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REINHARD MICHEL, Wuppertal
Ein individuell-kollektives Modell fiir Schadenzahl-Verteilungen

1 Das Modell der Schadenzahl-Verteilung

Betrachtet werde das kollektive Modell der Risikotheorie, wobei der Gesamt-
schaden des Kollektivs in einer Periode die Verteilung

P=> R{k}Q*"
k=0

besitzt. Hierbei ist R mit R{0, 1,2, ...} = 1 die sogenannte Schadenzahl-
Verteilung und @@ mit Q(0,00) = 1 die Einzelschaden-Verteilung. Die in der
Praxis am hdufigsten benutzten Schadenzahl-Verteilungen (sieche Straub [5], Seite
18) sind dabei die Binomial-, die Poisson-, die negative Binomial- und die
logarithmische Verteilung, deren wesentlicher Vorteil in der allgemein bekannten
Rekursionsformel liegt, die dann das Panjersche Rekursionsverfahren fiir die
Verteilung P liefert.

Ein Nachteil des wichtigsten Modells der Poisson-Verteilung ist die Tatsache, dass
hier Varianz und Mittelwert identisch sind, was sicher oft empirischen Beobach-
tungen widerspricht. Ferner steht hier auch nur ein freier Parameter, ndmlich der
Mittelwert, zur Anpassung zur Verfiigung. Das zweitwichtigste Modell, ndmlich
die negative Binomialverteilung besitzt zwei Parameter und es gilt, dass die Var-
ianz grosser ist als der Mittelwert. (Uber die Ammeter-Transformation kann man
die Gesamtschaden-Verteilung hierbei auf das Poisson-Modell umrechnen, so dass
wichtige Ergebnisse aus der Theorie der Ruinwahrscheinlichkeiten angewandt wer-
den konnen).

Unser im folgenden betrachtetes Modell ist reichhaltiger als die oben erwihnten,
da es filir die Anpassung an empirische Daten drei freie Parameter besitzt, es
erbffnet ferner eine Panjer-dhnliche Rekursion fiir die Gesamtschaden-Verteilung
und lédsst sich schliesslich auf das Poisson-Modell umtransformieren. Ein auch
fiir die Praxis unschitzbarer Vorteil ist weiterhin, dass wir unbegrenzt teilbare
Verteilungen betrachten.
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Gegeben sei dabei eine generelle, eventuell von der Versicherungssparte abhingige,
Schadenzahl-Verteilung 2. Betrachtet werden n Risiken mit individueller Scha-
denzahl-Verteilung

R;=(1—p;)60+pR, t=12,...,n,

wobei p; € (0,1),7=1,2,...,n, und & die in {0} konzentrierte Verteilung ist.
Die Verteilung der Schadenzahl des Kollektivs

ist dann die Faltung der R;, ¢ = 1, ..., n, die sehr gut (siche das Ergebnis
bei Michel [3]) durch die zusammengesetzte Poisson-Verteilung P(\, R) mit
A =p| + -+ p, approximiert werden kann. Hierbei ist

o ~,\§ : xk
k=0

Mit der Supremums-Metrik d folgt fiir die Giite der Approximation der Gesamt-
schaden-Verteilung

d (Z(Rl % oo e ok Rﬂ’){k;}@*k:’ Z P()\, R){]{}Q*k)
k=0

k=0

<d(Ry*---% Ry, P(A\,R)) < pr/sz
i=1 i=1

In Absatz 3 wird dabei R als Poisson-Verteilung s-ter Stufe, s = 0, 1, 2, ...,
angesetzt (bezliglich der Namensgebung siehe Lemma 2). Ist diese (Js, so ergibt
P(A\ Qs) fir s = 0,1,2 die Neymanschen <ansteckenden> Verteilungen vom
Typ A, B und C (siehe [4]), die Verallgemeinerungen fiir beliebige s wurden in
[1] betrachtet.
Beziiglich der Ergebnisse des ersten Teils der vorliegenden Arbeit sei auch auf
die Resultate von Thyrion ([6] und [7]) verwiesen, auf die mich ein Referent
freundlicherweise aufmerksam gemacht hat.

