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Reinhard Michel, Wuppertal

Ein individuell-kollektives Modell für Schadenzahl-Verteilungen

1 Das Modell der Schadenzahl-Verteilung

Betrachtet werde das kollektive Modell der Risikotheorie, wobei der Gesamt-

schaden des Kollektivs in einer Periode die Verteilung

OO

P ]Tp{/,:}Q^
A-=0

besitzt. Hierbei ist P mit P{0, 1,2,...} 1 die sogenannte Schadenzahl-

Verteilung und Q mit Q(0,co) 1 die Einzelschaden-Verteilung. Die in der

Praxis am häufigsten benutzten Schadenzahl-Verteilungen (siehe Strawfr [5], Seite

18) sind dabei die Binomial-, die Poisson-, die negative Binomial- und die

logarithmische Verteilung, deren wesentlicher Vorteil in der allgemein bekannten

Rekursionsformel liegt, die dann das Panjersche Rekursionsverfahren für die

Verteilung P liefert.
Ein Nachteil des wichtigsten Modells der Poisson-Verteilung ist die Tatsache, dass

hier Varianz und Mittelwert identisch sind, was sicher oft empirischen Beobach-

tungen widerspricht. Ferner steht hier auch nur ein freier Parameter, nämlich der

Mittelwert, zur Anpassung zur Verfügung. Das zweitwichtigste Modell, nämlich
die negative Binomialverteilung besitzt zwei Parameter und es gilt, dass die Var-

ianz grösser ist als der Mittelwert. (Über die Ammeter-Transformation kann man
die Gesamtschaden-Verteilung hierbei auf das Poisson-Modell umrechnen, so dass

wichtige Ergebnisse aus der Theorie der Ruinwahrscheinlichkeiten angewandt wer-
den können).
Unser im folgenden betrachtetes Modell ist reichhaltiger als die oben erwähnten,
da es für die Anpassung an empirische Daten drei freie Parameter besitzt, es

eröffnet ferner eine Panjer-ähnliche Rekursion für die Gesamtschaden-Verteilung
und lässt sich schliesslich auf das Poisson-Modell umtransformieren. Ein auch

für die Praxis unschätzbarer Vorteil ist weiterhin, dass wir unbegrenzt teilbare

Verteilungen betrachten.

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 1/1993
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Gegeben sei dabei eine generelle, eventuell von der Versicherungssparte abhängige,

Schadenzahl-Verteilung ./?. Betrachtet werden n Risiken mit individueller Scha-

denzahl-Verteilung

R» (1 - Pi)tfo + P«R, 1. 2 n,

wobei pi G (0,1), i 1, 2,..., n, und éo die in {0} konzentrierte Verteilung ist.

Die Verteilung der Schadenzahl des Kollektivs
ist dann die Faltung der Pj, i 1, rr, die sehr gut (siehe das Ergebnis
bei Mzc/ze/ [3]) durch die zMÄzmmengesefe/c Pomon-Vfertez'/MMg P(A,P) mit
A pi + • + approximiert werden kann. Hierbei ist

Mit der Supremums-Metrik d folgt für die Güte der Approximation der Gesamt-

schaden-Verteilung

In Absatz 3 wird dabei /? als Poisson-Verteilung .s-ter Stufe, ä t), 1, 2,

angesetzt (bezüglich der Namensgebung siehe Lemma 2). Ist diese Qs, so ergibt
P(^>Qs) für s 0,1,2 die Neymanschen «ansteckenden» Verteilungen vom
Typ A, B und C (siehe [4]), die Verallgemeinerungen für beliebige s wurden in

[1] betrachtet.

Bezüglich der Ergebnisse des ersten Teils der vorliegenden Arbeit sei auch auf
die Resultate von 77zyn'on ([6] und [7]) verwiesen, auf die mich ein Referent
freundlicherweise aufmerksam gemacht hat.

