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René Schnieper, Winterthur

Praktische Erfahrungen mit Grossschadenverteilungen

1. Einführung

In ihrem Buch «Loss Distributions« analysieren //ogg und Afugmann die von
der American Insurance Association während der Periode 1949-1980 registrierten
Wirbelstürme, die in den USA einen Marktschaden von mindestens $ 1 000000
verursacht haben. Es wurden 38 solche Ereignisse registriert. Die Schäden werden

mit Hilfe des Baukostenindexes in das Jahr 1981 indexiert. Die Autoren erhalten

somit 35 Schäden, die eine Schwelle von $ 5 000000 übersteigen.

Diese Schäden werden statistisch analysiert. Die Autoren passen fünf verschiedene

Verteilungen an: die Pareto-Verteilung, eine verallgemeinerte Pareto-Verteilung,
die Burr-Verteilung, die Weibull- und die Lognormal-Verteilung. Die verallge-
meinerte Pareto- und die Burr-Verteilung sind Verallgemeinerungen der Pareto-

Verteilung. Im vorliegenden Fall werden sie aufgrund eines Likelihood-Ratio-
Testes zugunsten der Pareto-Verteilung verworfen. Die Wahl zwischen der Pareto-,

Weibull- und Lognormal-Verteilung erfolgt aufgrund einer Ad-hoc-Statistik, der

«Limited Expected Value Function«. Die Autoren kommen zum Schluss, dass

die Weibull-Verteilung den besten Fit liefert.

Die Höhe des Einzelschadens über $ 5 000 000 ist somit durch folgende Vertei-

lungsfunktion gegeben:

P(W < :r) 1 - e

wobei die geschätzten Parameter die folgenden sind:

r 0.52

r -= 7.5 • l()-\
Die erwartete Anzahl Schäden pro Jahr über $ 5 000000 ist gleich der beobachteten

Häufigkeit dieser Ereignisse:

35
•»r," Vf 1-09-1
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Im August 1992 hat Hurricane Andrew in Florida und Louisiana einen Marktscha-
den verursacht, der auf ca. $ 15.5 • 10® geschätzt wird (Quelle: Property Claims
Services Division of the American Insurance Services Group, gemäss Business

Insurance, March 1, 1993). Wir können diesen Schaden benutzen, um das Modell
zu testen. Dazu müssen wir den Schadenaufwand bestimmen, den der Wirbelsturm
verursacht hätte, wenn er sich 1981 ereignet hätte. Wir gehen dabei analog vor
wie //ogg und A7zzgmawz.

Zwischen 1981 und 1992 ist der Konsumentenpreisindex in USA von 100 auf 153

gestiegen (Quelle: International Financial Statistics, International Monetary Fund).
In 198LDollar ausgedrückt, beträgt der Andrew-Schaden somit ca $ 10.1 • 10®.

Gemäss Modell ist die erwartete Anzahl derartiger Grossschäden pro Jahr:

nuu"' "rm»-P(-V > 10.1 10® | A" > 5 • 10®)

l • iif'L

8.9 itr®

und die Wiederkehrperiode zwischen zwei solchen Ereignissen beträgt:

Wiederkehrperiode ra (nio.i"')~* — 110 000 Jahre.

Mit anderen Worten: Hurricane Andrew ist gemäss Modell so gut wie unmöglich.
Da das Ereignis aber trotzdem eingetreten ist, muss am Modell gezweifelt werden.

Das Modell von A/ogg und A'/ugmtzzzn ist eine gute Illustration der folgenden zwei

Thesen, die für die praktische Analyse von Schadendaten von grosser Bedeutung
sind.

Sc/zezt/ent/afezz ans t/er Vergangen/reit müssen nc/ü/g interpretiert «nt/ korrigiert
wert/en. Im vorliegenden Fall wurden die alten Schäden zwar indexiert, es wurde
aber nicht berücksichtigt, dass sich die versicherten Werte in den exponierten
Gebieten viel stärker erhöht haben als die Inflation. Diese Unterlassung führt zu
einer groben Unterschätzung des Grossschadenpotentials.
Bei der Bestimmung von Grossschadenverteilungen reicht es in der Regel nicht,
wenn man sich auf die Schadenerfahrung abstützt, da diese naturgemäss sehr

spärlich ist.

