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Bruno Koller, Riehen

Bayesian Graduation on a Spreadsheet

1 Spreadsheets

1.1 Characteristics of spreadsheets

The first spreadsheet, Visicalc, was developed by Daniel Bricklin and Robert
Frankston in 1978 (see Licklider; 1989). In the meantime there are many
similar products; the most widespread is "1-2-3" from Lotus.
A spreadsheet consists of cells, arranged in a matrix. All cells together
form the sheet. A cell is identified by a cell-address. A cell may contain a

function assignment; together with the arguments of the function, it determines

uniquely the cellvalue of the cell. The arguments are cellvalues of other cells;

referencing the arguments is done by celladdress. All function assignments
together form the spreadsheet program.
In a spreadsheet cells can be concatenated freely: a cellvalue may serve as

input to another cell, its cellvalue in turn may be the input for another cell.

On entering a new function assignment the cellvalues are recalculated, thus
the sheet contains always the actual results.

The following example explains the working of a spreadsheet. The program
calculates the present value of an annually payable annuity. The upper part
of the table shows the cellvalues, as seen on the computer screen (formatted
in a suitable manner). The numbers on the left and the letters above are not

part of the sheet. They are coordinates for the cell-addresses. For instance,
the cell with address B3 has the value 10. With the celladdress one can find
in the lower part of the table the corresponding function assignment.
The simplest case of a function is the constant function. In cell A\ we have, for
example, the constant function "interest i" and in cell ßl the constant function
0.03. Cell B5 has been assigned the function ä{v,n,R) R- (1 — v")/(l —v); the

argument v is stored in cell B2 - itself a function defined as v(i) 1/(1 + i).

The isolated constant functions which are not arguments to a function are

not part of the program: they are only comments.
Function assignments may involve several operations. Besides the four basic

arithmetic operations (+, —, *, /) and the exponential operation Q most
spreadsheets offer numerous higher functions. We shall use the exponential
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A B C

1 interest i
2 discount factor v

0.03
0 .970874

103 duration n
4 annuity R 1000

87865 present value ä
6

AI: interest i
Bl: +0.03
A2: discount factor v
B2: +1/(1+B1)
A3: duration n
B3: +10
A4: annuity R

B4: +1000
A5: present value ä
B5: +B4*(1-B2ÄB3)/(1-B2)

function ex (written @EXP (x)) and the matrix-operations inversion and

multiplication.
No programming language fits every application well. Spreadsheets are best

suited for calculation-oriented problems: ledger, financial analysis, statistics,

modelling, systems analysis and (Monte-Carlo-)simulation. Actuarial problems
that can be solved well in spreadsheets are: calculation of present values,

reserves, frequency and claim distributions, modelling of collectives, prognosis
and graduation. Most spreadsheets offer preprogrammed financial functions.
Spreadsheets are inappropriate for symbol manipulation. Also very
calculation-intensive problems, like the evaluation of a aggregate claim distribution,
may be out of reach.



69

1.2 Spreadsheets as objectbased, functional languages

Programming languages can be divided into generations. Normally machine
and assembler languages are classified as first and second generation
languages. Languages of the third and fourth generation differ in their
organisations: imperative programming languages as Fortran, C and Pascal

belong to the third generation, declarative languages (Spreadsheets, Lisp,
Prolog, FP, Hope) to the fourth generation (Schneider, 1986).

For commercial applications imperative languages dominate. Imperative
languages specify explicitly the order of computation in a program. Declarative
languages on the other hand do not control the stepwise transformation of
an initial state to a final state. They describe a problem, identifying directly
the relations between input and output data. Declarative languages must have

a mechanism to find the solution to a problem; the programmer does not
specify how to solve it.

When the dependencies between input and output are formulated as functions
from the admissible input data to the correct output data, we speak of
functional or applicative programming languages. If the dependencies are
in the form of relations, they are called relational programming languages.
Spreadsheets, Lisp and Logo are functional languages; Prolog is a relational
language.

