Zeitschrift: Mitteilungen / Schweizerische Vereinigung der

Versicherungsmathematiker = Bulletin / Association Suisse des

Actuaires = Bulletin / Swiss Association of Actuaries

Herausgeber: Schweizerische Vereinigung der Versicherungsmathematiker

Band: - (1992)

Heft: 1

Artikel: La réactivité des invalides dans les rentes futures d'invalidité

Autor: Chuard, Marc / Chuard, Philippe

DOI: https://doi.org/10.5169/seals-967252

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MARC CHUARD, Zurich et PHILIPPE CHUARD, Pully

La réactivité des invalides dans les rentes futures d'invalidité

1 Objectif et moyens

Pour répondre aux besoins, en prévoyance professionnelle notamment, les mathématiques actuarielles doivent permettre de calculer, en particulier, les valeurs actuelles servant à escompter

- la rente différée de retraite,
- la rente future d'invalide,
- les cotisations.

Admettons que l'on dispose des quatre probabilités "pures"¹

- $-q_x^a$ de décès d'actif,
- I_x d'invalidité d'actif,
- q_x^i de décès d'invalide,
- r_x de réactivité d'invalide,

et que, comme c'est le cas d'ordinaire,

pour
$$x \ge 65$$
, on a $q_x^a = q_x^i = q_x$ et $I_x = r_x = 0$.

On peut alors calculer les effectifs

- Λ_x^a d'actifs
- Λ_x^i d'invalides

au moyen des formules²

$$\Lambda_{x+1}^a = \Lambda_x^a (1 - q_x^a)(1 - I_x) + \Lambda_x^i r_x \left(1 - \frac{1}{2} q_x^i \right) \frac{1 - q_x^a}{1 - \frac{1}{2} q_x^a}$$

$$\Lambda_{x+1}^{i} = \Lambda_{x}^{i} (1 - q_{x}^{i})(1 - r_{x}) + \Lambda_{x}^{a} I_{x} \left(1 - \frac{1}{2} q_{x}^{a} \right) \frac{1 - q_{x}^{i}}{1 - \frac{1}{2} q_{x}^{i}}$$

² Réf. [1], p. 40.

¹ Notion introduite sous le nom de "unabhängige Wahrscheinlichkeit" par Joh. Karup dans une étude parue en 1875.

en partant de $\Lambda^a_{x_0} = Q$ et $\Lambda^i_{x_0} = 0$ avec, le plus fréquemment, $x_0 = 20$ et Q = 100 000. On construit ainsi un "modèle rationnel pour l'activité et l'invalidité"3.

Les nombres obtenus se prêtant mal à un calcul simple des valeurs actuelles désirées, on suit alors le cheminement suivant. Introduisant une probabilité d'invalidité i_x définie par

$$i_x = I_x - \frac{\Lambda_x^i}{\Lambda_x^a} r_x \frac{1 - \frac{1}{2} q_x^i}{1 - \frac{1}{2} q_x^a}$$

on calcule

- l'ordre l_x^{aa} des actifs, et l'effectif λ_x^i des invalides

au moyen des formules

$$l_{x+1}^{aa} = l_x^{aa} (1 - q_x^a)(1 - i_x) (l_{x_0}^{aa} = Q),$$

$$\lambda_{x+1}^i = \lambda_x^i (1 - q_x^i) + l_x^{aa} i_x \left(1 - \frac{1}{2} q_x^a \right) \frac{1 - q_x^i}{1 - \frac{1}{2} q_x^i} \qquad (\lambda_{x_0}^i = 0).$$

On passe ainsi à un "modèle pratique pour l'activité et l'invalidité", construit à partir des probabilités q_x^a , i_x et q_x^i parmi lesquelles ne figure pas la probabilité r_x de réactivité. Observons que les deux modèles, rationnel et pratique, sont liés par les correspondances

$$l_x^{aa} = \Lambda_x^a$$
 et $\lambda_x^i = \Lambda_x^i$.

Le modèle pratique permet de calculer facilement les valeurs actuelles désirées. Pour cela on introduit encore le taux d'intérêt technique i qui apparaît dans les formules par le facteur d'escompte $v = \frac{1}{1+i}$.

³ Réf. [1], pp. 34 ss.

⁴ Réf. [1], pp. 24 ss.

2 Rentes d'actifs

Au moyen des nombres de commutation

$$D_x^{aa} = v^x l_x^{aa}$$

$$N_{x:\overline{65-x}|}^{aa(12)} = D_x^{aa} + D_{x+1}^{aa} + \dots + D_{64}^{aa} - \frac{11}{24} (D_x^{aa} - D_{65}^{aa})$$

on calcule la valeur actuelle de la rente différée d'actif (l'une des prestations envisagées)

$$a_{65-x}|\ddot{a}_{x}^{aa(12)} = \frac{D_{65}^{aa}}{D_{x}^{aa}} \ddot{a}_{65}^{(12)}, \quad \text{où} \quad \ddot{a}_{65}^{(12)} = \frac{N_{65}^{(12)}}{D_{65}},$$

et, pour l'escompte des cotisations, la valeur actuelle de la rente temporaire d'actif

$$\ddot{a}_{x:\overline{65-x}|}^{aa(12)} = \frac{N_{x:\overline{65-x}|}^{aa(12)}}{D_x^{aa}}.$$

3 Rentes immédiates d'invalide

Le calcul des valeurs actuelles pour rente future d'invalide nécessite le calcul préalable des valeurs actuelles pour rentes immédiates d'invalide. Comme, dans le modèle pratique, on a éliminé la probabilité r_x de réactivité, on se base, pour les rentes immédiates d'invalide, sur l'ordre simple l_x^i des invalides, construit au moyen de

$$l_{x+1}^i = l_x^i (1 - q_x^i) \qquad (l_{x_0}^i = Q).$$

Les nombres de commutation

$$D_x^i = v^x l_x^i$$

$$N_{x:\overline{65-x}|}^{i(12)} = D_x^i + D_{x+1}^i + \dots + D_{64}^i - \frac{11}{24} (D_x^i - D_{65}^i)$$

permettent de calculer les valeurs actuelles

$$\ddot{a}_{x:\overline{65-x}|}^{i(12)} = \frac{N_{x:\overline{65-x}|}^{i(12)}}{D_x^i}$$
$$\ddot{a}_x^{i(12)} = \ddot{a}_{x:\overline{65-x}|}^{i(12)} + \frac{D_{65}^i}{D_x^i} \ddot{a}_{65}^{(12)}$$