/Ve/wt t/er Sc/zezt/ezzez/a/zrang zzzzz.w czzzc/z z//e vor/zazzr/ezze A-pr/orz-/zz/brmflfzon tztzx-

gewertet wert/ezz. Im vorliegenden Fall kann aufgrund der geographischen Vertei-

lung der versicherten Werte, der physikalischen Eigenschaften von Wirbelstürmen,
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des Zusammenhangs zwischen Windgeschwindigkeit und Zerstörungsgrad mittels
Simulationen eine A-priori-Verteilungsfunktion des Schadenaufwandes ermittelt
werden. Dies ist auch die Art und Weise, wie in der Praxis der maximale Schaden

ermittelt wird, mit dem «realistischerweise:» für ein bestimmtes Portefeuille ge-
rechnet werden muss (Probable Maximum Loss). Eine Bestimmung dieser Grösse

aufgrund der Schadenerfahrung allein wäre mit zu grossen Unsicherheiten behaf-

tet. Für die praktische Durchführung einer solchen Analyse siehe z. B. W M. C/ar/c

2. Die Schätzung des Parameters einer Verteilungsfunktion

Anhand eines einfach Beispiels wollen wir nun illustrieren, wie in der Praxis

die Daten mit der A-priori-Information kombiniert werden. Wir betrachten das

Problem der Tarifierung einer Schadenexzedentendeckung; bei einer solchen

Deckung übernimmt der Rückversicherer denjenigen Teil des Schadens, der eine

bestimmte Priorität übersteigt. In einem solchen Fall ist nur der rechte Schwanz

der Verteilungsfunktion von Interesse.

Oft wird angenommen, dass diese Grossschäden paretoverteilt sind:

wobei der Parameter a von Portefeuille zu Portefeuille verschieden ist und

geschätzt werden muss.

Falls x-i, ;x'2, x„, Grossschäden sind (d.h. Schäden, die xp übersteigen), so ist

ein erwartungstreuer Schätzer von a mit minimaler Varianz. Dies sieht man folgen-
dermassen ein: Die Pareto-Verteilung gehört zur Exponentialfamilie,

log (f*) ist eine suffiziente Statistik für a, somit ist jede Funktion von

y]-'=| ein Schätzer des Erwartungswertes dieser Funktion mit minima-
1er Varianz; anderseits gilt JS(a) a. Letzteres ergibt sich aus der Tatsache,

dass log (jp-) exponentialverteilt ist mit Parameter a und somit log (pj)
^ 2

gammaverteilt ist. Daraus ergibt sich auch unmittelbar Var(cf) ^35.

(1986)

77. - 1
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Bei der in der Praxis auftretenden Stichprobengrössen (typischerweise zwischen 2

und 5 Grossschäden) ist die Varianz des Schätzers sehr gross, seine Präzision

unbefriedigend. Anderseits weiss ein Tarifierer aus Erfahrungen mit ähnlichen

Portefeuilles, in welcher Grössenordnung der unbekannte Parameter a zu erwarten
ist. Dies lässt sich am besten formalisieren, indem man den unbekannten Parameter

a als Zufallsgrösse betrachtet und die A-priori-Kenntnisse über a in die A-priori
Verteilungsfunktion fliessen lässt.

Bei einer Pareto-Likelihood erweist es sich als zweckmässig, eine Gamma-A-

priori-Verteilung zu wählen:

/(a) r(o)

Die mit Hilfe des Satzes von Bayes erhaltene A-posteriori-Dichte ist dann:

/(n [ x) A; /(x | a)/(a)

Ä: cv" c
'"K rn r.-» -"'

^G+n)-ieK'^'=''°Km))'"

d.h. die A-posteriori-Dichte ist wiederum eine Gamma-Dichte mit den neuen

Parametern

7' 7 + n

(N. B.: Die Dichten werden durch Ihre Argumente indexiert; insbesondere be-

zeichnen /(et) und /(x) i.d.R. verschiedene Dichten.)

Der beste-im Sinn der mittleren quadratischen Abweichung - Schätzer für a ist
die A-postoriori-Erwartung

/f(o | x)
7 + »

1

c + L,: ^0 '
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Und der mittlere quadratische Fehler des Schätzers ist

Vnr(/t[n j x]) Var(o) — _E[Var(a j x)]

7 + n/ i

» ~"V + Eiog(^)f.l

M/wiensc/zes ßeApz'e/

Die Parameter der A-priori-Verteilung sind

7 11.39 und c 8.44:

dies entspricht der folgenden Wahl der Momente von a

£4a) - 1.35 und Varia) 0.16.
c c

Wir haben eine Realisation des Parameters a simuliert und dabei a 1.40

erhalten.