A programming language is objectbased, if it supports "objects". Objects have

evolved from modules. They are informationcarriers, which can be queried and

manipulated by well-defined operations. Programs in objectbased languages
are ensembles of objects exchanging messages. Ada is an example of a object-
based programming language.

The cells of a spreadsheet can be understood as objects. A cell has a

value, which can be queried by other cells and which can be changed
subject to other cellvalues. Each cell acts as a small computer. A sheet

consists of numerous, communicating objects. A. Kay calls spreadsheets
"tissuelike superobjects" (Kay, 1984). Spreadsheets are object-based, but not
objectoriented languages like Smalltalk or C + +; missing are the higher
language elements "classbuilding" and "inheritance" (see Wegner, 1989).

Functional languages have several advantages over traditional imperative
languages: simple grammar, clear and unique semantics. The so-called
referential transparency (lack of a computing history) opens the possibility to

program transformation: first write a program concentrating on clarity and let
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a compiler transform it, in a second step, to an efficient, semantically equivalent

program Thanks to their data-centered approach declarative languages are a

natural fit for parallel programming On today's computers these languages
are not as fast as imperative languages, this will certainly change with the

upcoming of parallel computers

2 Bayesian graduation

2 1 Graduation as statistical problem

Graduation is the process of drawing a curve through a sequence of sample
data, the curve should be smooth, yet fit the given data to a certain degree

There are numerous graduation methods Most of them are easy to implement
on a spreadsheet Especially the method of "moving averages" can quickly be

programmed for a first impression (see eg Miller 1946, chapter 4)

One would expect that most graduation procedures treat graduation as a

statistical problem, given the stochastic nature of sampling This is not the

case, for classical statistics deal only with observation The sample is the

only source of information pre-existmg experience is neglected But without
the assumption that "in reality" succeeding data are correlated, one has to
draw the curve through the observed data points A full integration ot the

graduation problem into the theory of statistics is possible with Bayesian
statistics the correlation of adjacent values is expressed as prior information
The proposal of graduation using Bayesian statistics stems from George S

Kimeldorf and Donald A Jones (Kimeldorf/Jones, 1967)

Statistics deal with inference from observational data, produced by an
unknown probability distribution, about the underlying distribution For
graduation of n data points we have to assess a n-dimensional probability
distribution We will use its n-dimensional vector of expectations as graduated
data, but other moments or quantiles may serve better regarding the purpose
of the graduation
For Bayesian statistics the pre-existing information about the parametric
values to be estimated is quantified as probability distribution over the

parameter space We quantify smooth paths in our prior distribution higher
than unsmooth paths Combining the prior information with the actual
observations according to Bayes' theorem defines the posterior distribution
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The posterior distribution will still assign smooth curves higher probabilities
than uneven curves, producing a graduation.

Bayesian graduation is computationally intensive - it can only be done on
a computer. In turn the method is theoretically sound. The knowledge,
which justifies graduation, is specified explicitly and integrated with never
observations to give a accurate picture of the available information.

2.2 Graduation of health insurance data

We illustrate Bayesian graduation using an example from health insurance.

More than realistic assumptions we shall stress the methodological aspects of
the method.

The data stem from a Swiss investigation in the years 1972/73 about average
sickness days of males, age x 30 to 65. The average number of days,
the 36-dimensional vector u, are stored in column 5, rows 23 to 58 of the

spreadsheet (see table in the appendix). As we see in graph 1 (see Appendix),
the observed data vary around a climbing slope.

For simplicity we assume that the sample distribution may be approximated
by a 36-dimensional normal distribution. A multivariate normal distribution
is given by the vector of expectations and the covariance matrix. Let the

covariances be known; the expectations have to be estimated. We make the

usual assumption that the random variables of the sample distribution are

independent; the covariance matrix B (by) becomes a diagonal matrix:
h:j > 0 for i j and b,j 0 otherwise. In the table we set the variances all to

four, i.e. bu 4.