4 Rentes futures d'invalide

Deux cheminements différents peuvent être suivis pour obtenir des valeurs actuelles de rentes futures d'invalidité. Ils prennent pour base

- l'un le nombre l_{x+1}^{ai} d'actifs d'âge x, devenus invalides, en vie à l'état d'invalide à l'âge x+1, ce nombre se calculant au moyen de

$$l_{x+1}^{ai} = l_x^{aa} i_x \left(1 - \frac{1}{2} q_x^a \right) \frac{1 - q_x^i}{1 - \frac{1}{2} q_x^i} ,$$

- l'autre, le nombre b_x d'actifs d'âge x, devenus invalides avant l'âge x+1, ce nombre se calculant au moyen de

$$b_x = l_x^{aa} i_x \left(1 - \frac{1}{2} q_x^a \right).$$

On peut observer que les deux nombres sont liés par

$$\left(1 - \frac{1}{2}q_x^i\right)l_{x+1}^{ai} = (1 - q_x^i)b_x.$$

Le cheminement basé sur b_x introduit, dans la valeur actuelle de la rente future d'invalidité, la valeur actuelle d'un prorata initial⁵. Ce prorata n'étant pas justifié dans le cas du fractionnement mensuel que nous adoptons (m=12), nous faisons le choix du cheminement basé sur l_{x+1}^{ai} . Mais les développements qui s'y rapportent peuvent être facilement adaptés à l'autre cheminement.

Compte tenu des conditions adoptées, les nombres de commutation

$$D_x^{ai(12)} = v^{x+1} l_{x+1}^{ai} \left(\ddot{a}_{x+1}^{i(12)} + \frac{11}{24} \right)$$

$$N_x^{ai(12)} = D_x^{ai(12)} + D_{x+1}^{ai(12)} + \dots + D_{64}^{ai(12)}$$

permettent de calculer la valeur actuelle

$$\ddot{a}_x^{ai(12)} = \frac{N_x^{ai(12)}}{D_x^{aa}}$$

de la rente future viagère d'invalidité.

⁵ Réf. [1], pp. 81 ss.

Les nombres de commutation

$$\begin{split} D_{x:\overline{65-x}|}^{ai(12)} &= v^{x+1} \, l_{x+1}^{ai} \left(\ddot{a}_{x+1:\overline{65-x-1}|}^{i(12)} + \frac{11}{24} \right) \\ N_{x:\overline{65-x}|}^{ai(12)} &= D_{x:\overline{65-x}|}^{ai(12)} + D_{x+1:\overline{65-x-1}|}^{ai(12)} + \cdots + D_{64:\overline{1}|}^{ai(12)} \end{split}$$

permettent de calculer la valeur actuelle

$$\ddot{a}_{x:\overline{65-x}|}^{ai(12)} = \frac{N_{x:\overline{65-x}|}^{ai(12)}}{D_x^{aa}}$$

de la rente future temporaire d'invalidité.

Rappelons en passant que la fraction $\frac{11}{24}$, qui apparaît dans les nombres de commutation $D_x^{ai(12)}$ et $D_{x:\overline{65-x}|}^{ai(12)}$, est la moyenne des divers cumuls possibles de termes fractionnés payés pendant l'année au cours de laquelle commence la rente d'invalidité⁶:

$$\left(\frac{1}{12} + \frac{2}{12} + \dots + \frac{11}{12}\right) \frac{1}{12} = \frac{11}{24}$$
.

On peut constater que, calculée selon le cheminement adopté (qui élimine un inutile prorata initial), la valeur actuelle $\ddot{a}_x^{ai(12)}$ ne dépend pas du fractionnement m (ici : m=12).

5 Rente différée de vivant reposant sur la tête d'un actif

Désignons par $_{65-x|}\ddot{a}_{x}^{a(12)}$ la valeur actuelle d'une rente différée, reposant sur la tête d'un *actif* d'âge x et payée, s'il est *vivant*, dès l'âge 65, peu importe qu'il soit alors actif ou entre-temps devenu invalide.

La valeur actuelle en question apparaît dans la relation

$$l_{x 65-x} \ddot{a}_{x}^{(12)} = l_{x 65-x}^{aa} \ddot{a}_{x}^{a(12)} + \lambda_{x 65-x}^{i} \ddot{a}_{x}^{i(12)}$$

construite à partir de

$$l_x = l_x^{aa} + \lambda_x^i.$$

⁶ Réf. [1], p. 76.

Comme

$$_{65-x|}\ddot{a}_{x}^{(12)} = \frac{D_{65}}{D_{x}}\ddot{a}_{65}^{(12)}$$
 avec $D_{x} = v^{x} l_{x}$

et

$$_{65-x}|\ddot{a}_{x}^{i(12)} = \frac{D_{65}^{i}}{D_{x}^{i}} \ddot{a}_{65}^{(12)}$$

on obtient7

$$_{65-x|}\ddot{a}_{x}^{a(12)} = \left(1 - \frac{\lambda_{x}^{i}}{l_{x}^{i}} \frac{l_{65}^{i}}{l_{65}}\right) \frac{D_{65}}{D_{x}^{aa}} \ddot{a}_{65}^{(12)}.$$

Cette formule vérifie l'importante relation

$$a_{5-x|}\ddot{a}_{x}^{a(12)} + \ddot{a}_{x:\overline{65-x}|}^{ai(12)} = a_{5-x|}\ddot{a}_{x}^{aa(12)} + \ddot{a}_{x}^{ai(12)}$$

montrant que l'on peut obtenir de deux manières différentes la valeur actuelle globale des rentes de retraite et d'invalidité.