Danach haben wir der Reihe nach drei Realisationen, von Grossschäden stammend,

aus einer Verteilung mit a 1.40 (und xq 1) simuliert; dabei haben wir erhalten:

Dabei gilt für die Varianzen:

n" o
Var(a) 1.96 1.40"

n — 2

Variola I xl) ~ —-—r 0.04 0.19*
7(7 + »)

Die Genauigkeit des Bayeschen Schätzers ist viel grösser als diejenige des

klassischen Schätzers.

x'i 1.06, a*2 1.16, .x'3 25.03

somit

und

cv It ' + " 1 oi+ (n x) —— 1.21
c + i
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3. Anpassung einer Verteilungsfunktion

Wir betrachten ein Beispiel aus der Feuerversicherung. Es soll eine Schaden-

exzedenten-Deckung tarifiert werden. Zu diesem Zweck werden die Grossschäden

der letzten 10 Jahre geliefert. Es sind dies 17 Schäden, die eine Schwelle von NOK
10 Millionen übersteigen. Die Rohdaten müssen zunächst bereinigt werden: Die

Schadenfrequenz muss um die Erhöhung der Anzahl Risiken korrigiert werden,
die individuellen Schadenhöhen müssen um die Inflation und allenfalls darüber

hinaus um das reelle Wachstum der Zeichnungslimiten korrigiert werden. Die

Ermittlung dieser «as if»-Statistik, d.h. der Schäden, wie sie angefallen wären,

wenn sie im Deckungsjahr eingetreten wären, ist eine sehr komplexe Aufgabe,
die in praktischen Anwendungen mindestens so aufwendig ist wie die eigentliche
statistische Analyse. Wir wollen aber nicht näher darauf eingehen und gehen von
den bereinigten Daten aus. Es sind dies 17 Grossschäden, die eine indexierte
Schwelle von NOK 22,0 Mio übersteigen.

In chronologischer Reihenfolge erhalten wir folgende Schadenstatistik:

Jahr Schadenhöhe

(Mio NOK)
Jahr Schadenhöhe

(Mio NOK)

1983 42.719 1989 25.590
1984 105.860 24.130
1985 23.208
1986 29.172 1990 37.772

22.654 34.126
1987 61.992 27.990

35.000 1991

1988 26.891 1992 53.472
36.269
31.088
25.907

Aufgrund dieser Statistik können wir die empirische Verteilungsfunktion ermit-
teln. Sie ist im Anhang 1 graphisch dargestellt. In einem nächsten Schritt wird
eine ganze Serie von analytischen Verteilungsfunktionen an die empirische Ver-

teilung angepasst, d.h. es werden die Parameter der verschiedenen Verteilungen
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mittels der Maximum-Likelihood-Methode gesehätzt, und die so erhaltenen Ver-

teilungsfunktionen werden mit der empirischen Verteilung verglichen. Im vorlie-
genden Fall haben wir die Pareto-, die verallgemeinerte Pareto-, die Lognormal-,
die Gamma- und die Loggamma-Verteilung angepasst. Sowohl die Pareto- wie die

Loggamma-Verteilung liefern einen guten Fit, wie aus Anhang 1 ersichtlich ist.

Wir haben somit zwei statistische Modelle, die im Bereich zwischen NOK 20 Mio
und 100 Mio eine sehr gute Anpassung an die Daten liefern, aufgrund der Schäden

allein ist es jedoch unmöglich zu beurteilen, wie gut diese statistischen Modelle
für die Haftstrecke zwischen NOK 100 Mio und dem Zeichnungslimit NOK 350

Mio sind. Auch im vorliegenden Fall ist jedoch A-priori-Information vorhanden:
Bei der Tarifierung von Deckungen wie der vorliegenden liefert der Zedent
die Verteilung der Versicherungssummen des Portefeuilles. Die Verteilung des

Schadengrades (d.h. des Quotienten des Schadens durch die Versicherungssumme)
für das Kollektiv aller Industrie-Feuerversicherungsportefeuilles eines gewissen
Marktes ist bekannt und ist in der Form von Franchisen-Rabattkurven gegeben.

