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MARKUS AEBI, PAuUL EMBRECHTS, and THOMAS MIKOSCH, Ziirich

A Large Claim Index!

1 Introduction

An increasing demand is put on insurance mathematicians to adapt their, by now
classical models so as to allow for extremal events or large claims. One of the
key problems is the need for a dialogue between researchers and practitioners on
the topic of ‘what actually constitutes a large claim?” Many papers have already
been written on this topic, see for instance the Proceedings of the 4 Countries
Astin-Symposium (1984) for a series of papers on the subject, Teugels (1982) or
Embrechts/Veraverbeke (1982). For a recent text on extreme value theory, see Hahn
et al. (1991) and the references therein. In a recent discussion with an insurance
practitioner, our statement concerning the Pareto distribution as a model for large
claims was countered by: “the Pareto law, yes it means that 20 % of the individual
claims are responsible for more than 80 % of the total claim amount!” Is there a
way in which statistics can make the above statement more precise? The aim of
the present paper is to show how an easy probabilistic argument yields a natural
large claim index with which one can order classes of heavy-tailed distributions in
a natural way. Based upon this index, statements like the one above can be made
precise.

2 A large claim index

Let (Y7, ..., Y,) be a (i.i.d) sample of positive random variables (r.v.’s) denoting
the first n claims in a portfolio Y = (Y},Y5, ...), with distribution function
(df) £ and finite mean E(Y)). Denote the associated ordered variables by
Yoy € Yoy < -+ £ Y, where for instance Y{;y = min(Yy, ..., Y,), the
smallest claim, and Y,y = max(Yy, ..., Y,), the largest one. The total claim

n -

amount for the first n claims is S, = > VY. If [, stands for the empirical

1 Vorgetragen vom zweiten Autor an der Mitgliederversammlung der Schweizerischen Vereinigung
der Versicherungsmathematiker vom 12. September 1992 in Winterthur.

Mitteilungen der Schweiz. Vercinigung der Versicherungsmathematiker, Heft 2/1992



144

distribution function (e.d.f), i.e.
o 1 )
Fnly)==#{i<n:Y5 <y}, y=0,
n

we denote by ﬁn_ ! the generalised inverse of E,,

Erl(z)=inf{y > 0: Fp(y) 22}, 0<az<l.

mn

F~1(y) is known as the empirical quantile function of F (or of (Y3, ..., ¥;))). It
follows immediately that for 1 <1 < n, Fn"l(%) = Y(y).
With the above notation, the statement in the introduction regarding the Pareto

law can be reformulated as the search for the d.f. of the ratio

_ Ypap ++ Yy
Sn

T () , O<a<l.

Here [z] stands for the largest integer less than or equal to x. Hence T, («) is
the proportion of the sum of the (n — [na] + 1)-st largest claims to the aggregate
claim amount S,, in our portfolio. Exact distributional results for finite n are
hard to obtain, hence we content ourselves with asymptotic estimates. Though
variables of the form T}, («) have been studied in the literature (see below), in
order to keep the paper self-contained, we shall derive the basic results afresh.
Already in Aebi/Embrechts/Mikosch (1992) (henceforth referred to as AEM) we

indicated that the notion of Mallows metric has many applications to problems in
insurance mathematics. Denote for p > 0:

+c0
I'y=<H df. on R: / |z|PH(dz) < o0
the class of d.f.”s with finite p-th absolute moment.
Definition 1
For F,G € I'y, the Mallows metric of order p is defined as
dp(F,G) =inf{||X - Y|, : L(X)=F, L(Y)=G}

where || X ||, = (E| X |P)™in(1/P) and L(X) = F denotes the fact that the r.v. X
hes df F. [l
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So d,(F,G) is the smallest distance in p-th absolute moment between r.v.’s X
and Y having the d.f.’s F, respectively . When X and Y are r.v.’s so that
L(X) =F, L(Y) = G, then we often write d,,(X,Y) for d,(F, G).

For a summary of the basic results on d,, see AEM (1992) and the references
therein. In the following Proposition we summarize the results needed later.

Proposition 1 [AEM (1992, Lemma 2.1)]
(i)  Let H™' denote the (generalized) inverse of the d.f. H and the r~v. U be
uniformly distributed on [0, 1]. Then, forp > 1, F.G € ',

4(F,G) = |~ (U) — G V)],

In particular,
00
di(F,G) = / |F(z) — G(z)| dx . (2.1)

(i) Suppose p > 0 and (X)) is a sequence of r.v.’s with d.f.’s (F,) respectively.
Then dp(F,, Fy) — 0 as n — oo, if and only if || X, |l — || Xollp and

d e
Xy — Xo (convergence in distribution) as n — oc.
Our main (theoretical) result is the following.

Theorem 1
Suppose (Y;) are positive, i.i.d. r.v.’s, with distribution I and 0 < E(Y)) < .
Let o € [0, 1], then as n — oo,
Y, Y, 1
na)) T+ Ynoas 1 -,
T, () = o) = 25 A /F Nz)da . (2.2)

x

Proof: Since the result is trivial for & = 0 or & = 1 we suppose « € (0,1).
According to the Strong Law of Large Numbers, we have %@— 2 E(Y,) forn — .
Moreover, we can write

1 1 &= =_1(1
E(Yr([na})*""'*_}/(n))kﬁ-z Fn (_>

3=
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Thus we have

1

f Bty du {1+ of1)), ws..

