —i+2 ^

i+fc
^Agn-i+t — /n-i+fc, (^U,ri-i+fc-l) ^ ^

(3.6)

When one has given the functions and knows the value of the parameter
vector eg, the completion of the triangle Xa to a rectangle can be carried through.
Nevertheless in practice one does not know the (correct) underlying value of the

parameter-vector a, its value has to be estimated.

4. Parameter estimation

For estimating the unknown value of the parameter-vector one can take the known
data of the run-off-triangle as in Premer (1984). In addition to the assumptions

(A.1)-(A.4) it is assumed that for each y there exists a measurable mapping Tj-
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on Ii? into 7i? such that:

(A.6) i /(./',\ a J (Ajj- 1 *7 -ßjj (A~i, J-l)) + -^îj)

(A.7) /7(T)(%)) »

(A.8) Var(Ï)(i?,j .s,/

where > 0 and V)j are for 1 1, n, j 1, n

positive volume measures.

The assumption (A.6) implies with (2.1) that:

7)(A',,) +Ty(i?o-) (4.1)

Because of (A. 1), (A.7), (A.8) and (4.1) one is willing to calculate the desired

estimator «, for with the following method of least squares:

n- j+ 1

E ^ (Î(;(A",,) -T,(A',.,_,)))-= mm
i=i

With the common method of the differential calculus one obtains then:

TVreorem 2

The least squares estimator Oq satisfies the normal equations:

n-j+ 1

'=' (4.2)
n-j+l '

E ^ ^ (4 A (-1)) 4S,^ ^ for i p,
7=1

with the derivatives:

I ^ y

In the special case that:

Sj — 0 (4.3)
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one has because of (A.7):

'fj(Riy) — 0 f.S.

and consequently from (4.1):

f.s., for all / 1, n - jf + 1.

If in addition to (4.3) one has:

Pj 1

one is willing to take as estimator Sj (Sji) of (op) the solution (assumed
to exist uniquely) of the equation:

The equation (4.4) is slightly simpler than the corresponding equation (4.2) (with

p, 1), but the estimator of (4.2) is more adequate in case that is larger than

zero.
For the .specie// c/;o/ce.sv

(2-3), /?', (^) — — (%'l)j Pj 1

(4.3), 7) (;f;)=.T for all a;

one gets from (4.4) as estimator Ojj:

which defines with (3.6) the classical so-called c/zam-ZaeMer Zaw-reserving tec//-

Consequently the method (3.6) with the above parameter estimators (of (4.2) or

(4.4)) can be regarded as being a certain generalization of the classical chain-ladder

technique.

7I.-J + 1 n-j + 1

(4.4)

(4.5)
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5. Examples

Clearly many examples can be given for the model (2.1) with assumptions (A.l)-
(A.8). The most important ones shall be given in the sequel.

&camp/e /

Take in the above general model the more special choices given according:

(2-3), /j,aj(^) — %'i ' ^5 — (^ji)> (Pj — 1

0 and finally 7)(.r) .r

The estimator «., («,-,) for «,• (oyi) resulting from (4.4) is already given at

the end of section 4. From (4.2) one gets the more suitable estimator:

Y^n-j+ 1 T/ V" V"
/Amt AAAAaAZ ~~ *

^
—A—~ (5.6)

Note that this example was already given in Aremer (1984) in the context of
autoregressive models of a linear type. A

ZAamp/e 2

Choose in the above context:

(2.3), /j,oj öji • «,• («ji), Pj 1

Tij 0 and finally T,(;r) a:

The estimator âj (%l) for aj (ayi) resulting from (4.4) is just:

V->n —J-fl y
»,,= (5.7)^ yvn—j + 1 yl/2 ^ '

A_-/2=l 2,J —1

and the estimator resulting from (4.2):

v~^n—j'+l T7- y yl/22^/2=1

Et-A'VyAVi-i
Z—/2 l U U — 1 A /r n\GUl r—: — A (5.8)on-J+ 1 ir </- v /
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Examp/e 3

Take now the additional model assumptions:

(2.4), ./g„,(.r) exp(ctji • ;r). a, (ftp), p., 1

r'ij 1 and finally T)(.x) ln(ir).

The estimator Sj (opt) for a,- (ap) resulting from (4.4) is given by:

Err" MA',-,-)
(5.9)

Z^! l
and the estimator resulting from (4.2) by:

„ j+i in(x,,).X, ,_iE — A 5.10J J- ^n-j+ l TT- y2 ^ '

These were examples with p, I. Remember that for positive .s, (what mostly is

the case in practice) the estimators (5.6), (5.8), (5.10) are in principal preferable
to the estimators (4.5), (5.7), (5.9), since they are expected to be more efficient.