Pour la démonstration de la relation ci-dessus on peut mentionner que

$$\ddot{a}_{x}^{ai(12)} - \ddot{a}_{x:\overline{65-x}|}^{ai(12)} = \frac{D_{65}^{i}}{D_{x}^{aa}} \ddot{a}_{65}^{(12)} \sum_{t=x}^{64} \frac{l_{t+1}^{ai}}{l_{t+1}^{i}}$$

et que

$$\sum_{t=x}^{64} \frac{l_{t+1}^{ai}}{l_{t+1}^i} = \sum_{t=x}^{64} \left(\frac{\lambda_{t+1}^i}{l_{t+1}^i} - \frac{\lambda_t^i}{l_t^i} \right) = \frac{\lambda_{65}^i}{l_{65}^i} - \frac{\lambda_x^i}{l_x^i} \,.$$

6 Remarques

Les opérations qui sont l'objet des paragraphes précédents permettent d'atteindre l'objectif fixé au paragraphe 1. En effet soit

$$_{65-x|}\ddot{a}_{x}^{aa(12)} + \ddot{a}_{x}^{ai(12)}$$

 $^7\,$ Réf. [2], formule (69); précisons que, dans les tables EVK 1980, les deux nombres l_{65}^i et l_{65} sont égaux.

soit

$$_{65-x}|\ddot{a}_{x}^{a(12)}+\ddot{a}_{x:\overline{65-x}|}^{ai(12)}$$

donnent la valeur actuelle servant à escompter les prestations de rente différée de retraite et de rente future d'invalide. Quant à la valeur actuelle

$$\ddot{a}_{x:\overline{65-x}}^{aa(12)},$$

elle permet d'escompter les cotisations.

Les développements qui précèdent correspondent, d'une manière générale, à ceux sur lesquels sont construites les tables EVK 1980. Ils s'en écartent sur les deux points suivants:

- d'une part ils sont basés sur un effectif λ_x^i des invalides calculé au moyen d'une formule rectifiée⁸,
- d'autre part, pour les rentes futures d'invalidité, ils font intervenir le nombre l_{x+1}^{ai} au lieu de b_x (voir paragraphe 4 ci-dessus)⁹, ceci afin d'éliminer un inutile prorata initial.

S'agissant des résultats numériques, les écarts occasionnés par les choix que nous avons faits sont sans importance majeure.

Les tables VZ 1990, comme celles qui les ont précédées, font intervenir un élément supplémentaire. Elles tiennent compte de la réactivité dans la valeur actuelle des rentes d'invalidité. Pour cela elle remplacent l'ordre simple l_x^i des invalides par l'ordre composé¹⁰ l_x^{ii} qui dépend des deux probabilités

$$q_x^i$$
 de décès d'invalide, r_x de réactivité d'invalide.

La construction des formules qui sont alors nécessaires, considérée comme une extension des développements rappelés dans les paragraphes précédents, n'a pas été, à notre connaissance, l'objet de publications. Il est en outre intéressant d'apprécier l'influence de cette extension sur les résultats numériques. C'est pourquoi l'étude que nous avons entreprise et qui fait l'objet des paragraphes suivants devrait être,

⁸ Réf. [1], pp. 30 et 33. Réf. [2], formule (11).

⁹ Réf. [2], formules (64) et (70).

¹⁰ Réf. [3], formules (27/36) à (30/39).

nous l'espérons, une utile contribution dans le domaine actuariel de la prévoyance professionnelle.

7 Rentes immédiates d'invalide; calcul avec l_x^{ii}

Au moyen des probabilités q_x^i et r_x on construit l'ordre composé des invalides l_x^{ii} avec

$$l_{x+1}^{ii} = l_x^{ii}(1 - q_x^i)(1 - r_x) \qquad (l_{x_0}^{ii} = Q)$$

Les nombres de commutation

$$D_x^{ii} = v^x l_x^{ii}$$

$$N_{x:\overline{65-x}|}^{ii(12)} = D_x^{ii} + D_{x+1}^{ii} + \dots + D_{64}^{ii} - \frac{11}{24} \left(D_x^{ii} - D_{65}^{ii} \right)$$

permettent de calculer les valeurs actuelles

$$\ddot{a}_{x:\overline{65-x}|}^{ii(12)} = \frac{N_{x:\overline{65-x}|}^{ii(12)}}{D_x^{ii}}$$
$$\ddot{a}_x^{ii(12)} = \ddot{a}_{x:\overline{65-x}|}^{ii(12)} + \frac{D_{65}^{ii}}{D_x^{ii}} \ddot{a}_{65}^{(12)}$$

8 Rentes futures d'invalide; calcul avec l_x^{ii}

Pour tenir compte de la probabilité r_x de réactivité il faut, dans les nombres de commutation $D_x^{ai(12)}$ et $D_{x:\overline{65-x}|}^{ai(12)}$ servant à calculer les valeurs actuelles $\ddot{a}_x^{ai(12)}$ et $\ddot{a}_{x:\overline{65-x}|}^{ai(12)}$ (voir paragraphe 4 ci-dessus), remplacer

- les valeurs actuelles
$$\ddot{a}_x^{i(12)}$$
 et $\ddot{a}_{x:\overline{65-x}|}^{i(12)}$ par $\ddot{a}_x^{ii(12)}$ et $\ddot{a}_{x:\overline{65-x}|}^{ii(12)}$

- le nombre d'actifs d'âge x devenus invalides, en vie à l'état d'invalide à l'âge x+1, $l_{x+1}^{ai}=\lambda_{x+1}^i-\lambda_x^i(1-q_x^i)$ par $\Lambda_{x+1}^{ai}=\lambda_{x+1}^i-\lambda_x^i(1-q_x^i)(1-r_x)$

On observe qu'en remplaçant l'ordre simple l_x^i par l'ordre composé l_x^{ii} dans le l_{x+1}^{ai} du modèle pratique on obtient le Λ_{x+1}^{ai} du modèle rationnel¹¹. En effet la différence

$$\Lambda_{x+1}^{ai} - l_{x+1}^{ai} = \lambda_x^i (1 - q_x^i) r_x$$

s'obtient également en tenant compte, dans

$$\Lambda_{x+1}^{ai} - l_{x+1}^{ai} = l_x^{aa} (I_x - i_x) \frac{1 - \frac{1}{2} q_x^a}{1 - \frac{1}{2} q_x^i} (1 - q_x^i),$$

de ce que les équivalences

$$\Lambda^a_x = l^{aa}_x \quad \text{et} \quad \Lambda^i_x = \lambda^i_x$$

sont obtenues (voir paragraphe 1) lorsque

$$I_x - i_x = rac{\lambda_x^i}{l_x^{aa}} r_x rac{1 - rac{1}{2} q_x^i}{1 - rac{1}{2} q_x^a} \, .$$