Somit lässt sich auch die A-priori-Schadenverteilung ermitteln (a priori in dem

Sinn, dass sie auf der Schadengradverteilung des Kollektivs beruht).

Diese A-priori-Schadenverteilung wurde in Form einer Treppenfunktion ermittelt:

Schadenhöhe Gewicht Schadenhöhe Gewicht

25.0 0.3110 116.6 0.0223
31.1 0.2066 145.2 0.0108
38.8 0.1589 180.9 0.0039
48.4 0.1063 225.4 0.0011

60.3 0.0793 280.9 0.0005
75.1 0.0603 350.0 0.0004
93.5 0.0386

Die Anzahl Punkte ist so gewählt, dass die Approximation an die zugrunde lie-

gende A-priori-Verteilung befriedigend ist; die Punkte sind so gewählt, dass sie im

logarithmischen Massstab äquidistant sind. Die Verteilungsfunktion ist im Anhang
2 graphisch dargestellt. Durch Auswerten der vorhandenen A-priori-Information,
die im Risikoprofil der Gesellschaft und in der Schadengradverteilung enthal-

ten ist, haben wir nun einen Anhaltspunkt über den Verlauf der Schadenver-

teilungsfunktion im Bereich zwischen NOK 100 Mio und NOK 350 Mio, eine
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Information, die wir aus der reinen statistischen Auswertung der Schadendaten

nicht erhalten können, da der grösste «as if»-Schaden NOK 100 Mio nicht
wesentlich übersteigt. Es stellt sich nun die Frage der Kombination zwischen
der A-priori-Information und der Schadenstatistik. Eine sehr einfache Vorgehens-
weise besteht darin, dass man von der an die empirische Verteilung angepassten

Pareto-Verteilung (a 2.219) und von der an die A-priori-Verteilung angepas-
sten Pareto-Verteilung (a 1.825) ausgeht und als A-posteriori-Verteilung eine

Pareto-Verteilung wählt mit einem Parameter, der ein gewichtetes Mittel zwischen
dem A-priori und dem empirischen Parameter ist. Die Wahl der Gewichte ist dabei

willkürlich und bringt zum Ausdruck, wie stark man die A-priori und die empi-
rische Information relativ zueinander gewichtet. Dieses Vorgehen lässt sich auch

auf die angepassten Loggamma-Verteilungen anwenden.

Geht man vom Modell aus, das im Abschnitt 2 präsentiert wurde (Pareto-
Likelihood- und Gamma-A-priori-Verteilung), so drängt sich ein anderes Verfahren
auf. Im Rahmen dieses Modells ist die A-priori-Verteilung

OO

0

und die A-posteriori-Verteilungsfunktion ist

0

wobei

(a-o 22.4)

Als Parameter der Verteilung von a wählen wir

7 30 und c 16.
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Sie entsprechen den folgenden Annahmen über die Momente der Verteilung von a

Fjo] — 1.88 und Var(a) ~ 0.127

Andererseits gilt

/
T ^log(

2=1
V •/()

7.36 (.j:o 22.4, n 17)

47

Die A-posteriori-Verteilung ist somit

F(.r .t) 1 - -
V 23.36 + log (5^4)

Wir entscheiden uns für ein drittes Verfahren, ein Credibility-gewichtetes Mittel
zwischen der A-priori-Verteilung Fq(x), so wie sie aufgrund des Risikoprofils und

der Schadengradverteilung ermittelt wurde, und der empirischen Verteilung F„(.x).

F(x) z • F,,(.r) + (1 - z) • Fo(.r)

Dabei gilt für den Credibility-Faktor

mit

yv(x)

77 -fjV(.r)

F„.[F(;r I rv)(l -/'(:>-•!«))]
Var„[F(x- | o )]

Für eine Herleitung dieser Ergebnisse siehe /ewe// (1974).
Im Rahmen des statistischen Modells aus Abschnitt 2 erhält man

iV(.r)

c 7 c

Lc+log(7)J 0+2 - tog (7)
<

7 c

-c+2-log (2ii) - U+iog(7).l
27

wobei wir für c und 7 die oben ermittelten Werte einsetzen (7 30, c 16).

Eine graphische Darstellung der Zeitkonstante lV(x) ist im Anhang 3 gegeben.