Nevertheless for manual computations the estimators (4.5), (5.7), (5.9) may
sometimes be preferable since they are slightly simpler and quicker to compute.
Now turn to cases with p^ 2. In these cases the equation (4.4) is not relevant

any more.

Erawp/e 4

Choose now in the context of sections 2-4:

(2-3), /j, aj (^) ~ ß-jl ' ßj'2) ß'j (&jl ß.7'2)

p, 2, T'ij 0 and finally 7)(a:) ;r

From the equations (4.2) one gets as parameter estimators ap for tip the following:

- » + i

a, 1

/ \ 2\ -1
x E Er

^ 2=1

n-j+ 1

ctj'2 — El Ej fiji .j-i
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with the conventions:

' 1

Vü vy( V i; ") (5.11)

n—Z+l

E V',v-V,;/, (5.12)

i=l

Obviously for j n the Oji is not well-defined. For j n the model is

not applicable. Then one will take the model of example 1. Note that also this

example is contained in Kremer (1984) as a special case of an affine autoregressive
model. A

ZUY7Wp/<? 5

Take the following additional conditions:

(2.3), /,.„,(.t:) ciji (x - 0,2)^, («;!• A2).

Pj 2, r,;j 0 and finally T)(x) x

The equations (4.2) give as estimator Syi of a/i the following:

where the estimator ayo of a/2 is the zero place of the equation:

n—j + 1 n—j-f-1

E ^ ' -Ev • C-Vr-1 - Sj2)-^ • E ^ • (E.2-1 - E2)

(5.13)
n-j + I

E VVAV(Au_,-«;o)V*
i=l

and the ky is defined by (5.11

For j n (5.13) does not give a solution since both sides of the equation are

equal. Then one will take the model of example 1 or 2 instead. A

ZAwup/e 6

Choose in this final case:

(2.4), (x) a.ji • exp(a.j2 -x), a, («p., a.^),

Pj 2, Xjj 1 and finally 7j(x) ln(x)
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In this case it is more practical to introduce a transformed parameter a*^ ln(a,i)
and then to give a parameter estimator a* (a*j,aJ^) for a* (a^a^)- The

adequate estimator ay (a^i, 0^2) for is then given simply by

«/i exp(a*i), âj2 a/2

The slightly modified equations (4.2) give as estimator 2*- for a*, the following:

n—j+1

«/: E ^Vln(Xp)-S* .iE
2=1

,n-j+l n—2 + 1

a*2= E E ^-MA-,J)
^ 2=1 2=1

X (.v.. 1 - Eil)) E ^ • (*A-i - >)")

with again the conventions (5.11), (5.12). Obviously for.) n the is not well
defined. Then one will take the model of example 1 or 3. A

It is the author's conviction that models with jq larger than 2 are of limited

practical usefulness because parameter estimation becomes unwieldy.

6. Practical procedure

For practical calculations the author proposes the following combination of the

models of part 5:

For j n take the model of example 1. For each previous j adapt each model

of the examples 4-6. Then calculate for each adapted model the mean squared

prediction error:

n-j+l n-j+1
QS= E hr + with iA E ^

4 — 1 A ' J / 7.= 1J/ ,:=i

For the prediction from development year no. j — 1 to development year no. j one

will take that model with the smallest QSWalue then.

Sometimes the models of examples 4-6 are inadequate. One can find this out with
the values of the parameter estimators. The model of example 4 can be judged as
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being inadequate when a,i is not positive. The model of example 5 can be judged
as being inadequate when the is very small (negative!). Finally the model of
example 5 can be judged as being inadequate when a,2 is not positive. Instead of
those models one can take the model of example 1. One expects to get slightly
improved predictions in case one applies the above proposed procedure instead of
carrying through simply the chain-ladder loss reserving advice.

7. Numerical example

For demonstration of the procedure proposed in section 6 a numerical example is

given below. It is assumed that:

I. for all 1 and j
The run-off triangle of the total claim amounts (X^, j 1. n — i + 1,

1, n) is given in 7aWe /. Carried through are the chain-ladder method and

the procedure proposed in section 6. For each development year the calculations

are given. 7aWe 2 contains the predictions with the chain-ladder technique, 7aWe

J the predictions with the procedure of section 6.