2 Eine Transformation der Gesamtschaden-Verteilung

Gemäss obigem Ansatz betrachten wir also im folgenden die Gesamtschaden-

Verteilung

n

< d(i?x * • * P(A, 7?)) <
— l i=l

oo

P £P(A,R){fc}Q**,

wobei A > 0, 7Ï{0, 1, 2, ...} 1 und Q(0, oo) 1.
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Als erstes Ergebnis haben wir dabei, dass eine Ammeter-Transformation möglich
ist, die P in eine zusammengesetzte Poisson-Verteilung überführt.

Satz 1 : gz7f

OO

£p(A,Ä){fr}Q** P(A.D).
fc=0

vi'o/ze;

OO

fc=0

Bei der Interpretation dieses Resultats ist zu beachten, dass die Intensität A von

P(A,D) die Summe der gegebenen individuellen p,, 2 1, n, ist, während

P zusammengesetzt wird aus der generellen Schadenzahl-Verteilung P und der

Einzelschaden-Verteilung Q.

ßewm: Es sei gzp(f) die charakteristische Funktion der Verteilung P und, für Q
mit Q{0, 1,2,...} 1, toq(<) die erzeugende Funktion des Wahrscheinlichkeits-

masses Q.
Ist

OO

P ^P(A,P){Ä:}Q*^
fc=0

so haben wir

PP(0 mp(A,j?)(v«(<))

und, mit der Poisson-Verteilung P\,

'»P(A.iï)('S) mpj(mjj(s)).

Weiterhin gilt

VP(A,D)(f)

und

AP(/0 mp(pQ(/)).
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ßemer&wng: Wählt man in unserem Modell die generelle Schadenzahl-Verteilung
i? als eine der anfangs erwähnten Standardverteilungen für Schadenzahlen, so lässt

sich aufgrund von Satz 1 die Gesamtschaden-Verteilung

OO

P ^P(A,Ä){fc}Q**
ft=0

bei diskretem Q durch zweifache Anwendung des Panjerschen Verfahrens rekursiv
berechnen.

Für P <V| ist P(A, P) gleich der Poisson-Verteilung P\. Somit kann unser Ansatz
als Verallgemeinerung der Poissonschen Summenverteilung betrachtet werden.

Ferner ist zu beachten, dass die Varianz von P(A, P) stets grösser oder gleich
dem Mittelwert ist, da

OO OO

^ÄuR{fc} < £Vp{ifc}.
A:=L A~1

3 Die Poisson-Verteilung s-ter Stufe

Für 6 > 0 und s 0, 1, 2, definieren wir

Qs.bU'}

È C' * ') 1.2
î ; M.A' + a + .S)!

Flierbei ist als erstes nachzuweisen, dass ein Wahrscheinlichkeitsmass auf

{0, 1,2,...} festgelegt wird, d.h. dass gilt

OO

Qs{Ä-} > 0, A: 0, 1,2,... und ^ Q*{Ä:} 1.

A: 0

Dies ergibt sich induktiv aus

Lemma 1: Lwr s 0, 1, 2, wmi fc 0, 1, 2,

6

^^Q.s + l.f,{A'} (s + 1) | •r""Q.s..r{A-} r/.A-.

0
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ßewew: Wir haben

^0,+,.»W f) (* + ') (-i)-i>^w <' +

^ V ' y (fc + .s + î + i)!

Differenzieren nach 6 ergibt

(s + l)6"<5s,h{fc}.

Daraus folgt die Behauptung.

Zum Nachweis, dass Q., ein Wahrscheinlichkeitsmass ist, beachte man, dass

»-*"
d.h. Qs{A;} > 0, s, Â; 0, 1, 2, und weiter

oo ^ oo

iL+' ^ Qs+ l,b{/c} (s + 1) / W Qs,;c{fc} da:

fc=0 0 A;=0

5

(«+!, /
0

falls

OO

^ ^ Qs,x{^} ~ 1) ^ ^ O5

/c=0

als Induktionsvoraussetzung angenommen ist.

Als weitere Eigenschaft der Verteilung Qs folgt aus Lemma 1

Lezwma 2: (i) £s gz'/t (D/j^erenf/afton nac/z 7>)

^'Q,.b{A-})^ =e"^~ /• il. 1.2.
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(ii) Mr /îflèe« Qo A (Pozsson-Ver/ei/Mng m/f M/fte/vvert 5) MMci/ù'r s G N

Qa{A'} -Q., i(fc, oo), A' 0. 1, 2,

Qi{A} J * °'
^ i=0 ' '

z»;r/

QaW
&2 <>-£ i-<-'T7

i=0 V j=0 '

/• 0. 1.2.