Il résulte de ce qui précède

que les nombres de commutation

$$D_x^{aii(12)} = v^{x+1} \Lambda_{x+1}^{ai} \left(\ddot{a}_{x+1}^{ii(12)} + \frac{11}{24} \right)$$

$$N_x^{aii(12)} = D_x^{aii(12)} + D_{x+1}^{aii(12)} + \dots + D_{64}^{aii(12)}$$

permettent de calculer la valeur actuelle

$$\ddot{a}_{x}^{aii(12)} = \frac{N_{x}^{aii(12)}}{D_{x}^{aa}}$$

de la rente future viagère d'invalidité

¹¹ Réf. [1], p. 39.

que les nombres de commutation

$$D_{x:\overline{65-x}|}^{aii(12)} = v^{x+1} \Lambda_{x+1}^{ai} \left(\ddot{a}_{x+1:\overline{65-x-1}|}^{ii(12)} + \frac{11}{24} \right)$$

$$N_{x:\overline{65-x}|}^{aii(12)} = D_{x:\overline{65-x}|}^{aii(12)} + D_{x+1:\overline{65-x-1}|}^{aii(12)} + \dots + D_{64:\overline{1}|}^{aii(12)}$$

permettent de calculer la valeur actuelle

$$\ddot{a}_{x:\,\overline{65-x}\,|}^{aii(12)} = \frac{N_{x:\,\overline{65-x}\,|}^{aii(12)}}{D_x^{aa}}$$

de la rente future temporaire d'invalidité.

9 Rente différée de vivant reposant sur la tête d'un actif; calcul avec l_x^{ii}

Désignons par $_{65-x|}\ddot{a}\frac{a}{x}^{(12)}$ (avec un indice supérieur droit \underline{a} souligné) la valeur actuelle d'une rente différée, reposant sur la tête d'un actif d'âge x et payée, s'il est vivant, dès l'âge 65, qu'il soit alors actif ou entre-temps devenu invalide, dans le cas où les rentes d'invalidité sont calculées en tenant compte de la probabilité r_x de réactivité des invalides. Les développements conduisant à

$$_{65-x|\ddot{a}_{x}^{\underline{a}^{(12)}}} = \left(1 - \frac{\lambda_{x}^{i}}{l_{x}^{ii}} \frac{l_{65}^{ii}}{l_{65}}\right) \frac{D_{65}}{D_{x}^{aa}} \ddot{a}_{65}^{(12)}$$

sont ceux du paragraphe 5 ci-dessus dans lesquels on remplace l'ordre simple l_x^i par l'ordre composé l_x^{ii} .

Les deux relations

$$\begin{split} l_{x 65-x} | \ddot{a}_{x}^{(12)} &= l_{x}^{aa} {}_{65-x} | \ddot{a}_{x}^{\underline{a}(12)} + \lambda_{x}^{i} {}_{65-x} | \ddot{a}_{x}^{ii(12)} \\ & {}_{65-x} | \ddot{a}_{x}^{\underline{a}(12)} + \ddot{a}_{x;\overline{65-x}}^{aii(12)} = {}_{65-x} | \ddot{a}_{x}^{aa(12)} + \ddot{a}_{x}^{aii(12)} \end{split}$$

sont vérifiées par la formule de $_{65-x|}\ddot{a}_x^{a}$ indiquée ci-dessus. Ceci en confirme la validité, de même que celle du procédé pour le calcul avec l_x^{ii} des valeurs actuelles de rentes futures d'invalide (paragraphe 8 ci-dessus).

10 Remarques sur le calcul des valeurs actuelles avec l_x^{ii}

Les valeurs actuelles

$$_{65-x}$$
 $\ddot{a}_{x}^{aa(12)} + \ddot{a}_{x}^{aii(12)}$

et

$$_{65-x|}\ddot{a}_{x}^{\underline{a}(12)} + \ddot{a}_{x:\overline{65-x}|}^{aii(12)},$$

qui tiennent compte des développements contenus dans les paragraphes 7, 8 et 9, répondent de deux manières différentes, mais équivalentes, aux besoins exprimés initialement pour l'escompte de la rente différée de retraite et de la rente future d'invalide. Cependant, en plus des valeurs actuelles récapitulées dans le paragraphe 6, calculées pour le même objectif mais de manière traditionnelle, elles font intervenir la réactivité dans les rentes d'invalide. Elles constituent donc une extension du calcul traditionnel, réalisable lorsque l'on dispose de probabilités r_x de réactivité. Observons en passant que la valeur actuelle $\ddot{a}_{x:\,65-x|}^{aa(12)}$ pour l'escompte des cotisations et celle $_{65-x|}\ddot{a}_x^{aa(12)}$ de la rente différée d'actif ne sont pas touchées par la prise en considération de la réactivité.

Les développements des paragraphes 7 à 9 permettent, en partant des probabilités

 q_x^a de décès d'actif, i_x d'invalidité d'actif (modèle pratique), q_x^i de décès d'invalide, r_x de réactivité d'invalide,

de construire les valeurs actuelles dépendant de l'ordre composé l_x^{ii} . Pour atteindre le même objectif les tables VZ 1990 partent des probabilités

 $q_x \qquad \qquad \text{de d\'ec\`es des vivants}$ (groupant les actifs et les invalides), $j_x = \frac{\lambda_x^i}{l_x} \qquad \qquad \text{d'\^etre invalide,}$ $^*I_x = I_x \left(1 - \frac{1}{2}q_x^a\right) \qquad \qquad \text{d'\'etre invalide d'actif (mod\`ele rationnel)}^{12},$ $1 - s_x^i = (1 - q_x^i)(1 - r_x) \qquad \text{de rester invalide.}$

 $^{^{12}}$ désignée par i_x dans les tables. Réf. [3], (23/32).

Observons qu'on peut passer de ces probabilités aux précédentes. En particulier, sans donner les développements qui y conduisent,

$$1 - q_x^i = \frac{j_{x+1}(1 - q_x) - j_x(1 - s_x^i)}{2(1 - j_x) * I_x + j_x(1 - s_x^i) - j_{x+1}(1 - q_x)}.$$

Rappelons encore que la probabilité q_x de décès des vivants est liée aux probabilités q_x^a, q_x^i et i_x par¹³

$$(l_x^{aa} + \lambda_x^i)q_x = l_x^{aa} q_x^a \left(1 - \frac{1}{2}i_x\right) + l_x^{aa} i_x \left(1 - \frac{1}{2}q_x^a\right) \frac{\frac{1}{2}q_x^i}{1 - \frac{1}{2}q_x^i} + \lambda_x^i q_x^i$$

Le choix de l'une ou de l'autre des séries de probabilités de départ n'affecte pas les résultats obtenus. Par contre les valeurs actuelles des tables VZ 1990 pour rentes futures d'invalidité sont construites au moyen du nombre d'invalides 14 $B_x = {}^*I_x \, l_x^{aa}$ alors que, pour éviter un prorata initial de rente qui ne se justifie pas, les développements du paragraphe 8 font intervenir le nombre d'invalides Λ_{x+1}^{ai} . Mais cela ne modifie que peu les résultats numériques.

