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RENE SCHNIEPER, Winterthur

Praktische Erfahrungen mit Grossschadenverteilungen

1. Finfiihrung

In ihrem Buch «Loss Distributions> analysieren Hogg und Klugmann die von
der American Insurance Association wihrend der Periode 19491980 registrierten
Wirbelstiirme, die in den USA einen Marktschaden von mindestens $ 1 000 000
verursacht haben. Es wurden 38 solche Ereignisse registriert. Die Schiden werden
mit Hilfe des Baukostenindexes in das Jahr 1981 indexiert. Die Autoren erhalten
somit 35 Schiden, die eine Schwelle von $ 5000000 iibersteigen.

Diese Schiden werden statistisch analysiert. Die Autoren passen fiinf verschiedene
Verteilungen an: die Pareto-Verteilung, eine verallgemeinerte Pareto-Verteilung,
die Burr-Verteilung, die Weibull- und die Lognormal-Verteilung. Die verallge-
meinerte Pareto- und die Burr-Verteilung sind Verallgemeinerungen der Pareto-
Verteilung. Im vorliegenden Fall werden sie aufgrund eines Likelihood-Ratio-
Testes zugunsten der Pareto-Verteilung verworfen. Die Wahl zwischen der Pareto-,
Weibull- und Lognormal-Verteilung erfolgt aufgrund einer Ad-hoc-Statistik, der
«Limited Expected Value Function>. Die Autoren kommen zum Schluss, dass
die Weibull-Verteilung den besten Fit liefert.

Die Hohe des Einzelschadens iiber $ 5000000 ist somit durch folgende Vertei-
lungsfunktion gegeben:

T

P X<z)y=1—-e%

wobei die geschitzten Parameter die folgenden sind:

I

0.52
7.5-107°.
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Die erwartete Anzahl Schiiden pro Jahr iiber $ 5000 000 ist gleich der beobachteten
Hiufigkeit dieser Ereignisse:

-

35
Nyt = — = 1094
. 32
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Im August 1992 hat Hurricane Andrew in Florida und Louisiana einen Marktscha-
den verursacht, der auf ca. $ 15.5 - 107 geschiitzt wird (Quelle: Property Claims
Services Division of the American Insurance Services Group, gemiss Business
Insurance, March 1, 1993). Wir konnen diesen Schaden benutzen, um das Modell
zu testen. Dazu mussen wir den Schadenaufwand bestimmen, den der Wirbelsturm
verursacht hitte, wenn er sich 1981 ereignet hitte. Wir gehen dabei analog vor
wie Hogg und Klugmann.

Zwischen 1981 und 1992 ist der Konsumentenpreisindex in USA von 100 auf 153
gestiegen (Quelle: International Financial Statistics, International Monetary Fund).
In 1981-Dollar ausgedriickt, betrigt der Andrew-Schaden somit ca $ 10.1 - 107,
Gemiss Modell ist die erwartete Anzahl derartiger Grossschidden pro Jahr:

Ny = ng 1w P(X > 10.1-10° | X > 5-10°)

—e(10.1- 1097
—1.004- &

e—c(5-106)7

—890.107°

und die Wiederkehrperiode zwischen zwei solchen Ereignissen betrigt:
Wiederkehrperiode ~ ('n,m.lm)““l ~ 110000 Jahre.

Mit anderen Worten: Hurricane Andrew ist gemiiss Modell so gut wie unmdoglich.
Da das Ereignis aber trotzdem eingetreten ist, muss am Modell gezweifelt werden.
Das Modell von Hogg und Klugmann ist eine gute lllustration der folgenden zwei
Thesen, die fiir die praktische Analyse von Schadendaten von grosser Bedeutung
sind.

Schadendaten aus der Vergangenheit miissen richtig interpretiert und korrigiert
werden. Im vorliegenden Fall wurden die alten Schiden zwar indexiert, es wurde
aber nicht beriicksichtigt, dass sich die versicherten Werte in den exponierten
Gebieten viel stirker erhoht haben als die Inflation. Diese Unterlassung fihrt zu
einer groben Unterschitzung des Grossschadenpotentials.

Bei der Bestimmung von Grossschadenverteilungen reicht es in der Regel nicht,
wenn man sich auf die Schadenerfahrung abstiitzt, da diese naturgemiss sehr
sparlich ist.