ßewm: (i) Wegen Qo Pj, ist die Aussage für s 0 richtig. Ferner ergibt sich

mit Lemma 1

(ii) Wir haben mit Lemma 1

6

AQi{A}= y Qu..r{A'} r/.r ^ e r/.r

0 0

/c

1 - e
'' ^ ^ P,(A'. oo) Qo(A, oo).

^
&

i 0

Setzt man weiter

^
^\?s — l,x (^j oo), X > 0, 5 G N,
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voraus, so folgt mit Lemma 1

6

fr'^<3.s+i{fc} (s + 1) y t/.r

0

ft

(s + l)s y x*~*Q«_i,x(fc, oo) d.T

0

oo ^
(s + l) ^ S / fi-T

Î=/C+1 Q

OO

(s + 1) ^ fc%s + l)Qs(A, oo).
i=fc+l

BemerA««g: Mit Teil (ii) dieses Lemmas ergibt sich die Rekursionsformel

fc.sGN,

wobei Qo -Pft-

Zur Berechnung der Momente von Qg - insbesondere interessieren natürlich der

Mittelwert und die Varianz V(Qs) - geben wir die erzeugende Funktion

nis(t) von Q,, an.

Lemma 3: Für eüe erzeagenefe FtmArion

OO

fc=0

von Qs gz7?

L2

i=o ^
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Beweis: Wir haben

«=s^Ecr)<-«'öÄi
fc=0 2=0

OO OO
^ —/clî ^

/c=0 Î—/c
Ay (i + s)!

i=o ^ ' fc=o ^ '
OO 7 1

&(• + »)!

Mit Lemma 3 ergibt sich

/i(Q,) m'^(l)

und

^(Qs) «'"(1) + m(Qs) - L«(<3s)]'

6

s + 1

Insbesondere haben wir

1 +
(s + l)(s + 2) J

L(<3,) > y(Q,) und lim 1

s^oo V (g,j
sowie weiter

/i(P(A, Qs)) A/i(Qs)
s + 1

und

L(P( A, Q.,)) A y .r"<33f/.r
6A / 26

1 +
s + IV .s + 2

Lemma 4: Mit wacLsenriem s wird Qs immer «z-mge/d/zriic/zer», d./z. es giit

<3.s["L oo) < <3s t[A oo), f > 0, s t N.
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Z?eweA: Mit Lemma 3 ergibt sich für s e N

OO m

.s!^ 1)'+*"*

s(f - l)^V^i(f),
d.h. es folgt

"»,(*) s YLT7 '

Also für |f| < 1,

OO OO OO

+ 1)Q.,{L + 1 }/'' s J] (Q,{L} - Q,._i{fc}) ** ]T /"
/c=0 fc=0 n=0

oo /c

s X] 03« W - <3s-1 {'H ^ •

fc 0 2 0

d.h.

<3s{0, .,/=} Q.s-i {0 Ar} Q«{A +1} > 0, fc 0, 1,2,
5

Als Abschluss dieses Absatzes soll noch das Verhalten von Qj, für grosse s

diskutiert werden. Wie man an dem Anwendungsbeispiel in Abschnitt 5 sieht,
ist dieses Problem für praktische Anwendungen von Bedeutung.

Lemma 5: ZA g;7f/«r fo > 0

(i) lim cZ(<3.,.6,<5o) 0.
S—>oo

(ii) lim d(<5s st, Q) 0,
s—»OO

vvoLei Q die geometri.se/ie Vertei/tmg mit (Zern Parameter p 6(1+ />)"* ist. Ferner
ist d die 5M/?rem«ms-Metr/L.