2 Eine Transformation der Gesamtschaden-Verteilung

Gemiss obigem Ansatz betrachten wir also im folgenden die Gesamtschaden-
Verteilung

P = i P(A, R){k}Q™,

k=0
wobei A >0, R{0, 1,2, ...} =1 und Q(0,00) = 1.
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Als erstes Ergebnis haben wir dabei, dass eine Ammeter-Transformation moglich
ist, die P in eine zusammengesetzte Poisson-Verteilung tberfiihrt.

Satz 1: Es gilt
3" P R){K}Q™ = P(A, D),
k=0

wobei
D= Y%_ R{Hg?
k=0

Bei der Interpretation dieses Resultats ist zu beachten, dass die Intensitit A von
P(A, D) die Summe der gegebenen individuellen p;, ¢ = 1, ..., n, ist, wihrend
D zusammengesetzt wird aus der generellen Schadenzahl-Verteilung R und der
Einzelschaden-Verteilung ().

Beweis: Es sei @p(t) die charakteristische Funktion der Verteilung P und, fiir ¢
mit Q{0, 1, 2, ...} = 1, m(t) die erzeugende Funktion des Wahrscheinlichkeits-
masses ().

Ist

>0

P =Y P\ R){kQ™

k=0

so haben wir

ep(t) =mpo r)(eq(t))
und, mit der Poisson-Verteilung P,

mp(,\.R)(S) = mP,\(mR(S))-
Weiterhin gilt

wp(\p)(t) =mp, (pp(t))

und

¢p(t) = mpr(pq(t)).
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Bemerkung: Wihlt man in unserem Modell die generelle Schadenzahl-Verteilung
R als eine der anfangs erwihnten Standardverteilungen fiir Schadenzahlen, so ldsst
sich aufgrund von Satz 1 die Gesamtschaden-Verteilung

P=Y POLR)KIQ™
k=0

bei diskretem () durch zweifache Anwendung des Panjerschen Verfahrens rekursiv
berechnen.

Fiir & = 61 ist P(A, R) gleich der Poisson-Verteilung F. Somit kann unser Ansatz
als Verallgemeinerung der Poissonschen Summenverteilung betrachtet werden.
Ferner ist zu beachten, dass die Varianz von P(\, R) stets grosser oder gleich
dem Mittelwert ist, da

Z ER{k} < Z k?R{k}.

k=1

3 Die Poisson-Verteilung s-ter Stufe

Fiir b >0 und s =0, 1, 2, ... definieren wir

Qs{k‘} - QS‘ b{k}

+ 3 : s!
—b’” L e T k=01, 2, ....
G e 2

7=()

Hierbei ist als erstes nachzuweisen, dass ein Wahrscheinlichkeitsmass auf
{0, 1, 2, ...} festgelegt wird, d.h. dass gilt

e@]
Q{k} >0, k=0,1,2 ... und ZQS{A;}:L

k=0
Dies ergibt sich induktiv aus
Lemma 1: Fiirs=0,1,2,...und k=0, 1, 2, ... gilt

b

1 Qurrab) = 5+ 1) [ 2 Qualb} do

0
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Bewels: Wir haben

= (k+i f e i (s+1)!
b3+1 3 k) = - Lbk+&+z+l )
Qsrofk} ;( i >( ) (k+s+i+1)!

Differenzieren nach b ergibt

. I_OOkJri_q;k:siM
(bJrQs—l-l‘b{k}) —; 7 )( 1)b++(k+s+i)!

= (s + Db Quu{k}.
Daraus folgt die Behauptung.

Zum Nachweis, dass (), ein Wahrscheinlichkeitsmass ist, beachte man, dass

00 k
%M=W2Ufmwfl.—ﬂ%,hﬂwa

j 1
i=0

dh: Qudk} 2 0,8,k =0, 1, 2, .., und weiter

HHZ@HMw~H1/ Z@dﬂm

k=0
b
(s+1) /xsda::bsﬂ,
0
falls
Y Quslk}=1, z>0,
k=0

als Induktionsvoraussetzung angenommen ist.
Als weitere Eigenschaft der Verteilung )5 folgt aus Lemma 1

Lemma 2: (1) Es gilt (Differentiation nach b)

bt

E, ]‘620,1,2

Qb)) = ¢
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(ii) Wir haben Qo = P, (Poisson-Verteilung mit Mittelwert b) und fiir s € N
Qulk} = 2Qurlhyo0), k=0,1,2,....
)

Insbesondere folgt

Ql{k} =

o~ =
SN
—
|
o
|
o
-
|
Nl o
e
I
\'O
=
Do

und

k=015, ...