[na]/n

I

Ty ((J{) = E(Yl)

Note that

1

- B
[Jl(:c)deEZY;HE(Yl), a.8.,
0

=1

so that for large n, T}, («) will be less than or equal to 1. Moreover,

}jAnl(z) d:r—/lF_l(a:)da:

by Proposition 1 i). Now because of the SLLN (E(Y}) < oo) and the Glivenko-
Cantelli Theorem, [see Chow/Teicher (1978, p. 261)], Proposition 1 ii) implies
that dy (F,,, F') — 0 as n — oo. Moreover,

1
< [ B @) - F 7\ (@)| do = di (B, F),
/

~ 1
/ EoNz)de < =Y, =o(1), as., as n— oco.
n

[nal/n

The latter statement follows immediately from the Borel-Cantelli Lemma as shown
in Galambos (1987, Corollary 4.3.1). Combining the above estimates, one obtains
(2.2). O

Definition 2
Let F' be a claimsize distribution with finite mean p, 0 < o < 1. The Large Claim
Index (1.c.i) of F' at « is defined as

1

Dr(a) = é/F“l(a))'dw. (2.3)

67

Its value indicates to what extend the 100(1 — «) % largest claims in a claim
portfolio contribute to the overall portfolio claim amount. [
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In the next Paragraph we shall evaluate D g () analytically for some F', compare
our results with simulation data and ‘solve’ the Pareto law problem from the
Introduction.

Remarks:

(1)

(i)

(1i1)

The result in Theorem 1 is by no means new. Indeed functionals of the
form Dp in (2.3) have been used in the economic literature for a long time.
Sois Lr = 1 — Dy known as the Lorenz curve associated with F' and is
standardly used to model financial income data. For basic results and further
references, see Goldie (1977) and Villaserior/Arnold (1989) for instance. A
good reference on the empirical version D 7 where ﬁn is the e.d.f. of F',
is Csorgo et al. (1986). Our Theorem 1, proved by different means, is to be
found in the latter reference as Theorem 10.1.

Many more refined estimates on the convergence in (2.2) can be given. For
instance, using the results in Serfling (1980, p. 283) it follows that for a
general d.f. G on R:

~

dl(GnaG) = Op(n—1/2)> as n — oo,

provided that

+00

f (G(x)(1 - G(z)) 2 dx < 0.

— 00

(Op(+) denotes of order (-) in probability). In our case, positive r.v.’s, this
condition reduces to

/(1—F(x))l/2dx<oo,
0

which is fulfilled whenever E(Y})?*% < oo for some § > 0. In the latter
case, we have a /n-rate of convergence in Theorem 1. For further details
on the asymptotic behaviour of empirical Lorenz curves, see Csdrgd et al.
(1986).

Theorem 1 can easily be adapted to cover the case where (Y7, ..., Y,) is
replaced by a sample (Y1, ..., Yy () for some ¢ > 0, where the claim
arrival counting process (V(t)):>o satisfies NV(t) — oo a.s., t — oo.
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Theorem 1 gave the asymptotic behaviour of T}, («) for claims with a finite first
moment. In the case F(Y]) = oo, the following result yields useful information.

Theorem 2
Suppose 1 — F(y) < (1 +y)~P for some p € (0,1] and y > yo, and E(Y1) = oc.
Then as n — o0, 0 < a < 1, Tn(a)ﬂl.

Proof: Since % 2% 0, it suffices to show that

Yo+ Yipapy

T

Op(l) )

i.e. remains bounded in probability as n — oc.
Now 1—F'(y) < (1+4y) P for some y > 1, implies that for some x; and = > x1:

Flao)<(@-z) P -1,

By Taylor expansion, the latter term remains bounded by C'z for some constant
C > 0 and = < 2, say. Thus

Yv(]) + -+ Yv([an}) < Yo 7£ {7’ < [Od??] : 1/(') < yO} +l Z }/()
i i)

T T
'i,g{om,]:Y(i) >0

Note that for (&;);=1, ... ny1 1.i.d. with an EXP(1)-distribution,

S St )) d
" 1 = Y'i 1= n
( (gl +'“+£'I’L-|—1 T - ( ( )) Liy sy

where £ denotes equality in distribution. See for instance Bickel and Doksum
(1977, p. 44, 46). For this representation of the Y{;) and every fixed n

[an]

1 1 4. 7
-~ ), Yys-C), o T8 <o,
" i<[on]:Y(q) 2o noS et T

hence the result follows. [

The latter Theorem implies that for d.f.’s with infinite mean, the largest claims
essentially determine the overall claim amount. This result should be compared
and contrasted with the following known results in the case where 1 — F/(x) ~
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™ *L(x) for 0 < o < 1 and L is slowly varying in Karamata’s sense [see
Bingham/Goldie/ Teugels (1987), p. 419].