Für festes 6 und grosse s konzentriert sich also die Masse von immer stärker
in {0}. Konvergenz gegen eine nicht-ausgeartete Verteilung, in diesem Fall die
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geometrische Verteilung, ergibt sich, wenn der Parameter 6 mit der Ordnung s

gross wird. In diesem Fall haben wir auch noch

lim //(Q,„,/,) lim -—6 & /'(Q)
s—>00 s—>00 S + 1 I — p

und

lim V(Qs,sb) lim
s + 1 L(s + 1)(S + 2)

6 + 1

6(1 + 6)
P

(1 -P)-
V(Q).

ßevveA: (i) Ist Q ein Wahrscheinlichkeitsmass mit Q{0, 1, 2, ...} 1, so gilt

cZ(Q, <5o) < p(Q).

Für 0 e .4 folgt 0 ^ /V und

|Q(A) - 6o(,l)| 1 - g(.4) Q(fF').

Im anderen Fall ergibt sich

|Q(A) - 6„(.4)j Q(/4).

Ferner haben wir für /I mit 0 ^ S

Q(ß)<^Q{i}<^gW 6W)-
2=1

In unserem Fall gilt

2=1

s + 1

(ii) Es sei P, gesetzt. Als erstes zeigen wir

lim 7F{6} -4t GW' * °>
s—>00 1 + 6 \ I + 0/
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Es seien ms(t) und 772(f) die erzeugenden Funktionen von P, bzw. Q. Dann gilt

OO
J ^ oo

/»,,(/) ^ y(t - i )' ^ Oi(s)6'(t - l)',
i=o ^ 2=0

wobei

É • -1
««(')=n (i+-) • '=0.1.2

j=0

Wegen

0 < o,(.s) <1, 2 0, 1,2 s N

und

lim rt,;(,s) 1, / 0, 1, 2,
s—>oo

ergibt der Konvergenzsatz von Lebesgue, dass für jf — 1| < ^

OO

lim 771 s f V P(f — 1)' 772 f
s—>oo 'i=0

Genauso erhalten wir für A G N und f — 1 < ^

OO .j
lim m^(f) lim V 7—a,(s)P(t - 1)'"*

s—>00 s—»OO ^—' (2 — Ar)
i=/c

Im Fall 5 > 1 liegt dabei 0 nicht im Geltungsbereich dieser Konvergenzaussagen,
d.h. wir können nicht direkt auf die Konvergenz der Koeffizienten P,{A} gegen
Q{A}, A 0, 1, 2, schliessen. Da 1 stets die Einschränkung an f erfüllt,
müssen wir den Umweg über die Momente machen. Sind

Mfc(s) y x*P„(dx) und /t* y x*Q(cüx), /,: 0, 1, 2

so ergibt obige Konvergenzaussage (über einen induktiven Beweis)

lim /ifc(s) /ifc, A 0, 1, 2,
S —OO



86

d.h. es gilt

lim / p(x)Pg((ix) / p(.7;)Q((i:r)

für jedes Polynom p(x) und - über den Satz von Weierstrass -

lim / /(a:)P,(cte) / /(x)Q(cfc)
,/

für stetige Funktionen mit kompaktem Träger.
Bei festem /c G {0, 1,2,...} sei nun //c(x) die Dreiecksfunktion auf [/c— 2, 2],
die in den Endpunkten des Intervalls den Wert 0 annimmt und ihre Spitze im Punkt

(fc, 1) besitzt. Dann haben wir

y /fe(-A)P,(cP;) P,{A'} und y ./a-(.r)C?(r/.r) Q{A;}

und unsere letzte Konvergenzaussage ergibt

lim P,{A;} Q{Ä:}. A; - 0. 1. 2
s—»oo

Um die gleichmässige Konvergenz nachzuweisen, setzen wir

,4 {A- : P,{A:} < g{A:}} und yl n {0.1 P-l}.
Damit folgt für P g N

OO

E|^{A'}-Q{A'}! 2^(Q{A-}~P,{A'})
a-=o fee a

OO

<2 £ (Q{A'} - AP{/<"}) + 2 ^ Q{A'}
fee.4^ fe=/\

K —1 oo

<2^ |P,{A}-Q{A}|+2 ^ Q{A:}.
fe=0 fc K

Bei festem P konvergiert die erste Summe für s —> oo gegen Null, während die

zweite für P —> oc gegen Null konvergiert.
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ßemer/mng : Wie der Beweis von Lemma 5 (ii) zeigt, darf 6 6, so von s

abhängen, dass

lim &s b > 0
s —> oo

gilt. Siehe dazu die Gegebenheiten des Beispiels in Absatz 5.