Q2{k} = '52'2 {b Z (1 e*bifb,j—>

Beweis: (1) Wegen (Qp = P, ist die Aussage fiir s = 0 richtig. Ferner ergibt sich
mit Lemma |

1 " S
G Qura{kDEY
1

= 0 Qe tkD 1Y = 7R )

(11) Wir haben mit Lemma 1

b b
Kk
le{A} - /QOI{}D} dIfE_J% dr
0 '

0
k

=1- e“hzg = Py(k,00) = Qo(k, 00).

=0

Setzt man weiter

Quo(k)} = 2Qs1olk,00), >0, seN,
&
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voraus, so folgt mit Lemma 1
b
[)'q+1Q5+1{k} = (S -+ 1) /ISQQT{]{,} dx
0

b
= (s + l)lsfafs_le_l,l.(k,oo)d:c
0

- b
=(s+1) Z 3/.7:'5”1@.5_1.%{'13} da
i=k+1 [
=(s+1) > b°Q{i} = (s + 1)Qs(k, ).
i=k+1

Bemerkung: Mit Teil (i) dieses Lemmas ergibt sich die Rekursionsformel
s
Qs{k} = Qs{k — 1} — EQs—l{k‘}, k,s €N,

wobei Qg = Pp.
Zur Berechnung der Momente von ()5 — insbesondere interessieren natiirlich der
Mittelwert 1(Qs) und die Varianz V(@) — geben wir die erzeugende Funktion

ms(t) von Qg an.

Lemma 3: Fiir die erzeugende Funktion

sl ) = Z Qs{k}t;c
k=0

von Qs gilt

e o] bi g
ms(t) = sy ) (t—1)%, teR.
=0
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Beweis: Wir haben

=323 ()0
- S'g 7 fs)! ; (ii)( S
= Slg t fs)'(t — 1)

und

V(Qs) = mg(l) + pw(Qs) — [N(QS)]Q
b sb
51 1+(3+1)(3+2) '

Insbesondere haben wir

V(Qs) > u(Qs) und bh_{go M(Qs) 1
sowie weiter
bA
HP(A, Qs)) = Au(@s) = - 3

und

bA 2b
VPR, Q) = A /$2Qs(d$) T s+1 (1 Ty 2) '

Lemma 4: Mit wachsendem s wird (s immer <ungeféhrlicher>, d.h. es gilt

QS['!’:,OO) S QS“-]H: OO)) t > 01 LS N.
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Beweis: Mit Lemma 3 ergibt sich fiir s € N

s S — bi t+s—1
[(t = 1)°ms(2)] —b!;m(t“1)+

= s(t — 1)°"tms_a (t),

d.h. es folgt
o ) = gms(t) — ms—1(t)
LA 11 '
Also fiir Jt| < 1,
> (k+ 1)Qu{k + 1}tF = sZ (Qs{k} — Qs r{k}) " Zt”
k=0 k=0 n=0
co k
=533 (@i} - Qi ¢
k=0 i=0
d.h.
Qs{0,... .k} —Qs_1{0,... .k} = Ef—lc;g{ml} >0, k=0, 1, 2,

Als Abschluss dieses Absatzes soll noch das Verhalten von (s fiir grosse s
diskutiert werden. Wie man an dem Anwendungsbeispiel in Abschnitt 5 sieht,
ist dieses Problem fiir praktische Anwendungen von Bedeutung.

Lemma 5: Es gilt fiir b > 0

(1) lim d(QS,[)) 60) =0

8§—C0

(11) Sliiglclc d(Qs,sb; Q) - 01
wobei Q) die geometrische Verteilung mit dem Parameter p = b(1+0)~" ist. Ferner

ist d die Supremums-Metrik.