Nebst der Schadenerfahrung muss auch die vorhandene A-priori-Information aus-
gewertet werden. Im vorliegenden Fall kann aufgrund der geographischen Vertei-
lung der versicherten Werte, der physikalischen Eigenschaften von Wirbelstiirmen,
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des Zusammenhangs zwischen Windgeschwindigkeit und Zerstorungsgrad mittels
Simulationen eine A-priori-Verteilungsfunktion des Schadenaufwandes ermittelt
werden. Dies ist auch die Art und Weise, wie in der Praxis der maximale Schaden
ermittelt wird, mit dem <«<realistischerweise> fiir ein bestimmtes Portefeuille ge-
rechnet werden muss (Probable Maximum Loss). Eine Bestimmung dieser Grosse
aufgrund der Schadenerfahrung allein wire mit zu grossen Unsicherheiten behaf-
tet. Fiir die praktische Durchfiihrung einer solchen Analyse siehe z. B. K. M. Clark
(1986).

2. Die Schitzung des Parameters einer Verteilungsfunktion

Anhand eines einfach Beispiels wollen wir nun illustrieren, wie in der Praxis
die Daten mit der A-priori-Information kombiniert werden. Wir betrachten das
Problem der Tarifierung einer Schadenexzedentendeckung; bei eciner solchen
Deckung tibernimmt der Riickversicherer denjenigen Teil des Schadens, der eine
bestimmte Prioritit tibersteigt. In einem solchen Fall ist nur der rechte Schwanz
der Verteilungsfunktion von Interesse.

Oft wird angenommen, dass diese Grossschiiden paretoverteilt sind:

PLX > 1) = (E> x> Xy

i

wobei der Parameter « von Portefeuille zu Portefeuille verschieden ist und
geschiitzt werden muss.
Falls xy, @9, ..., x,, Grossschiden sind (d.h. Schiden, die x libersteigen), so ist

n—1
S s (2

T

a =

ein erwartungstreuer Schitzer von o mit minimaler Varianz. Dies sieht man folgen-
dermassen ein: Die Pareto-Verteilung gehort zur  Exponentialfamilie,
o log (Z—é) ist eine suffiziente Statistik fiir «, somit ist jede Funktion von
>t log (;—(']) ein Schitzer des Erwartungswertes dieser Funktion mit minima-
ler Varianz; anderseits gilt /(@) = a. Letzteres ergibt sich aus der Tatsache,
dass log (:—é) exponentialverteilt ist mit Parameter o und somit .. | log (;—(’))

(,Yz

gammaverteilt ist. Daraus ergibt sich auch unmittelbar Var(a) = ——.



Bei der in der Praxis auftretenden Stichprobengrssen (typischerweise zwischen 2
und 5 Grossschiaden) ist die Varianz des Schitzers sehr gross, seine Prizision
unbefriedigend. Anderseits weiss ein Tarifierer aus Erfahrungen mit #hnlichen
Portefeuilles, in welcher Grossenordnung der unbekannte Parameter «v zu erwarten
ist. Dies ldsst sich am besten formalisieren, indem man den unbekannten Parameter
o als Zufallsgrosse betrachtet und die A-priori-Kenntnisse tiber «v in die A-priori
Verteilungstunktion fliessen lasst.

Bei einer Pareto-Likelihood erweist es sich als zweckmaissig, eine Gamma-A-
priori-Verteilung zu wihlen:

Y

I a)

Oéd{*i(}ic Be’

fle) =

Die mit Hilfe des Satzes von Bayes erhaltene A-posteriori-Dichte ist dann:

flalz)=k- f(z|a)f(a)

d.h. die A-posteriori-Dichte ist wiederum eine Gamma-Dichte mit den neuen
Parametern

¥ =7
mn q
d=c+ log (J>

(N. B.: Die Dichten werden durch Ihre Argumente indexiert; insbesondere be-
zeichnen f(«) und f(x) i.d.R. verschiedene Dichten.)