Wegen

OO

|P(A.Q,.,,,)(.4) - P(A.Q)(,4)| < Q**(A)I
A-=0

OO \ ^
< e — A:r7(Qs,«fo, Q) Ad(Q.,^b, Q)

A-l
sowie

d(P(A»,Q),P(A,Q)) < CZ(Pa.,PA) < |A* - A|

haben wir

Porro/ar: Mit t/er geometr/sc/ren Verte//img Q Qfc aas Lemma 5 g/Zt /«r
6s, A,, > 0 m/t lim 6 > 0 «ne/ lim A,, A > 0

lim t/(P(A,.Ç,.,,J.P(A.Qr)) 0.

(Bei den Anwendungen in Absatz 5 ist dabei zu setzen />„ ^ und

\ s+1~ s + 2 ^2-u '

4 Die Rekursionsformel für die Gesamtschaden-Verteilung

In diesem Abschnitt wollen wir eine Panjer-ähnliche Rekursionsformel für die

in Abschnitt 2 gegebene Gesamtschaden-Verteilung P herleiten, falls P Qg.

Aufgrund von Satz 1 läuft dies darauf hinaus, eine für die dort definierte Verteilung
-D anzugeben.

Satz 2: Ps se/ Q.,, seNU {0}, t//e Po/ssoa-Verte/P/ng s-fer Sfw/e. Peraer ge/te

Q{1, 2,3,...} 1. Pf/r t//e Verfe/Zimg

OO

/c=0
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/b/gf dann

As{0} r (1 - -D,-i{0}) mit L»o{0} e~
0

Mw//iir s £ N, fc 1, 2,3,../zaben wir

fc-i
D.moffc - if -D,{fc} ^£>,{z}Q{A: - i} -

•t=0

Für die Rekursion ist dabei zu beachten, dass

DQ P(6,Q).

Somit können die Anfangswerte Do{fc}, Ä: 1,2,3,... mit dem Panjerschen
Verfahren ebenfalls rekursiv berechnet werden.

Beweis: Ist 771,(2) die erzeugende Funktion von Q., und rn(f) die erzeugende
Funktion von Q, so ist ms(m(i)) die erzeugende Funktion von Dg. Mit Lemma
2 (ii) haben wir für s £ N

oo oo

TOg(f) ^ y^Qs-i(fc,oo)f^
fc=0 /e=0

oo oo oo 2—1

/c=0 2=/c+l z=l fc=0

fc

S 1 — m,_i (f)5—rrr^. w<>-

Damit folgt für s £ N, |2| <1

(1 - m(f))m,(m(f)) | (1 - m^i(m(i))).

Dies ergibt

bzw.

(bo-Q)*D, ^(b„-D,_i)

D, Q * D, + ^(<5o - D,_i).
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Wegen Q{0} 0 folgt daraus die gewünschte Rekursionsformel.

5 Ein Beispiel

Gegeben seien folgende Daten aus der Unfallstatistik (siehe David [2], Seite 68):

Anzahl der Unfälle, die n 647 Arbeiterinnen in einem bestimmten Zeitraum
hatten

i 0 1 2 3 4 5

447 132 42 21 3 2

(7i; Arbeiterinnen hatten in der Zeit i Unfälle, 7 0,.... 5).

Für s 0 und s 1 wollen wir die empirische Verteilung Q{/'}
5, an die Verteilung P(A, Qg) anpassen. Dazu wählen wir die Parameter

A und 6 (dieser tritt in Qs auf) so, dass Mittelwert und Varianz von P„ P(A, Q,,

mit denen von Q übereinstimmen. Wir haben dabei

/i(A) A/i(Qg)

und

HP,) A y -^j- (l +

Mit

/( /i(Q) und cP U(Q)

erhalten wir durch Gleichsetzen

j=W» „„d A (»+!)(.
2 // /)

Als Werte ergeben sich

y /Ü 4652
2=1
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und

5

- E
2=1

r— - /r 0,6908.
n

Für s 0 folgt A 0, 9593 und 6 0. 4850.