Fiir festes b und grosse s konzentriert sich also die Masse von (), immer stirker
in {0}. Konvergenz gegen eine nicht-ausgeartete Verteilung, in diesem Fall die
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geometrische Verteilung, ergibt sich, wenn der Parameter b mit der Ordnung s
gross wird. In diesem Fall haben wir auch noch

Jim j(Qu) = lim —b=b= % = 1(Q)
und
2
i )y ) = lim ——b ; 1]
lim V(@ ) L GIDGTY) )+
p
=b(l+b) = =V(Q).
(1+40) 1_p? (Q)

Beweis: (i) Ist ) ein Wahrscheinlichkeitsmass mit Q{0, 1, 2, ...} = 1, so gilt
d(Q,00) < Q).

Fiir 0 € A folgt 0 ¢ A° und
|Q(A) — do(A)] =1 - Q(A) = Q(A°).

Im anderen Fall ergibt sich
|Q(A) — bo(A)] = Q(A).

Ferner haben wir fiir B mit 0 ¢ B

In unserem Fall gilt

b

d(Qsb,00) < 1(Qsp) = —

(ii) Es sei Ps = Qs < gesetzt. Als erstes zeigen wir

1 b \"
im Pkt = — (—2) =Q{k}, k=0,1,2, ...
Jim, P8 = 71 (15) =) '
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Es seien mg(t) und m(t) die erzeugenden Funktionen von P, bzw. (). Dann gilt

oo e
Tglh) = Z ('i!:—bs) (t—1) Z a;(s)b'(t — 1)

1=0 1=0
wobel
i j = |
ai(s) = (1+—)  i=0,1,2
3=0 §
Wegen
O<ai(s) <1, i=0,1,2,..., seN
und

lim a;(s) =1, i=0,1,2,...

SO0,

ergibt der Konvergenzsatz von Lebesgue, dass fiir [t — 1] < (—l)
sli»n;o ms(t) = ;::Ob (t — 1) =m(t).
Genauso erhalten wir fiir £ € N und |t — 1] < %

lim m™ (1) (s)b (t — 1)7F = mF)(¢).

S—00 S—*DC

Im Fall b > 1 liegt dabei 0 nicht im Geltungsbereich dieser Konvergenzaussagen,
d.h. wir konnen nicht direkt auf die Konvergenz der Koeffizienten P,{k} gegen
Q{k}, k = 0,1,2, ... schliessen. Da 1 stets die Einschrinkung an ¢ erfiillt,
miissen wir den Umweg iiber die Momente machen. Sind

pxlg) = fﬂ:/"’Ps(daz) und i = /:L'k’Q(er‘), E=019, ...,

so ergibt obige Konvergenzaussage (iiber einen induktiven Beweis)

T il m] == s =l 1 25 os e

§— 00
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d.h. es gilt

S—r 00

1m1/mﬂaﬁmp5/Mﬂme

fiir jedes Polynom p(x) und — iiber den Satz von Weierstrass —

tm [ f@Pdn) = [ 1@)QUa

fiir stetige Funktionen mit kompaktem Triger.

Bei festem k& € {0, 1, 2, ...} sei nun fi(x) die Dreiecksfunktion auf [k—é k+ :5],
die in den Endpunkten des Intervalls den Wert () annimmt und ihre Spitze im Punkt
(k, 1) besitzt. Dann haben wir

]ﬁ ()= Bk} ond /ﬁ Q(dz) = Q{k}

und unsere letzte Konvergenzaussage ergibt
9131010 Pokl=tHk}, b=01;2 s
Um die gleichmissige Konvergenz nachzuweisen, setzen wir
A={k: Pk} < @Q{k}} und Ax=AnN{0,1,..., K =1}

Damit folgt fiir K’ € N

SRR - QR = 2 Y (@QUA} - Puk))
k=0

ke A

<2 3 (@K - P 123 Q1K)

ke A K k=K
K—1 oo

<2 PR} - Q{k} +2 > Q{k}.
k=0 k=K

Bei festem /X konvergiert die erste Summe fiir s — oo gegen Null, wihrend die
zweite fir K — oo gegen Null konvergiert.
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Bemerkung: Wie der Beweis von Lemma 5 (ii) zeigt, darf b = b, so von s
abhéngen, dass

lim by =0 >0

S§— 00

gilt. Siehe dazu die Gegebenheiten des Beispiels in Absatz 5.