Der beste—1im Sinn der mittleren quadratischen Abweichung — Schitzer fiir «v ist
die A-postoriori-Erwartung

gl Frn
Ea|g) =4 =—=17"
€ C+Li:l 1Og (ermén)




Und der mittlere quadratische Fehler des Schitzers ist
Var(F|« | z]) = Var(a) — E[Var(a | z)]
: 12 B E[ Y+n 2]
c v
(e 4 Xlog (53))

y\¢ v+n Lle+ Y log ()
n
Var(Elo | z]) ~ a® ———
T

Numerisches Beispiel
Die Parameter der A-priori-Verteilung sind
v=11.39 und c= 8.44;

dies entspricht der folgenden Wahl der Momente von «

Ela) = 72135 und Var(a) = % = 0.18.
s c
Wir haben eine Realisation des Parameters « simuliert und dabei o« = 1.40

erhalten.
Danach haben wir der Reihe nach drei Realisationen, von Grossschidden stammend,
aus einer Verteilung mit & = 1.40 (und xy = 1) simuliert; dabei haben wir erhalten:

21 =106, @s=1.16, &z= 25,03
somit

T
’T:E:ng%>:343

i=1

. ~ 1
&="_- =058
und
y+n
Ela|z)= =1.21
(alz) ="~
Dabei gilt fiir die Varianzen:
” a? 5
Var(a) = =1.96 = 1.40
n =,

n
v(y +n)
Die Genauigkeit des Bayeschen Schitzers ist viel grosser als diejenige des
klassischen Schiitzers.

Var(E[a | z]) ~ o? = 0.04 = 0.19?



e Anpassung einer Verteilungsfunktion

Wir betrachten ein Beispiel aus der Feuerversicherung. Es soll eine Schaden-
exzedenten-Deckung tarifiert werden. Zu diesem Zweck werden die Grossschiden
der letzten 10 Jahre geliefert. Es sind dies 17 Schiiden, die eine Schwelle von NOK
10 Millionen libersteigen. Die Rohdaten miissen zundchst bereinigt werden: Die
Schadenfrequenz muss um die Erhthung der Anzahl Risiken korrigiert werden,
die individuellen Schadenhthen miissen um die Inflation und allenfalls dariiber
hinaus um das reelle Wachstum der Zeichnungslimiten korrigiert werden. Die
Ermittlung dieser <as if>»-Statistik, d.h. der Schiden, wie sie angefallen wiren,
wenn sie im Deckungsjahr eingetreten wiren, ist eine sehr komplexe Aufgabe,
die in praktischen Anwendungen mindestens so aufwendig ist wie die eigentliche
statistische Analyse. Wir wollen aber nicht nidher darauf eingehen und gehen von
den bereinigten Daten aus. Es sind dies 17 Grossschiden, die eine indexierte
Schwelle von NOK 22,0 Mio (ibersteigen.

In chronologischer Reihenfolge erhalten wir folgende Schadenstatistik:

Jahr Schadenhohe Jahr Schadenhohe
(Mio NOK) (Mio NOK)
1983 42,719 1989 25.590
1984 105.860 24.130
1985 — 23.208
1986 29.172 1990 37.772
22.654 34.126
1987 61.992 27.990
35.000 1991 —_
1988 26.891 1992 53.472
36.269
31.088
25.907

Aufgrund dieser Statistik konnen wir die empirische Verteilungsfunktion ermit-
teln. Sie ist im Anhang 1 graphisch dargestellt. In einem nichsten Schritt wird
eine ganze Serie von analytischen Verteilungsfunktionen an die empirische Ver-
teilung angepasst, d.h. es werden die Parameter der verschiedenen Verteilungen
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mittels der Maximum-Likelihood-Methode geschitzt, und die so erhaltenen Ver-
teilungsfunktionen werden mit der empirischen Verteilung verglichen. Im vorlie-
genden Fall haben wir die Pareto-, die verallgemeinerte Pareto-, die Lognormal-,
die Gamma- und die Loggamma-Verteilung angepasst. Sowohl die Pareto- wie die
Loggamma-Verteilung liefern einen guten Fit, wie aus Anhang | ersichtlich ist.
Wir haben somit zweil statistische Modelle, die im Bereich zwischen NOK 20 Mio
und 100 Mio eine sehr gute Anpassung an die Daten liefern, aufgrund der Schéden
allein ist es jedoch unmoglich zu beurteilen, wie gut diese statistischen Modelle
fiir die Haftstrecke zwischen NOK 100 Mio und dem Zeichnungslimit NOK 350
Mio sind. Auch im vorliegenden Fall ist jedoch A-priori-Information vorhanden:
Bei der Tarifierung von Deckungen wie der vorliegenden liefert der Zedent
die Verteilung der Versicherungssummen des Portefeuilles. Die Verteilung des
Schadengrades (d.h. des Quotienten des Schadens durch die Versicherungssumme)
fiir das Kollektiv aller Industrie-Feuerversicherungsportefeuilles eines gewissen
Marktes ist bekannt und ist in der Form von Franchisen-Rabattkurven gegeben.
Somit ldsst sich auch die A-priori-Schadenverteilung ermitteln (a priori in dem
Sinn, dass sie auf der Schadengradverteilung des Kollektivs beruht).