Man sieht, dass die Funktion iV(x) für grosse Werte von .7; eine wachsende
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Funktion ihres Argumentes ist, somit ist der Credibility-Faktor für grosse Werte

von x «klein>. Für solche Werte stützt man sich hauptsächlich auf die A-
priori-Verteilung ab. Es ist zu bemerken, dass im vorhergehenden Verfahren die

Modellannahmen nur einen Einfluss auf den Credibility-Faktor x(x) haben;
und A,j(x) sind unabhängig von den Modellannahmen. Das Verfahren ist somit
robust gegenüber Abweichungen von den Modellannahmen.

Wir geben eine tabellarische Darstellung der A-posteriori-Verteilung F(x) an den

Sprungstellen an (vgl.Tabelle auf nächster Seite).

Für praktische Zwecke nehmen wir an, dass die Verteilungsfunktion zwischen je
2 Sprungstellen konstant ist. Das entspricht nicht genau der Credibility-Formel,
da z(x) und somit F(x) auch zwischen zwei Sprungstellen variiert; die Annahme
hat aber den Vorteil, dass F(x) monoton wachsend ist, was sonst im allgemeinen
nicht der Fall ist.

4. Wahl einer analytischen Verteilungsfunktion

Die folgenden zwei Ansätze stammen von G. ßenktanc/er (1970). Sie entsprechen
dem Wunsch, ein in bezug auf seine Grossschadenträchtigkeit geordnetes System
von Verteilungsfunktionen zu definieren. Beide Ansätze liefern als Nebenprodukt
je ein Hilfsmittel zur Beurteilung der Anpassung von analytischen Verteilungen
an empirische Verteilungen. Der erste Ansatz besteht in der Modellierung der

mittleren Exzessschadenfunktion.

m(x) if[V — x' | W > x].

Es ist leicht einzusehen, dass die Verteilungsfunktion durch die mittlere Exzess-

Schadenfunktion charakterisiert ist. Aus der Definition des mittleren Exzessscha-
dens

OO

/(;/-x)EF(;t/)
£

1 - F(.r)

folgt nämlich

-F(x) 1 — fco • e

j i+ra'M ^
ZQ



X F(x) z(x) FnW FoM

22.5 0.0000 0.0047 0.0000 0.0000

22.7 0.0008 0.0138 0.0588 0.0000

23.2 0.0041 0.0348 0.1176 0.0000

24.1 0.0119 0.0675 0.1765 0.0000

25.0 0.2982 0.0948 0.1765 0.3110

25.6 0.3062 0.1106 0.2353 0.3110

25.9 0.3090 0.1179 0.2941 0.3110

26.9 0.3169 0.1396 0.3529 0.3110

28.0 0.3271 0.1596 0.4118 0.3110

29.2 0.3394 0.1778 0.4706 0.3110

31.1 0.5200 0.2005 0.5294 0.5176

34.1 0.5336 0.2258 0.5882 0.5176

35.0 0.5476 0.2316 0.6471 0.5176

36.3 0.5626 0.2388 0.7059 0.5176

37.8 0.5783 0.2456 0.7647 0.5176

38.8 0.6985 0.2495 0.7647 0.6765

42.7 0.7148 0.2604 0.8235 0.6765

48.4 0.7937 0.2683 0.8235 0.7828

53.5 0.8097 0.2705 0.8824 0.7828

60.3 0.8676 0.2695 0.8824 0.8621

62.0 0.8834 0.2688 0.9412 0.8621

75.1 0.9273 0.2602 0.9412 0.9224

93.5 0.9562 0.2443 0.9412 0.9610

105.9 0.9701 0.2334 1.0000 0.9610

116.6 0.9870 0.2245 1.0000 0.9833

145.2 0.9953 0.2029 1.0000 0.9941

180.9 0.9984 0.1808 1.0000 0.9980

225.4 0.9992 0.1592 1.0000 0.9991

280.9 0.9997 0.1389 1.0000 0.9996

350.0 1.0000 0.1202 1.0000 1.0000
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Die praktische Bedeutung des mittleren Exzessschadens ist offensichtlich: m(x)
ist die erwartete Schadenhöhe im unlimitierten Layer über der Priorität x; falls

/(x) die Schadenfrequenz über der Priorität x bezeichnet, so ist /(x) • m(x) der

erwartete Schadenaufwand im unlimitierten Layer über x.
ßenfeancfer geht von der Feststellung aus, dass die in der Praxis auftretenden