Wegen

PO, Qu)(4) — P, Q)(A |<P*AZ, anl(4) = QA

7)\ Z —zl{d Qs sbs (‘2) - /\d(cgs 58 Q)

sowie

d(P(’\ea(u))P(/\aQ)) S d(P)\wP/\) S P\b - )\‘

haben wir
Korrolar: Mit der geometrischen Verteilung () = Qp aus Lemma 5 gilt fiir
bs, A\¢ > 0 mit lim by =b >0 und lim Ay = A >0
&= 0O &0
1111'11 d(P(/\s,Qs.sb,,-):P()\-,Qb)) =

s+2 0'2~wp,

(Bei den Anwendungen in Absatz 5 ist dabei zu setzen by = = 55 und
_ s+1 2,{12

)\S T os+2 UZ—}L)

4 Die Rekursionsformel fiir die Gesamtschaden-Verteilung

In diesem Abschnitt wollen wir eine Panjer-ihnliche Rekursionsformel fiir die
in Abschnitt 2 gegebene Gesamtschaden-Verteilung P herleiten, falls R = Q.
Aufgrund von Satz 1 lduft dies darauf hinaus, eine fiir die dort definierte Verteilung
D anzugeben.

Satz 2: Es sei Qs, s € NU {0}, die Poisson-Verteilung s-ter Stufe. Ferner gelte
Q{1,2,3,...} = 1. Fiir die Verteilung

=Y Q{rQ™
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folgt dann
D,{0} = g (1 — Dy_1{0}) mit Dp{0} =¢~"

und fiir s e N, k = 1,2,3, ..., haben wir
k—1 &

Delk} = Dg{i k—i} — =Dy 1{k}.

(4 = X2 DafidQlh =} = §Dea (1

Fiir die Rekursion ist dabei zu beachten, dass
Dy = P(b,Q).
Somit konnen die Anfangswerte Do{k}, &k = 1,2,3,... mit dem Panjerschen

Verfahren ebenfalls rekursiv berechnet werden.

Beweis: Ist m4(t) die erzeugende Funktion von (s und m(t) die erzeugende
Funktion von @, so ist ms(m(t)) die erzeugende Funktion von D,. Mit Lemma

2 (i1) haben wir fiir s € N

ma(t) = D Qufk}F = 237 Qoa(k,00)t*
k=0 k=0

[ele} oo [e’e] i—1
S d S .
=32 % Y Qea{id =3 > Qeafi} ) ¢
k=0 i=k+1 =1 k=0
s 1 —mg_1(t)
= —l t 1.

Damit folgt fiir s € N, [¢| < 1

(1= m(B)ma(m(t)) = 3 (1~ mas(m(?)).
Dies ergibt

(f0 = @)% Dy = 3(60 = Do)

bzw.

D; = Q# Dy +7(80 = Dsma).
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Wegen (Q{0} = 0 folgt daraus die gewiinschte Rekursionsformel.

5 Ein Beispiel

Gegeben seien folgende Daten aus der Unfallstatistik (sieche David [2], Seite 68):
Anzahl der Unfille, die n = 647 Arbeiterinnen in einem bestimmten Zeitraum
hatten

i|012345
447 132 42 21 3 2

g

(n; Arbeiterinnen hatten in der Zeit = Unfille, ¢ = 0,...,5).

Fir s = 0 und s = 1 wollen wir die empirische Verteilung Q{i} = i,

i =0,...,5,an die Verteilung P(\, Q)s) anpassen. Dazu wihlen wir die Parametér
A und b (dieser tritt in @ auf) so, dass Mittelwert und Varianz von Py = P(\, Q)

mit denen von () iibereinstimmen. Wir haben dabei

Ab
pu(Fs) = Ap(Qs) = g
und
4 Ab 2b
_ 2 _
Iqa)Aa/xQAM) 5+1@+3+2)
Mit

p=p(Q) und o®=V(Q)
erhalten wir durch Gleichsetzen

G2 &% —ii ,
ETE g a und A= (s-+ ,l)ﬁ.
2 1 b

b=

Als Werte ergeben sich

=

)
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und

5

o2 2 2 = 0,6908.
()
=1

Fiir s = 0 folgt A = 0,9593 und b = 0, 4850.