Diese A-priori-Schadenverteilung wurde in Form einer Treppenfunktion ermittelt:

Schadenhohe Gewicht Schadenhohe Gewicht
25.0 0.3110 116.6 0.0223
31.1 0.2066 145.2 0.0108
38.8 0.1589 180.9 0.0039
48.4 0.1063 2254 0.0011
60.3 0.0793 280.9 0.0005
75.1 0.0603 350.0 0.0004
93.5 0.0386

Die Anzahl Punkte ist so gewihlt, dass die Approximation an die zugrunde lie-
gende A-priori-Verteilung befriedigend ist; die Punkte sind so gewiihlt, dass sie im
logarithmischen Massstab dquidistant sind. Die Verteilungsfunktion ist im Anhang
2 graphisch dargestellt. Durch Auswerten der vorhandenen A-priori-Information,
die im Risikoprofil der Gesellschaft und in der Schadengradverteilung enthal-
ten ist, haben wir nun einen Anhaltspunkt iiber den Verlauf der Schadenver-
teilungsfunktion im Bereich zwischen NOK 100 Mio und NOK 350 Mio, eine



Information, die wir aus der reinen statistischen Auswertung der Schadendaten
nicht erhalten konnen, da der grosste <as if»>-Schaden NOK 100 Mio nicht
wesentlich iibersteigt. Es stellt sich nun die Frage der Kombination zwischen
der A-priori-Information und der Schadenstatistik. Eine sehr einfache Vorgehens-
weise besteht darin, dass man von der an die empirische Verteilung angepassten
Pareto-Verteilung (o = 2.219) und von der an die A-priori-Verteilung angepas-
sten Pareto-Verteilung (o = 1.825) ausgeht und als A-posteriori-Verteilung eine
Pareto-Verteilung wiihlt mit einem Parameter, der ein gewichtetes Mittel zwischen
dem A-priori und dem empirischen Parameter ist. Die Wahl der Gewichte ist dabei
willkiirlich und bringt zum Ausdruck, wie stark man die A-priori und die empi-
rische Information relativ zueinander gewichtet. Dieses Vorgehen ldsst sich auch
auf die angepassten Loggamma-Verteilungen anwenden.

Geht man vom Modell aus, das im Abschnitt 2 présentiert wurde (Pareto-
Likelihood- und Gamma-A-priori-Verteilung), so dringt sich ein anderes Verfahren
auf. Im Rahmen dieses Modells ist die A-priori-Verteilung

o0

Falz) = fP(X <z|a)f(a)dao

0

wo) =1 ()

und die A-posteriori-Verteilungsfunktion ist

>

Fle|p)= P(X <z | ) :/P(Xg:r:]a)f(alzc)da
0
B C+T Y+n
Flz|z)=1- (c+T+log(§a))

wobel

T=> log (i':i) (2o = 22.4)
i=1 o
Als Parameter der Verteilung von « wihlen wir

=g aid p=16.
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Sie entsprechen den folgenden Annahmen iiber die Momente der Verteilung von «

Ela) = z =1.88 und Var(a)= 1~ 0.2

C @
Andererseits gilt
m z;
I = log| — | =736 (zg =224, n=17
; 0g (JE()) 5 (@ , n )
Die A-posteriori-Verteilung ist somit

A7
23.36
Flx|z)=1- ( : )
23.36 + log (2'2144)

Wir entscheiden uns fiir ein drittes Verfahren, ein Credibility-gewichtetes Mittel
zwischen der A-priori-Verteilung Fy(x), so wie sie aufgrund des Risikoprofils und
der Schadengradverteilung ermittelt wurde, und der empirischen Verteilung F), ().