Exzessschadenfunktionen wachsende Funktionen von x sind und dass ihre Zu-

wachsschnelligkeit eine abnehmende Funktion von x ist. Ein analytisches Modell
muss somit die folgenden Bedingungen erfüllen:

m'(x) > 0, m"(x) < 0

Die Pareto- und die Exponential-Verteilung sind zwei Grenzfälle unter den

zulässigen Verteilungen

to(x) ax (Pareto-Verteilung)

m(x) 6 (Exponential-Verteilung)

Bei der Modellierung von Grossschadenverteilungen für praktische Zwecke ist die

Exponentialverteilung i.d.R. zu wenig grossschadenträchtig; die Pareto-Verteilung
hingegen ist i.d.R. zu grossschadenträchtig. Zur Modellierung von realistischen

Grossschadenverteilungen schlägt ßenktourier eine Schar von Verteilungsfunktio-
nen vor, die zwischen diesen beiden Extremen liegen. Die mittlere Exzessscha-

denfunktion dieser Schar ist von der Form

x''
m(x) — 0 < 6 < 1, o, > 0

a

Somit sind die obigen Bedingungen erfüllt. Die Pareto- und die Exponential-
Verteilung sind Spezialfälle des Modells (6=1 bzw. 6 0).
Für 6 yf 1, 2 erhält man eine Verteilungsfunktion der Form

F(x) 1 - ifc-x-»

Diese Verteilungsfunktion ist in der versicherungsmathematischen Literatur unter
dem Namen «Benktander II» bekannt. Asymptotisch verhält sie sich wie eine

Weibull-Verteilung. Umgekehrt gilt für die mittlere Exzessschadenfunktion einer

Weibull-Verteilung

,.'j
m(x) ~ — (x — oo)
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Für einen Beweis siehe /. ße/r/ant/ und i. 7eMg<?/s (1992). Somit kann die Weibull-
Verteilung stellvertretend für die Benktander II-Verteilung verwendet werden.
Die empirische mittlere Exzessschadenfunktion

ist ein wertvolles Hilfsmittel bei der Wahl einer analytischen Verteilungsfunktion.
Ist sie konstant, so liegt eine Exponentialverteilung vor; wächst sie linear, so

liegt eine Pareto-Verteilung vor. Verläuft m(.x) wie ,x^, so liegt eine Benktander

Ii-Verteilung vor; diese wiederum kann für praktische Zwecke durch eine Weibull-
Verteilung ersetzt werden. In Anhang 4 ist r?«(x) für das Beispiel aus Abschnitt
3 graphish dargestellt. Die empirische mittlere Exzessschadenfunktion verläuft
ungefähr wie eine Gerade, dies ist mit der Pareto-Annahme verträglich.
Der zweite Ansatz, der auch von 5e«ktanc/er (1970) stammt, besteht in der

Modellierung der Sterbeintensität des Schadens

Dabei bezeichnet /(.r) die Dichte der Verteilungsfunktion. Die Sterbeintensität

charakterisiert die Verteilungsfunktion

fC(.,:) 1 - A'(,C ''0

Die Interpretation der Sterbeintensität ergibt sich aus der folgenden Beziehung:

A(,c)(7.r P(A'r(.r../: + r/.r) | A' > .;•)

Die Bedeutung der obigen Wahrscheinlichkeit ist offensichtlich, falls AI eine

Lebensdauer ist. Falls AT eine Schadenhöhe ist, ist diese Bedeutung weniger
offensichtlich. Es kann jedoch festgehalten werden: je stärker A(x) abnimmt, desto

grossschadenträchtiger ist die Verteilungsfunktion. postuliert nun eine

Sterbeintensität der folgenden Form:

A(:r) /,' • .s'' mit pe[— 1, 0]

Für j) 0 erhält man die Exponential-Verteilung, für p —1 die Pareto-Verteilung
und für pe(-l, 0) eine Weibull-Verteilung. Der zweite Ansatz liefert also dasselbe

System von Verteilungen wie der erste.