The prior distribution weighs our pre-existing knowledge about the 36

expected values for the ages 30 to 65 of the sample distribution. As prior
distribution we choose a 36-dimensional normal distribution. It is defined by
the 36-dimensional expectation vector v and the 36 x 36 covariance matrix A.

Let the vector v of the expectations be defined by

r(x) k, ek2,x-30)/35 x 30, 31, 65.

In the example k\ and /c2 are 1 respectively 2.772589, giving: r(30) 1 and

r(65) 16. The expected values of the prior distribution are plotted in graph 1.
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We follow the advice of Kimeldorf/Jones and define the covariance matrix
A (a,j) as

a,j ki for i j,
atJ ki fcj-7' for i > j,
a,j ki • k\J~'] for i < j,
ki >0, 0 < k4 < 1.

We observe that the elements of the matrix diagonal, £3, are the variances

of the random variables; k^~jX respectively are the correlations of the

random variables i and j. This way two consecutive random variables are

more correlated than distant random variables. One can easily show that the

matrix A is positive definite. In our example ki has been set to 1 and /c4 to
0.9.

Let us state our prior information once again: we judge a exponential increase

of sickness days as most probable. The uncertainty about the number of days
has been expressed as a variance of 1. And we assumed a correlation of
sickness days decreasing exponentially with increasing distance.

We now calculate the posterior distribution. One can show (see for instance

DeGroot, 1970, page 175), that normal distributions form a conjugate family:
Bayes' theorem transforms a normal prior distribution for any normal sample
distribution into a normal posterior distribution. In our case we get a 36

dimensional normal distribution with expectation vector

w (A~l + ß"1)"1 (B~l -u + A~l-v)

and covariance matrix

{A~x

The expectation vector w may be written in a form which is easier to calculate:

w u + (A~[ + ß-'r1 • [(ß-1 • u + A~' v) - (A~' +B~')- u]

u+ (A~l + ß"1)"1 • [A~l (u - u)]

u+ [(A"1 + ß-'r1 • A-1] -{v-u)
u + [A {A~x + ß~')]_1 (v — u)

u + (A- ß-1 +/)"' - (v-u).

I is the unit matrix.
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To calculate the vector we proceed as follows (see sheet in the appendix, rows
23 to 58): column B contains the observed data u. The diagonal elements
1 /bj, of the matrix B~x are stored in column C. The vector v is calculated in
column D using the parameters k\ (cell CI) and k3 (cell C8). The difference
vector r of v and u is in column E. The 36 x 36-matrix C (ctJ), columns /
to AR, is defined as (A B~x + I):

clJ k3/blJ + \ for i j
c,j (k3/b,j) • k\~' fori < j
c,j (k3/b,j) k'^1 for i > j.

Using the matrix operations we invert C and store the matrix D C-1 in
columns AT to CC. The matrix D is then multiplied with the vector r to give
the vector s (column F). The vector w in column G is the sum of the vectors
u and s. We get:

C (A- B~x +1)
D C"1

r v — u

s D r

w u + s.

In graph 1 besides the observed values and the expectations of the prior
distribution, one can see the expected values of the posterior distribution,
which defines the graduation curve.

Graduations with different parameters k3 and k4 are plotted in the graphs
2 to 5. They give an impression of how the prior distribution influences
the graduation curve. In graph 2 the variance parameter k3 is increased to
2, i.e. the pre-information about the number of sickness days is considered
less reliable. The graduation curve follows rather the observational data. An
increase of the parameter k4 from 0.9 to 0.95 has the effect of smoothing; this
amounts to a higher interdependency of the yearly sickness days (graph 3).