F(z) =2z Fu(z)+ (1 — 2) - Fy(x)

Dabei gilt fiir den Credibility-Faktor

n

z = Z(I) — m

mit

: EL[P(x| @)1= Pz | o))
Var,[P(z | «)]

N{(z)

Fiir eine Herleitung dieser Ergebnisse siche Jewell (1974).
Im Rahmen des statistischen Modells aus Abschnitt 2 erhélt man

e 1 {—‘"ir
[c+log (L'Q)] ¢+2-log (ﬂrl)

Niz) =

el il emen il

c+2 - log (ﬂrl) c+log (—E,Q)

wobei wir fiir ¢ und v die oben ermittelten Werte einsetzen (v = 30, ¢ = 16).
Eine graphische Darstellung der Zeitkonstante N (z) ist im Anhang 3 gegeben.
Man sieht, dass die Funktion N(x) fiir grosse Werte von x eine wachsende



Funktion ihres Argumentes ist, somit ist der Credibility-Faktor fiir grosse Werte
von x <klein>. Fiir solche Werte stiitzt man sich hauptsédchlich auf die A-
priori-Verteilung ab. Es ist zu bemerken, dass im vorhergehenden Verfahren die
Modellannahmen nur einen Einfluss auf den Credibility-Faktor z(x) haben; Fy(x)
und F),(x) sind unabhéngig von den Modellannahmen. Das Verfahren ist somit
robust gegeniiber Abweichungen von den Modellannahmen.

Wir geben eine tabellarische Darstellung der A-posteriori-Verteilung F'(xx) an den
Sprungstellen an (vgl. Tabelle auf nédchster Seite).

Fiir praktische Zwecke nehmen wir an, dass die Verteilungsfunktion zwischen je
2 Sprungstellen konstant ist. Das entspricht nicht genau der Credibility-Formel,
da z(x) und somit F'(x) auch zwischen zwei Sprungstellen variiert; die Annahme
hat aber den Vorteil, dass /'(2) monoton wachsend ist, was sonst im allgemeinen
nicht der Fall ist.

4. Wahl einer analytischen Verteilungsfunktion

Die folgenden zwei Ansitze stammen von G. Benktander (1970). Sie entsprechen
dem Wunsch, ein in bezug auf seine Grossschadentrichtigkeit geordnetes System
von Verteilungsfunktionen zu definieren. Beide Ansiitze liefern als Nebenprodukt
je ein Hilfsmittel zur Beurteilung der Anpassung von analytischen Verteilungen
an empirische Verteilungen. Der erste Ansatz besteht in der Modellierung der
mittleren Exzessschadenfunktion.

m(z)=FE[X —xz| X > x|
Es ist leicht einzusehen, dass die Verteilungsfunktion durch die mittlere Exzess-

schadenfunktion charakterisiert ist. Aus der Definition des mittleren Exzessscha-
dens

(y — ) dF(y)

1— F(x)

89

miz) =

folgt ndmlich

_ f 1+m/ (y)

Flz)=1—ky-e ®0 W



22.5
22.7
23.2
24.1
25.0
25.6
25.9
26.9
28.0
29.2
31.1
34.1
35.0
36.3
37.8
38.8
42.7
48.4
53.5
60.3
62.0
75.1
93.5
105.9
116.6
145.2
180.9
2254
280.9
350.0

F(x) 2(x) Fy(x) Fy(x)
0.0000 0.0047 0.0000 0.0000
0.0008 0.0138 0.0588 0.0000
0.0041 0.0348 0.1176 0.0000
0.0119 0.0675 0.1765 0.0000
0.2982 0.0948 0.1765 0.3110
0.3062 0.1106 0.2353 0.3110
0.3090 0.1179 0.2941 0.3110
0.3169 0.1396 0.3529 0.3110
0.3271 0.1596 0.4118 0.3110
0.3394 0.1778 0.4706 0.3110
0.5200 0.2005 0.5294 0.5176
0.5336 0.2258 0.5882 0.5176
0.5476 0.2316 0.6471 0.5176
0.5626 0.2388 0.7059 0.5176
0.5783 0.2456 0.7647 0.5176
0.6985 0.2495 0.7647 0.6765
0.7148 0.2604 0.8235 0.6765
0.7937 0.2683 0.8235 0.7828
0.8097 0.2705 0.8824 0.7828
0.8676 0.2695 0.8824 0.8621
0.8834 0.2688 0.9412 0.8621
0.9273 0.2602 0.9412 0.9224
0.9562 0.2443 0.9412 0.9610
0.9701 0.2334 1.0000 0.9610
0.9870 0.2245 1.0000 0.9833
0.9953 0.2029 1.0000 0.9941
0.9984 0.1808 1.0000 0.9980
0.9992 0.1592 1.0000 0.9991
0.9997 0.1389 1.0000 0.9996
1.0000 0.1202 1.0000 1.0000
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Die praktische Bedeutung des mittleren Exzessschadens ist offensichtlich: m(x)
ist die erwartete Schadenhthe im unlimitierten Layer tiber der Prioritit x; falls
f(x) die Schadenfrequenz tiber der Prioritit @ bezeichnet, so ist f(x) - m(z) der
erwartete Schadenaufwand im unlimitierten Layer iiber x.