/ -M .</)<'.'/
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Die kumulative Sterbeintensitätsfunktion

X'

A(.t) y A(//) r/y

xo

kann ähnlich wie die mittlere Exzessschadenfunktion zur Diskriminierung zwi-
sehen analytischen Verteilungsfunktionen verwendet werden. Unter der obigen
Annahme über die Form von A(.x') gilt nämlich

Julog(.r)+ /; F — 1

»./•''+* +6 y G (1,0]

Der Verlauf der empirischen kumulativen Sterbeintensitätsfunktion

A„ 0) - log( l - F„(:r))

ist somit eine Hilfsmittel bei der Bestimmung der zugrundeliegenden Verteilungs-
funktion.
In Anhang 5 ist die Kurve (log(.x), A(x)) für das Beispiel aus Abschnitt 3

graphisch dargestellt. Sie verläuft ungefähr wie eine Gerade, dies bestätigt die

Pareto-Annahme.

In den Fällen, wo die Schadenstatistik umfangreich genug ist, (wie etwa im Bei-

spiel aus Abschnitt 3), können die mittlere Exzessschadenfunktion und die kumu-
lative Sterbeintensität zur Modellidentifikation verwendet werden. In der Regel ist

aber die Anzahl Schäden eines Portefeuilles nicht gross genug, um eine solche

Analyse zu erlauben. Sofern man jedoch die mittlere Exzessschadenfunktion oder

die kumulative Sterbeintensität einer bestimmten Sparte in einem bestimmten Land

kennt, kann man aufgrund der obigen Überlegungen die Schadenverteilungsfunk-
tion bestimmen. Zu lösen bleibt dann das einfachere Problem der Schätzung der

Parameter einer bekannten Verteilungsfunktion.
In gewissen Fällen kann die Modellierung des Schaden verursachenden Prozesses

zur Bestimmung der Schadenverteilungsfunktion benützt werden. Ein Beispiel
eines solchen Vorgehens liefert ZA S/zy/tt>erg (1977). Die Dauer eines Feuers ist

eine Zufallsgrösse T, deren Verteilungsfunktion durch die Sterbeintensität A(f)
charakterisiert ist:

t
— J A(s) ds

P(T < /;) 1 - e »
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Der durch das Feuer verursachte Schaden X ist eine exponentielle Funktion der
Dauer des Feuers

X" x„o

Die Verteilungsfunktion von X ergibt sich somit aus der Wahl von A(£). S/VV/bcrg
betrachtet folgende Spezialfälle:

(1) Falls A(£) a, so ist T exponentialverteilt und X paretoverteilt

P(X < .x) 1 — — x > .x'o
'0
X

Ä;

(2) Falls A(/) cv + X, so gilt

/.K(X + (4))
P(A' < .r) 1 + ~ J

(3) Falls A(/) r"', so ist 7' Weibull-verteilt

a

P(X < x) 1 — 6 " ^'0 / x > X()

Man erhält somit wiederum die Pareto- und die Weibull-Verteilung als Spezialfälle.

5. Abschliessende Bemerkung

Die Bestimmung von Grossschadenverteilungen ist in verschiedenen praktischen
Situationen (Tarifierung von Schadenexzedentendeckungen, Ermittlung von PMLs)
von eminenter Bedeutung. In praktischen Anwendungen ist die richtige Interpre-
tation und entsprechende Korrektur der Schäden aus der Vergangenheit der erste

und oft wichtigste Schritt in der Datenanalyse. Da es andererseits in der Natur der

Sache liegt, dass Grossschäden selten eintreten, ist i.d.R. auch nach Korrektur der

Daten das statistische Material äusserst spärlich, und die Bestimmung der Vertei-

lung der Grossschäden kann nicht aufgrund der Daten allein erfolgen, sondern es

muss noch die vorhandene A-priori-Information berücksichtigt werden.

Die Art und Weise, wie diese A-priori-Information ausgewertet wird, hängt vom
jeweiligen praktischen Problem ab. In der Feuerversicherung lässt sich aufgrund
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der Verteilung der Versicherungssummen und der Schadengradverteilung die A-
priori-Verteilung der Schäden ermitteln, wie in Abschnitt 3 gezeigt wurde. Ein
ähnliches Verfahren lässt sich etwa in der allgemeinen Haftpflichtversicherung
anwenden. In der Kraftfahrzeughaftpflichtversicherung ist in den meisten europäi-
sehen Ländern die überwiegende Mehrzahl der Deckungssummen unbeschränkt,
somit sind auch die einzelnen Portefeuilles in einem gegebenen Land austauschbar,
und die individuellen Schadensätze lassen sich mit Hilfe der Credibilty-Theorie
miteinander kombinieren (siehe ßw/z/man« und Strazzh [1970]). Das Vorgehen bei