Pour exprimer la probabilité $1 - s_x^i$ les tables VZ 1990 utilisent une formule de récurrence de l'effectif des invalides 15 qu'on peut écrire

$$\lambda_{x+1}^i = \lambda_x^i (1 - s_x^i) + l_x^{aa} * I_x \left(1 - \frac{1}{2} s_x^i \right).$$

Cette formule fournit de bons résultats numériques, mais elle diffère de la formule exacte

$$\lambda_{x+1}^{i} = \lambda_{x}^{i}(1 - s_{x}^{i}) + l_{x}^{aa} * I_{x} \frac{1 - q_{x}^{i}}{1 - \frac{1}{2}q_{x}^{i}}$$

sur laquelle, en particulier, reposent les développements des paragraphes 8 et 9. La formule ci-dessus découle de celle de Λ^i_{x+1} mentionnée au début du paragraphe 1.

¹³ Réf. [1], p. 31.

¹⁴ Réf. [1], p. 37, formule (6), Réf. [3], formules (30/39).

¹⁵ Réf. [3], formule (23/32) de $1 - s_x^i$.

11 Illustration numérique

Il est intéressant de faire apparaître l'influence numérique de l'introduction, dans les calculs, de la probabilité r_x de réactivité.

C'est à cela que servent les tableaux annexés 1 à 6.

Le tableau 1 fournit les données utilisées:

- a) q_x^a et i_x sont des valeurs arrondies à 5 décimales, calculées à partir des $^*q_x^{aa}$ et *i_x des tables EVK 1980 16 ;
- b) q_x^i provient des mêmes tables¹⁷;
- c) $r_x = 0, 5 \cdot 0, 964867^{x-20} 0, 1$ ajuste des probabilités de réactivité proposées par P. Nolfi (Technische Grundlagen für Pensionsversicherungen VZ 1960, Zürich 1959)¹⁸;
- d) I_x est obtenu indirectement au moyen de la formule de i_x indiquée au paragraphe 1;
- e) q_x est calculé au moyen des autres probabilités (formule du paragraphe 10).

Pour le calcul des valeurs actuelles indiquées dans les tableaux suivants on a en outre adopté:

- le taux d'intérêt de 4 % l'an,
- la valeur $\ddot{a}_{65}^{(12)} = 10,894$ fournie par les tables EVK 1980 4 % 19.

Précisons que les valeurs de tous les tableaux sont calculées avec le maximum de précision possible, puis arrondies au moment de l'impression.

Les tableaux 2 à 4 comprennent des valeurs calculées avec un modèle pratique construit à partir de q_x^a , i_x , q_x^i , et qui donc ne font pas intervenir la réactivité dans les rentes d'invalide.

Les tableaux 5 et 6 comprennent des valeurs qui tiennent compte de la réactivité dans les rentes d'invalide.

La dernière colonne du tableau 6 permet de comparer les valeurs actuelles pour la retraite et l'invalidité

$$A = {}_{65-x}|\ddot{a}_x^{a(12)} + \ddot{a}_{x:\overline{65-x}|}^{ai(12)} = {}_{65-x}|\ddot{a}_x^{aa(12)} + \ddot{a}_x^{ai(12)},$$

¹⁶ Réf. [2], colonnes 6 et 7 des tables.

¹⁷ Réf. [2], colonne 8 des tables.

¹⁸ Valeurs également utilisées dans Réf. [1], p. 47.

¹⁹ Réf. [2], 4%, colonne 51.

calculées sans tenir compte de la réactivité dans les rentes d'invalide, et

$$B = {}_{65-x}|\ddot{a}_x^{\underline{a}(12)} + \ddot{a}_{x:\overline{65-x}|}^{aii(12)} = {}_{65-x}|\ddot{a}_x^{aa(12)} + \ddot{a}_x^{aii(12)},$$

qui tiennent compte de la réactivité. Il apparaît que, dans l'exemple numérique choisi (qui entre dans le cadre de la réalité), l'usage de l_x^{ii} au lieu de l_x^i a pour effet une augmentation de la valeur actuelle. On observe donc que B>A, ce qui provient de ce que $\ddot{a}_x^{aii(12)}>\ddot{a}_x^{ai(12)}$. Il convient, à ce propos, de faire les remarques suivantes:

- a) les définitions données et les conditions envisagées conduisent à $l_x^{ii} < l_x^i$ (cas x=20 mis à part); cela entraı̂ne que $D_x^{ii} < D_x^i$ et que $\ddot{a}_x^{ii(12)} < \ddot{a}_x^{i(12)}$;
- b) la différence $\Lambda_{x+1}^{ai} l_{x+1}^{ai} = \lambda_x^i (1 q_x^i) r_x$ montre que $\Lambda_{x+1}^{ai} > l_{x+1}^{ai}$;
- c) le remplacement, dans le nombre de commutation

$$D_x^{ai(12)} = v^{x+1} l_{x+1}^{ai} \left(\ddot{a}_{x+1}^{i(12)} + \frac{11}{24} \right),$$

de l'ordre l_x^i par l_x^{ii} pour arriver à

$$D_x^{aii(12)} = v^{x+1} \Lambda_{x+1}^{ai} \left(\ddot{a}_{x+1}^{ii(12)} + \frac{11}{24} \right),\,$$

a donc deux effets opposés.

La remarque c) est également valable pour les valeurs actuelles $\ddot{a}_x^{ai(12)}$ et $\ddot{a}_x^{aii(12)}$. On constate que l'effet de la remarque a) est moins fort que celui de b).

Quant à l'importance numérique du changement on peut observer qu'elle est faible. L'augmentation de B par rapport à A passe par un maximum pour x=55 mais n'atteint pas 1%.