7aWe /: The run-off triangle

26.50 50.05 62.54 76.57
31.28 48.98 67.39 79.14
26.47 47.53 64.51 74.47
37.77 49.39 62.65
27.06 45.49
29.58

87.50
85.43

93.05

First take the chain-ladder technique given at the end of section 4. The estimator

of (4.5) is given by:

7 2 3 4 5 6

<7 j 1 1.6195 1.3120 1.1838 1.1 106 1.063

and the QS'-values

J 2 3 4 5 6

QS 43.3902 7.2005 3.4769 6.0620 0.0000
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One gets the predicted lower light triangle:

7aWe 2: Predictions with the chain-ladder method

90.85
82.71 87.95

74.16 82.37 87.59
59.68 70.65 78.47 83.44
62.85 74.40 82.63 87.88

Now take the procedure of section 6.

/J Deve/o/wrcnt year j 2:

For the model of example 4 one gets the estimators:

«ai 0.1490, «22 43.8458

and the QA'-value: Q5 2.2176.

For the model of example 5 one gets the estimators:

«21 3.8057, S22 -131.26

and the QS-values: Q5 2.2176.

Finally for the model of example 6 one gets the estimators:

«ai 43.9471, «22 0.00314

and the Q5-value: Q5 2.2185.

Obviously the models of examples 4 and 5 are equally good. One will prefer for

predicting the development year j 2 the simpler model of example 4.

2) Deve/opmenf year j 3:

For the model of example 4 one gets the estimators:

«31 —0.8384, «32 105.3437

and the QS'-value: 3.2521.

For the model of example 5 one gets the estimators:

«31 0.2032. «32 -99 999.5
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and the Q.S'-value: Q5 3.8528.

Finally for the model of example 6 one gets the estimator:

«31 122.6007, F;s2 -1.3192

and the QS-value: Q5 3.2620.

According to what was said in section 6 all models can be judged to be inadequate.
One will take the model of example 1 instead. From (4.6) one gets the parameter
estimator:

«31 1-3112

with the QS-value: Q5 7.1991.

3) Devefopmenf year j 4:

For the model of example 4 one gets the estimators:

an 0.6100, «42 37.1880

and the QS-value: Q5' 2.1710.

For the model of example 5 one gets the estimators:

&4i — 9.6981, G&42 — 2.2052

and the Qi'-value: 6^5 2.1902.

Finally for the model of example 6 one gets the estimators:

«41 46.0933, F42 0.00785

and the QS'-value: QS 2.1528.

Obviously for predicting the development year j 4 the model of example 6 is

the best one.

4) Deve/opmenf year j 5:

For the model of example 4 one gets the estimators:

S.5i - -0.8054, «52 149.1731

and the QS'-value: Q5 0.0000.
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For the model of example 5 one gets the estimators:

I 0.3266, «52 —70 0 00

and the QS-value: QS' 1.07282.

Finally for the model of example 6 one gets the estimators:

fir, i 178.564. «52 —0.00931

and the QS-value: Q5 0.0000.

Obviously all models can be judged as being inadequate. One will take the model

of example 1. One gets from (4.6) as estimator:

«51 1.1101

with the QS'-value: QS' 6.0603.

5) Deve/opme«t year j 6:

One has to take the model 1 with the estimator (4.5) of the chain-ladder method,

given already above.

Combining the steps 1-5 one arrives at the following predicted triangle:

7aWe 5: Predictions with the procedure of part 6

90.85
82.67 87.88

75.41 83.71 88.98

59.65 73.65 81.75 86.90

63.27 75.78 84.12 89.42
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Summary

The problem of calculating adequate loss reserves is reconsidered. Certain simpler, not necessary

affine autoregressive models are introduced and with them optimal loss-development predicting advices

derived. The resulting methods are in some sense extensions of the classical chain-ladder loss-reserving

technique.

Zusammenfassung

Das Problem der Bestimmung adäquater Schadenrückstellungen wird betrachtet. Bestimmte einfachere,

nicht notwendigerweise affine autoregressive Modelle werden eingeführt. Mit ihnen werden optimale

Prognosen zur Entwicklung des Schadenverlaufs abgeleitet. Die resultierenden Methoden sind in

gewissem Sinn Erweiterungen der klassischen Chain-ladder-Schadenreservierungstechnik.

Résumé

Le problème du calcul de réserves de sinistres adéquates est présenté. Certains modèles plus simples,

pas nécessairement affins autorégressifs sont introduits, avec lesquels des prévisions optimales de

l'évolution des sinistres sont dérivées. Les méthodes résultantes sont en quelque sorte des extensions

de la technique classique -Cchain-ladder» du provisionnement des sinistres.
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