der Wirbeisturmversicherung in den USA wurde unter Abschnitt 1 kurz bespro-
chen. Typischerweise wird die Erdbebenversicherung ähnlich behandelt. Sowohl
die PML-Bestimmung wie auch die Tarifierung von Schadenexzedentendeckun-

gen erfolgt aufgrund der geographischen Verteilung der versicherten Werte, der

A-priori-Kenntnissen über die Wiederkehrperiode und Intensität von Erdbeben an

bestimmten Orten und des bekannten Zusammenhanges zwischen Erdbebeninten-
sität und Schadengrad. Im Fall von Erdbebenversicherung ist die Schadenerfah-

rung so gut wie wertlos, da wegen des seltenen Eintretens von Erdbeben die letzten

Ereignisse i.d.R. zu weit zurückliegen und somit für Versicherungszwecke nicht

aussagekräftig sind.

Die Erfahrungen des Tarifierers in einer bestimmten Sparte, in einem bestimmten
Land fliessen bei der Wahl einer Schadenverteilungsfunktion ein; die mittlere
Exzessschadenfunktion und die kumulative Sterbeintensität bilden dabei wichtige
Hilfsmittel. Auch bei der Schätzung von Verteilungsparametern werden die A-
priori-Kenntnisse des Tarifierers berücksichtigt. Ein Beispiel wurde in Abschnitt
2 gegeben.

6. Benutzte Software

Die Graphiken von Anhang 3, 4 und 5 wurden mit einem Standard Software Paket

erstellt. Die Graphiken von Anhang 1 und 2 wurden mit einem spezialisierten
Tarifierungssoftware-Produkt erstellt, das von 5. ßeraegger entwickelt wurde.

René Schnieper

Winterthur-Versicherungen
Postfach
8401 Winterthur
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Anhang 1

Schaden X (Mio)
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Anhang 2

Schaden L (Mio)
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Zusammenfassung

Anhand von Beispielen aus der Praxis wird gezeigt, dass es bei der Bestimmung von Grossscha-

denverteilungen sehr auf die richtige Interpretation der Schäden aus der Vergangenheit ankommt.
Da Grossschäden selten eintreten, ist das Datenmaterial i.d.R. spärlich. Eine klassische statistische

Analyse führt somit zu Schätzungen, die mit grossen Unsicherheiten behaftet sind. Es werden ver-
schiedene Bayes'sche Verfahren präsentiert, die es erlauben, die Daten mit der Information über das

Kollektiv zu kombinieren. Darüber hinaus werden verschiedene Ansätze zur Wahl eines Systems von

Verteilungsfunktionen bei der Modellierung von Grossschäden präsentiert. Nebst der mittleren Exzess-

Schadensfunktion erweist sich die in der Risikotheorie weniger bekannte kumulative Sterbeintensität
als gutes Hilfsmittel zur Wahl zwischen verschiedenen Grossschaden-Verteilungsfunktionen.

Summary

Based on practical examples it is shown that a correct interpretation of past claims data is essential to

determine the distribution of large claims. Since large claims do not occur often there is generally not

much data available. A classical statistical analysis therefore, leads to estimates which are unprecise.

Different bayesian procedures are presented, which allow a combination of data with collateral
information. In addition we present different systems of distributions for the modélisation of large

claims. The mean excess claim function and the cumulative death intensity function which is less well

known in risk theory are seen to be helpful tools to choose between different distribution functions for

large claims.

Résumé

Sur la base d' exemples pratiques il est démontré qu'une interprétation correcte des sinistres du passé est

essentielle pour déterminer la distribution des grands sinistres. Les grands sinistres étant peu fréquents, il

n'y a généralement que peu de données disponibles. Pour cette raison une analyse statistique classique

produit des estimations imprécises. Différents procédés bayesiens sont présentés qui permettent de

combiner les données avec les informations sur le collectif. De plus, différents systèmes de distributions

pour la modélisation des grands sinistres sont présentés. La fonction du sinistre d'excédent espéré ainsi

que la fonction de l'intensité cumulative de décès, moins connue en théorie de risque, apparaissent

comme des instruments, utiles pour le choix d'une fonction de distribution des grands sinistres.




	Praktische Erfahrungen mit Grossschadenverteilungen