Proposition 2
Let Y3, v«s5 Y be positive LLd. ro’s with df ;5 = i Y, and Y,y =
max(Yy, ..., Y,). -
(1) (Maller-Resnick) Equivalent are:
a) Y(n)/Sn — 1 in Probability,
b) 1 — F'is slowly varying.
(i)  (Breiman) Equivalent are:
a) Y /Sy has a non-degenerate limit distribution,
b) 1 — F(x) ~a~L(x), L slowly varying and 0 < v < 1,
¢) E(Sn/Ym) — 1) has a positive finite limit.

3 Numerical results

In Figure 1 (see Appendix) we have plotted the l.c.i. Dp for a wide range of
d.f.’s rangeing from light-tailed distributions (gamma type) to heavy-tailed ones
(Pareto). The diagonal would correspond to the Uniform distribution. Notice that
the “20—-80 % rule’ or the so-called Pareto law from the Introduction corresponds
to the point (& = 0.8, Dp(«) = 0.8) which lies near curve 5 indicating that
such data typically correspond to a Pareto (p ~ 1.5) distribution having finite
mean but infinite variance. The corresponding l.c.i. for instance for an exponential
distribution is roughly 0.5, indicating that the 20 % largest claims account for 50 %
of the total claim amount.

The parameterizations used are:

° Pareto (p): 1 — F(z)=(14+2z)"P, z>0.

o Loggamma (a,~; xq):
a’ =1 =l
J(x) = =———(log(x/x0))" " (x/xq) ;BT
I'(v)zo
If deleted from the parameterization, zy = 1.
o Lognormal (p, o):
| o?(log x—pu)

x>0,

The parameterization sdlog = | stands for o = 1 and j general.
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1 1
® Gamma (a,v) = O le=az x> 0.

The parameterization Gamma (shape = k) means @ = 1 and v = k.
Exponential (A) = Gamma (A, 1).

In all these cases the l.c.i. Dy can be calculated analytically.

pP\l—a| 05 0.4 0.3 0.2 0.1 0.05 0.01 0.005 0.001

1.01 | 0.998 0.997 0.995 0.992 0.986 0.980 0.965 0.958 0.943
1.05 | 0.991 0.985 0976 0.963 0.936 0.908 0.843 0.816 0.756
1.1 | 0.983 0972 0.956 0.930 0.882 0.833 0.723 0.679 0.587
1.2 | 0.969 0.950 0.922 0.878 0.798 0.718 0.555 0.495 0.379
1.4 0.948 0.918 0873 0.804 0.685 0.575 0.372 0.306 0.194
1.7 | 0.928 0.886 0.825 0.736 0.589 0.460 0.248 0.188 0.098
2| 0914 0.865 0.795 0.694 0.532 0.397 0.190 0.136 0.062
310890 0.829 0.744 0.626 0.446 0.307 0.119 0.078 0.028
510872 0.802 0.708 0.580 0.392 0.255 0.086 0.052 0.0186

10 | 0.859 0.784 0.684 0.549 0.359 0.225 0.068 0.040 0.011
1000 | 0.847 0.767 0.661 0.522 0.331 0.200 0.056 0.032 0.008
Exp(.) | 0.847 0.767 0.661 0.522 0.330 0.200 0.056 0.031 0.008

Table 1. Table of large claim index Dp for different p-Pareto distributions and the exponential
distribution.

Figure 2 plots Dy for the Pareto family and the exponential distribution. These
plots are summarised in Table 1 above where we see that indeed for p = 1.4,
Dp(0.8) = 0.804 (corresponding to 1 — o = 0.2). We also observe that on an
l.c.i.-basis, the results for Pareto (p > 5) are very close to the exponential case. The
dramatic situation for Pareto (p < 1.2) is exemplified in the last column where,
for instance for p = 1.01, nearly 95 % of the total claim amount is due to 0.1 % of
the individual claims! In the extreme case of very heavy-tailed distributions, like
those in Proposition 2, the corresponding l.c.i.-curve converges more and more to
a curve with value 1 on (0,1).

The final two Figures 3 and 4, highlight the convergence of the empirical l.c.i.
Dy to Dy as discussed in Remark 1) of the previous paragraph, in the case of an
eprnential distribution (Figure 3) and the Pareto (p = 2) case in Figure 4. Even
in this latter case, which violates the condition £ (YIQ'M) < oo from Remark ii)
in Paragraph 2, we still have a reasonable rate of convergence.
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Conclusion

The large claim index Dpg(«) may be useful in highlighting the appropriateness
of certain claim-size distributions used in the modelling of catastrophic events. Its
interpretation is close to how ‘the actuary in the field” would describe what large
claims are.
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Summary

A notion of large claim index is introduced allowing to distinguish between various families of claim-
size distributions on the basis of their appropriateness to model catastrophic events.

Zusammenfassung

Es wird der Begriff des Grossschaden-Index eingefiihrt, welcher es erlaubt, zwischen verschiedenen
Familien von Schadenverteilungen zur Modellierung von Katastrophen auszuwéhlen.

Résumé

On definit un index de grand sinistre. Cet index permet de choisir entre différentes familles de répartition
de sinistres afin d’établir des modeles de catastrophes.
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