Wegen

Qo{A} —

/)*• 6

haben wir

k 0 1 2 3 4 5

Qo{A}

Für s 1 gilt A

0,61570 0.29861 0,07241

1. 2790 und 6 0. 7274. Mit

0,001171 0,00142 0,00014

QiW
^ j=0 '

Lfc- L

ergibt sich

k 0 1 2 3 4 5

Ql{A:} 0,71053 0,22736 0,05164 0,00903 0,00128 0,00015

Weiter gilt

P,{0} exp[—A(1 - Q.,{0})]

und

A *+*
Ps{/c + 1} —

^
^ ' 'Qs{'}Ps+ 1 — '}• A; — 0. 1.2

Damit erhalten wir für die theoretischen Häufigkeiten

i 0 1 2 3 4 5

», 447 132 42 21 3 2

»P>{'} 447,5 128.2 49,4 15.7 4.5 1,2

nPi{?:} 446.8 129.9 48,4 15.6 4.6 1,3
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Die Anpassung ist offenbar recht gut, wobei Pi die besseren Werte liefert. Zum

Vergleich seien noch die Werte für den Grenzfall s —> oo (siehe das Korrolar zu

Lemma 5) notiert. Hier haben wir

2

6
^

o. 24248
2//

und

2/r
A 1. 91854

CT" — /i

Q ist dann die geometrische Verteilung mit dem Parameter

6 <r~ — //
è + 1 a- + //

/> ——- 0.19516.
i 1 '

Mit P P(À, Q) gilt ferner

P{0} exp[—A(1 - Q{0})] expj-Ap]

und

P{A + l} V ip'P{A: + 1 - i}, fc 0,1, 2,
A: + 1

Z=1

Damit erhalten wir

i 0 1 2 3 4 5

?7,P{i} 444,9 134.1 46,4 15 4,6 1,4

Die Frage, welchen Parameter s man bei praktischen Anwendungen wählen soll,
kann aus der Natur der Sache so beantwortet werden: Man wähle s dergestalt,
dass no und nPg{0} möglichst nahe beieinander liegen. In obigem Beispiel war
dies schon für s 1 der Fall.
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Zusammenfassung

Ausgehend von n Risiken mit individuellen Schadenzahl-Verteilungen (1— pi)<5o+Pi-R, î 1, • • • n,
betrachten wir ihre Approximation durch die zusammengesetzte Poisson-Verteilung P(A, Ä), wobei

A pi + + Pn. als Modell von Schadenzahl-Verteilungen. Hergeleitet wird eine Art Ammeter-

Transformation sowie eine Panjer-ähnliche Rekursionsformel für die entsprechende Gesamtschaden-

Verteilung. Als spezielle und für Anwendungen relevante Schadenzahl- Verteilungen P(A, P) disku-

tieren wir die Neymanschen -Cansteckenden» Verteilungen.

Résumé

Soient n risques de loi de distribution du nombre des sinistres individuels (1 — Pi)<5o +
t 1, n,. Comme modèle de distribution du nombre des sinistres de ces risques, nous considérons

leur approximation donnée par la distribution de Poisson composée P(A, Ä), où A pi -1 f p„.
Nous obtenons une transformation à la Ammeter ainsi qu'une formule de récurrence à la Panjer pour
la distribution de la charge des sinistres correspondante. Nous discutons de la distribution de Neymann

«contagieuse» en tant que loi de distribution du nombre des sinistres particulière et importante pour
les applications.

Summary

Starting from n risks with individual claim number distributions (1 — p,)èn + p;fî, t 1, n,
we consider their approximation by the compound Poisson distribution P( A, P.) as a model for claim

number distibutions. where A pi+ Hp,,.. We derive an Ammeter-transformation and a Panjer-like
recursion formula for the corresponding distribution of the total claims. As special and for applications
useful claim number distributions P(A, K) we discuss Neyman's "contagious" distributions.
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