Wegen
SR LW
QD{ } =€ ﬁ = E -20{ - }
haben wir
k i 0 1 2 3 4 5

Qo{k} ’ 0,61570 0,29861 0,07241 0,001171 0,00142 0,00014
Fir s =1 gilt A = 1,2790 und b = 0, 7274. Mit

1 b b b pOF !
Ql{k}:g (1*6_ Zﬁ) :Ql{k_l}_eﬂT

=0
ergibt sich
k ] 0 I 2 3 4 5

Q1{k} ‘ 0,71053  0,22736 0,05164 0,00903 0,00128 0,00015
Weiter gilt

P;{0} = exp[—A(1 — Q4{0})]
und

k+1
Plk+1} = “Aﬁ”i"\i“I > iQ{i}P{k+1-4}, k=0,1,2,....

i=1
Damit erhalten wir fiir die theoretischen Héiufigkeiten

1 0 1 2 3 -+ 5

n; 447 132 42 21 3 2

nPy{i} 4475 1282 494 157 45 1,2

nP{i} 446.8 1299 484 156 4.6 1.3
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Die Anpassung ist offenbar recht gut, wobei F; die besseren Werte liefert. Zum
Vergleich seien noch die Werte fiir den Grenzfall s — oo (siehe das Korrolar zu
Lemma 5) notiert. Hier haben wir

2 _
b="""M _( 24248
21
und
2 ’2
A=t =1 01854
ol —p

Q ist dann die geometrische Verteilung mit dem Parameter

b et
T b+1 e+ pu

P
Mit P = P(\, Q) gilt ferner

P{0} = exp[—A(1 — Q{0})] = exp[-Ap|

und
k+1
, ML=p)— . 4 .
Pl 4+ 1} = % w'Plk+1—14}, k=0,1,2,....
(k1= S S P10, k=0,
_ Damit erhalten wir
i ‘ 0 1 2 3 4 5
nP{z’} ’ 444 9 134,1 46,4 15 4.6 1.4

Die Frage, welchen Parameter s man bei praktischen Anwendungen wihlen soll,
kann aus der Natur der Sache so beantwortet werden: Man wihle s dergestalt,
dass ng und nP;{0} moglichst nahe beieinander liegen. In obigem Beispiel war
dies schon fiir s = 1 der Fall.
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Zusammenfassung

Ausgehend von n Risiken mit individuellen Schadenzahl-Verteilungen (1—p;)6o+p: R, i =1, ..., n,
betrachten wir ihre Approximation durch die zusammengesetzte Poisson-Verteilung P (), R), wobei
A = p1 + -+ 4+ pn, als Modell von Schadenzahl-Verteilungen. Hergeleitet wird eine Art Ammeter-
Transformation sowie eine Panjer-dhnliche Rekursionsformel fiir die entsprechende Gesamtschaden-
Verteilung. Als spezielle und fiir Anwendungen relevante Schadenzahl- Verteilungen P(\, R) disku-
tieren wir die Neymanschen <ansteckenden> Verteilungen.

Résumé

Soient n risques de loi de distribution du nombre des sinistres individuels (1 — p;)ép + pi R,
1 =1, ..., n,. Comme modéle de distribution du nombre des sinistres de ces risques, nous considérons
leur approximation donnée par la distribution de Poisson composée P(\, R). ot A = p| + -+ + pn.
Nous obtenons une transformation a la Ammeter ainsi qu’une formule de récurrence a la Panjer pour
la distribution de la charge des sinistres correspondante. Nous discutons de la distribution de Neymann
<contagieuse>> en tant que loi de distribution du nombre des sinistres particuliere et importante pour
les applications.

Summary

Starting from n risks with individual claim number distributions (1 — p;)do +piR. 2 =1, ..., n,
we consider their approximation by the compound Poisson distribution P (), 12) as a model for claim
number distibutions, where A = p1+- - - +p,. We derive an Ammeter-transformation and a Panjer-like
recursion formula for the corresponding distribution of the total claims. As special and for applications
useful claim number distributions P (A, R) we discuss Neyman’s “contagious” distributions.
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