Benktander geht von der Feststellung aus, dass die in der Praxis auftretenden
Exzessschadenfunktionen wachsende Funktionen von z sind und dass ihre Zu-
wachsschnelligkeit eine abnehmende Funktion von z ist. Ein analytisches Modell
muss somit die folgenden Bedingungen erfiillen:

m'(z) >0, m"(x) <0

Die Pareto- und die Exponential-Verteilung sind zwei Grenzfdlle unter den
zuldssigen Verteilungen

m(x) = axr (Pareto-Verteilung)

m(x) =b  (Exponential-Verteilung)

Bei der Modellierung von Grossschadenverteilungen fiir praktische Zwecke ist die
Exponentialverteilung 1.d.R. zu wenig grossschadentrichtig; die Pareto-Verteilung
hingegen ist i.d.R. zu grossschadentridchtig. Zur Modellierung von realistischen
Grossschadenverteilungen schlidgt Benktander eine Schar von Verteilungsfunktio-
nen vor, die zwischen diesen beiden Extremen liegen. Die mittlere Exzessscha-
denfunktion dieser Schar ist von der Form

mx)=— 0<b<1, a>0

Somit sind die obigen Bedingungen erfiillt. Die Pareto- und die Exponential-
Verteilung sind Spezialfille des Modells (b = 1 bzw. b = 0).
Fiir b # 1,2 erhilt man eine Verteilungsfunktion der Form

a m]___b

Flz)=1—k-z7%.¢ 1°0

Diese Verteilungsfunktion ist in der versicherungsmathematischen Literatur unter
dem Namen «Benktander II» bekannt. Asymptotisch verhilt sie sich wie eine
Weibull-Verteilung. Umgekehrt gilt fiir die mittlere Exzessschadenfunktion einer
Weibull-Verteilung

l'b
m(z) ~ — (x — o0)
a
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Fiir einen Beweis siehe J. Beirland und J. Teugels (1992). Somit kann die Weibull-
Verteilung stellvertretend fiir die Benktander II-Verteilung verwendet werden.
Die empirische mittlere Exzessschadenfunktion

1 n
i) = Ty . ;(m?— —z)t

ist ein wertvolles Hilfsmittel bei der Wahl einer analytischen Verteilungsfunktion.
Ist sie konstant, so liegt eine Exponentialverteilung vor; wichst sie linear, so
liegt eine Pareto-Verteilung vor. Verlduft m(x) wie x°, so liegt eine Benktander
[1-Verteilung vor; diese wiederum kann fiir praktische Zwecke durch eine Weibull-
Verteilung ersetzt werden. In Anhang 4 ist m(x) fiir das Beispiel aus Abschnitt
3 graphish dargestellt. Die empirische mittlere Exzessschadenfunktion verlduft
ungefihr wie eine Gerade, dies ist mit der Pareto-Annahme vertriglich.

Der zweite Ansatz, der auch von Benktander (1970) stammt, besteht in der
Modellierung der Sterbeintensitiit des Schadens

f(x)

Ale) = 1 — F(z)

Dabei bezeichnet f(x) die Dichte der Verteilungsfunktion. Die Sterbeintensitit
charakterisiert die Verteilungsfunktion

= JI AMy) dy
F(xr)=1— kge 0

Die Interpretation der Sterbeintensitit ergibt sich aus der folgenden Beziehung:
AMz)dz = P(Xe(z,z +dz) | X > x)

Die Bedeutung der obigen Wahrscheinlichkeit ist offensichtlich, falls X eine
Lebensdauer ist. Falls X eine Schadenhohe ist, ist diese Bedeutung weniger
offensichtlich. Es kann jedoch festgehalten werden: je stirker A(z) abnimmt, desto
grossschadentriichtiger ist die Verteilungsfunktion. Benktander postuliert nun eine
Sterbeintensitit der folgenden Form:

AMz)=k-2P mit pe[—1,0]

Fiir p = 0 erhilt man die Exponential-Verteilung, fiir p = —1 die Pareto-Verteilung
und fiir pe(—1, 0) eine Weibull-Verteilung. Der zweite Ansatz liefert also dasselbe
System von Verteilungen wie der erste.
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Die kumulative Sterbeintensitatsfunktion