12 Conclusion

D'ordinaire le calcul de valeurs actuelles pour rentes de retraite et d'invalidité se fait à partir des trois catégories de probabilités d'invalidité d'actif, de décès d'actif et de décès d'invalide. Les formules actuarielles nécessaires pour cela sont connues et utilisées depuis longtemps. Ce n'est pas le cas pour une extension dont l'objectif est de prendre en considération les probabilités de réactivité d'invalide dans les rentes d'invalidité. L'étude de cette question fait apparaître que ce but peut être atteint au moyen de formules correctement adaptées et dont l'élaboration est intéressante. Les conséquences de l'extension envisagée sur le montant des valeurs actuelles

Les conséquences de l'extension envisagée sur le montant des valeurs actuelles sont faibles. De ce point de vue, prendre cette extension en considération dans l'élaboration de tables actuarielles n'apparaît donc pas comme indispensable, mais dépend plutôt d'appréciations personnelles.

Marc Chuard "Zürich" Versicherungs-Gesellschaft Mythenquai 2 8022 Zürich Philippe Chuard av. de Lavaux 93 1009 Pully

Références

- [1] Philippe Chuard: Mathématiques actuarielles des caisses de pensions. Institut de sciences actuarielles de l'Université de Lausanne, 1981.
- [2] Technische Grundlagen der Eidgenössischen Versicherungskasse EVK 1980, Bern, 1980.
- [3] Technische Grunldagen für Pensionsversicherungen VZ 1990. Versicherungskasse der Stadt Zürich, 1990.

Annexe

Tableau 1

x	q a	ı×	$q_{\mathbf{x}}^{\mathbf{i}}$	rx	i _x	q_{x}
20	0.00116	0.00010	0.02000	0.40000	0.00010	0.00116
21	0.00105	0.00014	0.02000	0.38243	0.00010	0.00105
22	0.00095	0.00017	0.02000	0.36548	0.00010	0.00095
23	0.00086	0.00020	0.02000	0.34913	0.00010	0.00087
24	0.00078	0.00023	0.02000	0.33335	0.00010	0.00079
25	0.00071	0.00025	0.02000	0.31813	0.00010	0.00072
26	0.00065	0.00027	0.02000	0.30344	0.00010	0.00066
27	0.00060	0.00029	0.02000	0.28926	0.00010	0.00061
28	0.00056	0.00030	0.02000	0.27559	0.00010	0.00058
29	0.00053	0.00031	0.02000	0.26239	0.00010	0.00055
30	0.00051	0.00032	0.02000	0.24966	0.00010	0.00053
31	0.00050	0.00035	0.02000	0.23737	0.00012	0.00052
32	0.00052	0.00038	0.02000	0.22552	0.00014	0.00054
33	0.00054	0.00042	0.02000	0.21408	0.00017	0.00056
34	0.00058	0.00045	0.02000	0.20305	0.00018	0.00061
35	0.00064	0.00049	0.02000	0.19240	0.00021	0.00067
36	0.00072	0.00052	0.02000	0.18213	0.00022	0.00075
37	0.00081	0.00056	0.02000	0.17222	0.00024	0.00085
38	0.00091	0.00059	0.02000	0.16265	0.00026	0.00095
39	0.00102	0.00063	0.02000	0.15343	0.00028	0.00107
40	0.00114	0.00066	0.02000	0.14452	0.00030	0.00119
41	0.00128	0.00077	0.02010	0.13593	0.00040	0.00134
42	0.00144	0.00089	0.02020	0.12764	0.00050	0.00150
43	0.00162	0.00102	0.02030	0.11965	0.00060	0.00169
44	0.00182	0.00115	0.02040	0.11193	0.00070	0.00190
45	0.00204	0.00129	0.02050	0.10448	0.00080	0.00213
46	0.00228	0.00152	0.02074	0.09730	0.00100	0.00239
47	0.00254	0.00187	0.02100	0.09037	0.00131	0.00267
48	0.00282	0.00232	0.02129	0.08368	0.00170	0.00297
49	0.00312	0.00290	0.02160	0.07723	0.00221	0.00331
50	0.00344	0.00358	0.02194	0.07100	0.00280	0.00367
51	0.00379	0.00449	0.02230	0.06499	0.00361	0.00407
52	0.00415	0.00561	0.02269	0.05919	0.00461	0.00450
53	0.00453	0.00695	0.02310	0.05360	0.00581	0.00497
54	0.00494	0.00850	0.02354	0.04821	0.00721	0.00549
55	0.00536	0.01026	0.02400	0.04300	0.00882	0.00605
56	0.00581	0.01282	0.02449	0.03797	0.01123	0.00667
57	0.00629	0.01659	0.02500	0.03313	0.01484	0.00737
58	0.00679	0.02158	0.02554	0.02845	0.01967	0.00816
59	0.00731	0.02778	0.02610	0.02394	0.02570	0.00905
60	0.00787	0.03515	0.02669	0.01958	0.03293	0.01009
61	0.00845	0.04245	0.02730	0.01538	0.04017	0.01124
62	0.00905	0.04960	0.02794	0.01133	0.04741	0.01251
63	0.00968	0.05650	0.02860	0.00742	0.05466	0.01388
64	0.01034	0.06306	0.02929	0.00364	0.06192	0.01535

Tableau 2

x	$\Lambda_{x}^{a} = 1_{x}^{aa}$	$\Lambda_{x}^{i} = \lambda_{x}^{i}$	1 _x	1 x	1 x
20 21 22 23 24	100000 99874 99759 99654 99559	0 10 20 29 38	100000 99884 99779 99683 99597	100000 98000 96040 94119 92237	0 10 10 10
25 26 27 28 29	99471 99390 99316 99246 99181	48 56 65 74 82	99519 99447 99381 99320 99263	90392 88584 86813 85076 83375	10 10 10 10
30 31 32 33 34	99119 99059 98998 98932 98863	90 97 107 118 132	99209 99156 99105 99051 98995	81707 80073 78472 76902 75364	9 12 14 16
35	98787	147	98935	73857	18
36	98704	165	98868	72380	20
37	98611	183	98794	70932	21
38	98507	203	98710	69514	24
39	98392	224	98616	68123	25
40	98264	247	98511	66761	28
41	98122	271	98394	65426	29
42	97958	304	98262	64111	39
43	97768	346	98115	62816	48
44	97551	397	97949	61540	58
45	97306	457	97762	60285	67
46	97029	525	97554	59049	77
47	96711	610	97321	57824	96
48	96340	722	97061	56610	125
49	95905	868	96773	55405	162
50	95394	1058	96453	54208	209
51	94800	1299	96099	53019	264
52	94100	1607	95707	51836	338
53	93278	1999	95276	50660	428
54	92315	2487	94802	49490	535
55	91197	3085	94282	48325	656
56	89908	3803	93711	47165	792
57	88382	4704	93086	46010	994
58	86522	5878	92400	44860	1291
59	84245	7401	91646	43714	1674
60	81480	9337	90817	42573	2128
61	78177	11724	89901	41437	2636
62	74403	14487	88890	40306	3083
63	70234	17544	87778	39180	3462
64	65752	20808	86560	38059	3765
65	61043	24188	85231	36944	3990