When we decrease the variance from 1 to 0.5 - assuming one knows quite well
the average number of sickness days - the graduation curve is nearly identical
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with prior data (graph 4) Decreasing the postulated correlations from 0.9 to
0.75 produces a curve with better fit (graph 5)

B. Koller
Dinkelbergstrasse 21

4125 Riehen
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Appendix

1

2

3

4

5

6

7

8

9

10
11

BAYESIAN GRADUATION OF HEALTH STATISTICS DATA

Prior distribution: multivariate normal distribution
Parameters for expectation vector v

kl 1.000000
k2 2.772589

Parameters for covariance matrix A

k3 1.0
k4 0.9

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

X u 1/bj j v r s w

30 0.929 0. 250 1. 000 0.071 0 .434 1.363
31 1.853 0 .250 1. 082 -0.771 -0.345 1.508
32 1.511 0 .250 1.172 -0.339 0. 137 1. 648
33 5 .386 0. 250 1.268 -4.118 -3.580 1. 806
34 1.680 0. 250 1. 373 -0.307 0 110 1 790
35 1.810 0. 250 1.486 -0.324 -0.017 1.793
36 0. 820 0. 250 1. 608 0.788 0.987 1. 807
37 1 .973 0 .250 1.741 -0.232 -0.087 1.886
38 3.521 0 .250 1.885 -1.636 -1.547 1.974
39 2.962 0.250 2 040 -0.922 -0.970 1.992
40 0 000 0. 250 2 208 2 208 1.971 1.971
41 0.411 0 .250 2 .390 1.979 1.654 2.065
42 3 180 0. 250 2 .587 -0.593 -0.922 2.258
43 1.806 0 .250 2.801 0.995 0.610 2.416
44 0 .170 0. 250 3.031 2.861 2.448 2.618
45 4.183 0. 250 3 .281 -0.902 -1.219 2.964
46 1.013 0.250 3 552 2 539 2.251 3 .264
47 7 .429 0. 250 3.845 -3.584 -3.728 3 701
48 0.361 0. 250 4 .162 3 801 3 602 3.963
49 8.286 0 .250 4 505 -3.781 -3.846 4 440
50 2 .333 0. 250 4 876 2 543 2 .408 4.741
51 3.671 0. 250 5 278 1 607 1. 527 5.198
52 10.656 0. 250 5.713 -4.943 -4.887 5.769
53 9 676 0.250 6 184 -3.492 -3.558 6 .118
54 3 591 0 .250 6 694 3 103 2 .726 6.317
55 11.440 0 .250 7 246 -4.194 -4.742 6.698
56 1.829 0. 250 7.843 6 .014 5. 039 6 .868
57 4 .656 0 .250 8.490 3.834 2.686 7 342
58 2 130 0 .250 9 190 7 060 5 .869 7.999
59 14.369 0 .250 9 .947 -4.422 -5.360 9 009
60 3 .730 0. 250 10.767 7 037 6 060 9 790
61 8 174 0. 250 11.655 3.481 2.773 10 947
62 15.519 0 .250 12.616 -2.903 -3.204 12.315
63 10.286 0 250 13.656 3 370 3 304 13.590
64 27.575 0.250 14.781 -12.794 -12.451 15.124
65 11.667 0. 250 16.000 4 .333 4.431 16.098
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

I J K

ell ci2 ci3

1.250 0.225 0.203
0.225 1.250 0.225
0.203 0.225 1.250
0.182 0.203 0.225
0.164 0.182 0.203
0.148 0.164 0.182
0.133 0.148 0.164
0.120 0.133 0.148
0.108 0.120 0.133
0.097 0.108 0.120
0.087 0.097 0.108
0.078 0.087 0.097
0.071 0.078 0.087
0.064 0.071 0.078
0.057 0.064 0.071
0.051 0.057 0.064
0.046 0.051 0.057
0.042 0.046 0.051
0.038 0.042 0.046
0.034 0.038 0.042
0.030 0.034 0.038
0.027 0.030 0.034
0.025 0.027 0.030
0.022 0.025 0.027
0.020 0.022 0.025
0.018 0.020 0.022
0.016 0.018 0.020
0.015 0.016 0.018
0.013 0.015 0.016
0.012 0.013 0.015
0.011 0.012 0.013
0.010 0.011 0.012
0.009 0.010 0.011
0.008 0.009 0.010
0.007 0.008 0.009
0.006 0.007 0.008