€T

Alz) = / Ay) dy

€

kann dhnlich wie die mittlere Exzessschadenfunktion zur Diskriminierung zwi-
schen analytischen Verteilungsfunktionen verwendet werden. Unter der obigen
Annahme {iber die Form von A(x) gilt ndmlich

alog(z)+b p=-—1
Ay = {0
arP™ +b  pe(1,0]

Der Verlauf der empirischen kumulativen Sterbeintensitéitsfunktion
Ap(x) = —log(1 — Fp(x))

ist somit eine Hilfsmittel bei der Bestimmung der zugrundeliegenden Verteilungs-
funktion.
In Anhang 5 ist die Kurve (log(x), A(z)) fir das Beispiel aus Abschnitt 3
graphisch dargestellt. Sie verlduft ungefihr wie eine Gerade, dies bestitigt die
Pareto-Annahme.
In den Fillen, wo die Schadenstatistik umfangreich genug ist, (wie etwa im Bei-
spiel aus Abschnitt 3), konnen die mittlere Exzessschadenfunktion und die kumu-
lative Sterbeintensitit zur Modellidentifikation verwendet werden. In der Regel ist
aber die Anzahl Schiden eines Portefeuilles nicht gross genug, um eine solche
Analyse zu erlauben. Sofern man jedoch die mittlere Exzessschadenfunktion oder
die kumulative Sterbeintensitit einer bestimmten Sparte in einem bestimmten Land
kennt, kann man aufgrund der obigen Uberlegungen die Schadenverteilungsfunk-
tion bestimmen. Zu 16sen bleibt dann das einfachere Problem der Schitzung der
Parameter einer bekannten Verteilungsfunktion.
In gewissen Fillen kann die Modellierung des Schaden verursachenden Prozesses
zur Bestimmung der Schadenverteilungsfunktion beniitzt werden. Ein Beispiel
eines solchen Vorgehens liefert D. Shpilberg (1977). Die Dauer eines Feuers ist
eine Zufallsgrosse T, deren Verteilungsfunktion durch die Sterbeintensitdt A(f)
charakterisiert ist:

t

— [ A(s)ds
PT<t)=1-¢ 0
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Der durch das Feuer verursachte Schaden X ist eine exponentielle Funktion der
Dauer des Feuers

X = ggefo?

Die Verteilungsfunktion von X ergibt sich somit aus der Wahl von A(¢). Sphilberg
betrachtet folgende Spezialfille:

(1) Falls A(t) = «, so ist 7" exponentialverteilt und X paretoverteilt

(a3

_——
PX<z)=1- (m) , T > X

b 4

(2) Falls A(t) = a + ¢, so gilt

€T (AJF%A%lOg(:T]))
P(XST):l'i'(/__) , > Tg

&r

(3)  Falls A(1) = e, so ist T" Weibull-verteilt

(83

| &\ 7%
P X<z)=1- fi_:(a) s @

Man erhilt somit wiederum die Pareto- und die Weibull-Verteilung als Spezialfille.

5. Abschliessende Bemerkung

Die Bestimmung von Grossschadenverteilungen ist in verschiedenen praktischen
Situationen (Tarifierung von Schadenexzedentendeckungen, Ermittlung von PMLs)
von eminenter Bedeutung. In praktischen Anwendungen ist die richtige Interpre-
tation und entsprechende Korrektur der Schiden aus der Vergangenheit der erste
und oft wichtigste Schritt in der Datenanalyse. Da es andererseits in der Natur der
Sache liegt, dass Grossschiden selten eintreten, ist i.d.R. auch nach Korrektur der
Daten das statistische Material dusserst spérlich, und die Bestimmung der Vertei-
lung der Grossschaden kann nicht aufgrund der Daten allein erfolgen, sondern es
muss noch die vorhandene A-priori-Information berticksichtigt werden.