Tableau 3

×	D _x aa	$D_{\mathbf{x}}^{\mathbf{i}}$	$^{\mathrm{D}}\mathbf{x}$	$N_{x:65-x}^{i(12)}$	N _x ai(12)	$N_{x:65-x}^{ai}$
20	45639	45639	45639	714610	32880	12291
21	43828	43006	43832	670178	32807	12221
22	42094	40525	42102	628310	32735	12153
23	40432	38187	40444	588857	32670	12091
24	38840	35984	38855	551680	32606	12031
25	37313	33908	37331	516648	32543	11971
26	35849	31951	35869	483637	32485	11916
27	34444	30108	34467	452531	32429	11864
28	33096	28371	33121	423219	32373	11812
29	31803	26734	31829	395598	32323	11765
30	30560	25192	30588	369571	32276	11722
31	29367	23738	29396	345045	32230	11680
32	28220	22369	28251	321934	32176	11630
33	27117	21078	27149	300157	32116	11576
34	26055	19862	26090	279636	32047	11513
35	25034	18716	25072	260298	31975	11449
36	24051	17637	24091	242077	31896	11379
37	23104	16619	23147	224907	31817	11309
38	22192	15660	22238	208727	31732	11235
39	21314	14757	21362	193481	31646	11161
40	20467	13906	20519	179114	31557	11084
41	19652	13103	19706	165576	31466	11008
42	18864	12346	18923	152820	31352	10912
43	18104	11631	18168	140801	31216	10800
44	17369	10957	17439	129479	31059	10674
45	16659	10321	16737	118814	30886	10536
46	15972	9720	16059	108768	30697	10387
47	15308	9153	15404	99308	30473	10216
48	14662	8616	14772	90401	30196	10008
49	14035	8108	14162	82018	29854	9758
50	13423	7628	13572	74131	29433	9458
51	12826	7173	13002	66711	28929	9110
52	12242	6744	12451	59734	28315	8701
53	11668	6337	11918	53177	27576	8228
54	11104	5953	11403	47016	26699	7690
55	10547	5589	10904	41230	25677	7095
56	9998	5245	10421	35799	24507	6454
57	9451	4920	9954	30703	23115	5741
58	8896	4612	9500	25924	21403	4934
59	8329	4322	9060	21444	19302	4038
60	7746	4047	8633	17249	16775	3082
61	7146	3788	8217	13321	13816	2125
62	6539	3542	7812	9645	10548	1262
63	5935	3311	7418	6209	7087	580
64	5343	3093	7034	2998	3539	143
65	4769	2887	6659	0	0	0

Tableau 4

x	ä ⁱ⁽¹²⁾ x	$\ddot{a}_{x:65-x}^{i(12)}$	65-x ä aa (12)	65-x ä x (12)	ä ^{ai(12)} x	$\ddot{a}_{\mathbf{x}:65-\mathbf{x}}^{\text{ai}}$
20	16.347	15.658	1.138	1.590	0.720	0.269
21	16.315	15.583	1.185	1.655	0.749	0.279
22	16.280	15.504	1.234	1.723	0.778	0.289
23	16.244	15.421	1.285	1.794	0.808	0.299
24	16.205	15.331	1.338	1.868	0.839	0.310
25	16.164	15.237	1.392	1.944	0.872	0.321
26	16.121	15.137	1.449	2.023	0.906	0.332
27	16.075	15.030	1.508	2.106	0.941	0.344
28	16.026	14.917	1.570	2.191	0.978	0.357
29	15.974	14.797	1.634	2.280	1.016	0.370
30	15.919	14.670	1.700	2.373	1.056	0.384
31	15.860	14.535	1.769	2.469	1.097	0.398
32	15.798	14.392	1.841	2.569	1.140	0.412
33	15.732	14.240	1.916	2.674	1.184	0.427
34	15.662	14.079	1.994	2.782	1.230	0.442
35	15.588	13.907	2.075	2.895	1.277	0.457
36	15.509	13.726	2.160	3.013	1.326	0.473
37	15.425	13.533	2.249	3.136	1.377	0.489
38	15.336	13.328	2.341	3.265	1.430	0.506
39	15.242	13.111	2.438	3.399	1.485	0.524
40	15.142	12.881	2.539	3.539	1.542	0.542
41	15.036	12.636	2.644	3.685	1.601	0.560
42	14.925	12.378	2.754	3.838	1.662	0.578
43	14.809	12.105	2.870	3.998	1.724	0.597
44	14.687	11.817	2.991	4.165	1.788	0.615
45	14.559	11.512	3.119	4.341	1.854	0.632
46	14.425	11.190	3.253	4.525	1.922	0.650
47	14.286	10.850	3.394	4.718	1.991	0.667
48	14.142	10.493	3.544	4.920	2.059	0.683
49	13.994	10.116	3.702	5.134	2.127	0.695
50 51 52 53	13.841 13.683 13.521 13.353 13.181	9.719 9.300 8.858 8.391 7.898	3.871 4.051 4.244 4.453 4.679	5.359 5.596 5.846 6.111 6.391	2.193 2.255 2.313 2.363 2.404	0.705 0.710 0.711 0.705 0.693
55	13.003	7.377	4.926	6.688	2.434	0.673
56	12.820	6.825	5.197	7.002	2.451	0.645
57	12.632	6.241	5.498	7.336	2.446	0.608
58	12.438	5.620	5.841	7.692	2.406	0.555
59	12.238	4.962	6.238	8.071	2.318	0.485
60	12.032	4.262	6.708	8.476	2.166	0.398
61	11.820	3.517	7.271	8.907	1.934	0.297
62	11.600	2.723	7.946	9.366	1.613	0.193
63	11.373	1.875	8.754	9.850	1.194	0.098
64	11.138	0.969	9.725	10.360	0.662	0.027
65	10.894	0.000	10.894	10.894	0.000	0.000

Tableau 5

x	l _x	$\Lambda_{\mathbf{x}}^{\mathbf{a}i}$	$D_{\mathbf{x}}^{\mathtt{ii}}$	$N_{\mathbf{x}:\overline{65-\mathbf{x}}}^{ii}$	N _x aii(12)	$N_{x:65-x}^{aii(12)}$
20	100000	0	45639	90608	32880	12291
21	58800	10	25803	54061	32868	12280
22	35587	14	15016	33201	32853	12264
23	22129	17	8978	20953	32834	12245
24	14115	20	5507	13565	32811	12223
25	9222	23	3459	8997	32785	12197
26	6162	25	2223	6105	32757	12168
27	4206	27	1459	4232	32726	12137
28	2930	29	977	2994	32692	12104
29	2080	29	667	2159	32657	12069
30	1504	30	464	1586	32621	12033
31	1106	31	328	1184	32582	11995
32	826	34	236	899	32540	11953
33	627	37	172	692	32494	11907
34	483	41	127	541	32442	11856
35	377	44	96	428	32385	11801
36	299	48	73	343	32323	11741
37	239	51	56	278	32256	11676
38	194	55	44	228	32183	11606
39	159	58	35	188	32105	11533
40 41 42 43 44	132 111 94 80 69	61 64 75 86 99	28 22 18 15	157 132 111 95 81	32022 31933 31828 31707 31567	11454 11372 11277 11168 11044
45	60	111	10	70	31409	10907
46	53	124	9	60	31231	10756
47	47	146	7	52	31023	10583
48	42	179	6	45	30767	10377
49	37	221	5	39	30452	10130
50 51 52 53 54	34 31 28 26 24	275 337 420 521 639	5 4 4 3	34 30 26 22	30063 29590 29006 28294 27434	9834 9487 9076 8596 8044
55	22	773	3	16	26415	7426
56	21	922	2	14	25229	6751
57	19	1135	2	12	23807	6001
58	18	1443	2	10	22054	5153
59	17	1837	2	8	19895	4212
60 61 62 63 64	16 16 15 14 14	2301 2814 3259 3622 3892	2 1 1 1	6 5 4 2 1	17290 14232 10845 7259 3604	3211 2208 1307 597 146
65	13	4064	1	0	0	0

Tableau 6

x	ä ⁱⁱ⁽¹²⁾ x	äii <u>(12)</u> x:65-x	$65-x \ddot{a} \frac{a}{x} $	ā ^{aii(12)}	$\ddot{a}_{x:65-x}^{aii(12)}$	B/A
20 21 22 23 24	1.986 2.096 2.212 2.335 2.466	1.985 2.095 2.211 2.334 2.464	1.590 1.655 1.723 1.794 1.868	0.720 0.750 0.780 0.812 0.845	0.269 0.280 0.291 0.303 0.315	1.0000 1.0007 1.0014 1.0019
25 26 27 28 29	2.604 2.752 2.909 3.076 3.255	2.601 2.747 2.901 3.065 3.238	1.944 2.024 2.106 2.192 2.281	0.879 0.914 0.950 0.988 1.027	0.327 0.339 0.352 0.366 0.379	1.0029 1.0032 1.0035 1.0038 1.0040
30 31 32 33 34	3.445 3.648 3.864 4.095 4.339	3.420 3.613 3.816 4.028 4.249	2.374 2.470 2.571 2.675 2.784	1.067 1.109 1.153 1.198 1.245	0.394 0.408 0.424 0.439 0.455	1.0041 1.0042 1.0043 1.0045
35 36 37 38 39	4.598 4.872 5.161 5.464 5.780	4.479 4.715 4.957 5.202 5.448	2.898 3.016 3.140 3.268 3.403	1.294 1.344 1.396 1.450 1.506	0.471 0.488 0.505 0.523 0.541	1.0049 1.0051 1.0052 1.0054
40 41 42 43 44	6.108 6.446 6.794 7.150 7.510	5.692 5.931 6.161 6.379 6.580	3.543 3.690 3.844 4.005 4.173	1.565 1.625 1.687 1.751 1.817	0.560 0.579 0.598 0.617 0.636	1.0056 1.0056 1.0057 1.0059
45 46 47 48 49	7.872 8.233 8.590 8.941 9.282	6.761 6.915 7.040 7.131 7.183	4.350 4.535 4.729 4.934 5.150	1.885 1.955 2.027 2.098 2.170	0.655 0.673 0.691 0.708 0.722	1.0063 1.0065 1.0067 1.0070
50 51 52 53 54	9.610 9.921 10.213 10.480 10.722	7.192 7.154 7.064 6.919 6.716	5.378 5.618 5.872 6.141 6.426	2.240 2.307 2.369 2.425 2.471	0.733 0.740 0.741 0.737 0.724	1.0077 1.0082 1.0086 1.0090
55 56 57 58 59	10.933 11.112 11.256 11.362 11.428	6.450 6.121 5.724 5.259 4.724	6.727 7.045 7.382 7.740 8.122	2.504 2.523 2.519 2.479 2.389	0.704 0.675 0.635 0.579 0.506	1.0095 1.0094 1.0092 1.0089
60 61 62 63 64	11.452 11.432 11.367 11.257 11.099	4.117 3.439 2.688 1.864 0.968	8.526 8.954 9.404 9.877 10.372	2.232 1.992 1.658 1.223 0.675	0.415 0.309 0.200 0.101 0.027	1.0075 1.0063 1.0047 1.0029 1.0012
65	10.894	0.000	10.894	0.000	0.000	1.0000

Résumé

L'étude présentée fournit les moyens actuariels de tenir compte de la réactivité des invalides dans les rentes futures d'invalidité. Elle permet d'apprécier les conséquences numériques de cette éventualité.

Zusammenfassung

Diese Abhandlung zeigt, mit welchen versicherungsmathematischen Mitteln die Reaktivierung der Invaliden in den Barwerten der anwartschaftlichen Invalidenrenten berücksichtigt werden kann. Anhand eines Beispiels bietet sie die Möglichkeit, sich ein Bild vom numerischen Einfluss der Reaktivierung zu machen.

Summary

This paper gives actuarial methods which respect the impact of rehabilitation on contingent invalidity annuties. By way of an example, one can see the numerical consequences of such a rehabilitation.