Die Art und Weise, wie diese A-priori-Information ausgewertet wird, hingt vom
leweiligen praktischen Problem ab. In der Feuerversicherung lésst sich aufgrund
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der Verteilung der Versicherungssummen und der Schadengradverteilung die A-
priori-Verteilung der Schédden ermitteln, wie in Abschnitt 3 gezeigt wurde. Ein
dhnliches Verfahren ldsst sich etwa in der allgemeinen Haftpflichtversicherung
anwenden. In der Kraftfahrzeughaftpflichtversicherung ist in den meisten européi-
schen Lindern die liberwiegende Mehrzahl der Deckungssummen unbeschrinkt,
somit sind auch die einzelnen Portefeuilles in einem gegebenen Land austauschbar,
und die individuellen Schadensitze lassen sich mit Hilfe der Credibilty-Theorie
miteinander kombinieren (siehe Biihlmann und Straub [1970]). Das Vorgehen bei
der Wirbelsturmversicherung in den USA wurde unter Abschnitt 1 kurz bespro-
chen. Typischerweise wird die Erdbebenversicherung dhnlich behandelt. Sowohl
die PML-Bestimmung wie auch die Tarifierung von Schadenexzedentendeckun-
gen erfolgt aufgrund der geographischen Verteilung der versicherten Werte, der
A-priori-Kenntnissen tiber die Wiederkehrperiode und Intensitit von Erdbeben an
bestimmten Orten und des bekannten Zusammenhanges zwischen Erdbebeninten-
sitit und Schadengrad. Im Fall von Erdbebenversicherung ist die Schadenerfah-
rung so gut wie wertlos, da wegen des seltenen Eintretens von Erdbeben die letzten
Ereignisse i.d.R. zu weit zuriickliegen und somit fiir Versicherungszwecke nicht
aussagekriiftig sind.

Die Erfahrungen des Tarifierers in einer bestimmten Sparte, in einem bestimmten
Land fliessen bei der Wahl einer Schadenverteilungsfunktion ein; die mittlere
Exzessschadenfunktion und die kumulative Sterbeintensitit bilden dabei wichtige
Hilfsmittel. Auch bei der Schitzung von Verteilungsparametern werden die A-
priori-Kenntnisse des Tarifierers beriicksichtigt. Ein Beispiel wurde in Abschnitt
2 gegeben.

6. Benutzte Software

Die Graphiken von Anhang 3, 4 und 5 wurden mit einem Standard Software Paket
erstellt. Die Graphiken von Anhang | und 2 wurden mit einem spezialisierten
Tarifierungssoftware-Produkt erstellt, das von S. Bernegger entwickelt wurde.

René Schnieper
Winterthur-Versicherungen
Postfach

8401 Winterthur
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Anhang 2
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Anhang 3

Graph von N als Funktion von X
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Zusammenfassung

Anhand von Beispielen aus der Praxis wird gezeigt, dass es bei der Bestimmung von Grossscha-
denverteilungen sehr auf die richtige Interpretation der Schiden aus der Vergangenheit ankommit.
Da Grossschidden selten eintreten, ist das Datenmaterial i.d.R. spirlich. Eine klassische statistische
Analyse fihrt somit zu Schitzungen, die mit grossen Unsicherheiten behaftet sind. Es werden ver-
schiedene Bayes'sche Verfahren prisentiert, die es erlauben, die Daten mit der Information iiber das
Kollektiv zu kombinieren. Dariiber hinaus werden verschiedene Ansitze zur Wahl eines Systems von
Verteilungsfunktionen bei der Modellierung von Grossschiiden priisentiert. Nebst der mittleren Exzess-
schadensfunktion erweist sich die in der Risikotheorie weniger bekannte kumulative Sterbeintensitiit
als gutes Hilfsmittel zur Wahl zwischen verschiedenen Grossschaden-Verteilungsfunktionen.

Summary

Based on practical examples it is shown that a correct interpretation of past claims data is essential to
determine the distribution of large claims. Since large claims do not occur often there is generally not
much data available. A classical statistical analysis therefore, leads to estimates which are unprecise.
Different bayesian procedures are presented, which allow a combination of data with collateral
information. In addition we present different systems of distributions for the modelisation of large
claims. The mean excess claim function and the cumulative death intensity function which is less well
known in risk theory are seen to be helpful tools to choose between different distribution functions for
large claims.

Résumé

Sur la base d” exemples pratiques il est demontré qu’une interprétation correcte des sinistres du passé est
essentielle pour déterminer la distribution des grands sinistres. Les grands sinistres étant peu fréquents, il
n’y a généralement que peu de données disponibles. Pour cette raison une analyse statistique classique
produit des estimations imprécises. Différents procédés bayesiens sont présentés qui permettent de
combiner les données avec les informations sur le collectif. De plus, différents systemes de distributions
pour la modélisation des grands sinistres sont présentés. La fonctiondu sinistre d’excédent espéré ainsi
que la fonction de I'intensité cumulative de décés, moins connue en théorie de risque, apparaissent
comme des instruments, utiles pour le choix d’une fonction de distribution des grands sinistres.
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