AP AQ AP

Ci34 ci35 ci36

0.008 0.007 0.006
0.009 0.008 0.007
0.010 0.009 0.008
0.011 0.010 0.009
0.012 0.011 0.010
0.013 0.012 0.011
0.015 0.013 0.012
0.016 0.015 0.013
0.018 0.016 0.015
0.020 0.018 0.016
0.022 0.020 0.018
0.025 0.022 0.020
0.027 0.025 0.022
0.030 0.027 0.025
0.034 0.030 0.027
0.038 0.034 0.030
0.042 0.038 0.034
0.046 0.042 0.038
0.051 0.046 0.042
0.057 0.051 0.046
0.064 0.057 0.051
0.071 0.064 0.057
0.078 0.071 0.064
0.087 0.078 0.071
0.097 0.087 0.078
0.108 0.097 0.087
0.120 0.108 0.097
0.133 0.120 0.108
0.148 0.133 0. 120
0.164 0.148 0.133
0.182 0.164 0.148
0.203 0.182 0.164
0.225 0.203 0.182
1.250 0.225 0.203
0.225 1.250 0.225
0.203 0.225 1.250
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AT AU AV CA CB CC

di 1 di2 di3 di 3 4 di35 di 3 6

0 .864 -0.106 -0.082 0 000 0 000 0 000
-0.106 0 877 0.096 0 000 0 000 0 000
-0.082 -0.096 0. 884 0. 000 0 000 0 000
-0.064 -0.075 -0.090 0 000 0.000 0. 000
-0.050 0.058 0.070 0 000 0 000 0 000
-0.039 -0.045 -0.054 0 000 0. 000 0 000
-0.030 -0.035 0 042 0.000 0 000 0 000
-0.023 0 027 -0.033 0 000 0 000 0 000

0 018 -0.021 -0.025 0. 000 0.000 0 000
-0.014 -0.016 -0.020 0. 000 0 000 0 000
0.011 -0.013 -0.015 0 000 0 000 0 000

-0.009 -0.010 -0.012 0 000 0. 000 0. 000
-0.007 -0.008 -0.009 -0.001 0 000 0 000
-0.005 -0.006 -0.007 -0.001 -0.001 -0.001
-0.004 -0.005 -0.006 -0.001 -0.001 -0.001
-0.003 -0.004 -0.004 0 001 -0.001 -0.001
-0.002 -0.003 -0.003 -0.002 -0.001 -0.001
-0.002 -0.002 -0.003 -0.002 -0.002 -0.001
-0.001 -0.002 -0.002 0.003 -0.002 -0.002
-0.001 -0.001 -0.002 -0.003 -0.003 -0.002
-0.001 -0.001 -0.001 -0.004 -0.004 -0.003

0 001 -0.001 -0.001 -0.006 -0.005 -0.004
0.001 0.001 -0.001 -0.007 -0.006 0.005
0. 000 0 000 -0.001 -0.009 -0.008 -0.007
0 000 0. 000 0.000 -0.012 -0.010 -0.009
0.000 0. 000 0.000 -0.015 -0.013 -0.011
0 000 0.000 0.000 -0.020 -0.016 -0.014
0 000 0 000 0.000 -0.025 -0.021 -0.018
0 000 0 000 0.000 -0.033 -0.027 -0.023
0 000 0 000 0.000 -0.042 -0.035 -0.030
0.000 0.000 0.000 -0.054 -0.045 -0.039
0.000 0 000 0.000 -0.070 0.058 -0.050
0.000 0. 000 0.000 -0.090 -0.075 -0.064
0 000 0.000 0.000 0. 884 -0.096 -0.082
0 000 0 000 0 000 -0.096 0.877 -0.106
0 000 0.000 0.000 -0.082 -0.106 0 864



78

Row 23

A23 + 30 AP23 +C56*C10*C11~33
B23 +0.929 AQ23 +C57*C10*C11"34
C23 + 0 .25 AR23 +C58*C10*C11~35
D23 + C7*@EXP (C8MA23-301/35) AT2 3 +0.8635237062
E23 +D23-B23 AU2 3 -0.1060654641
F23 +0.4337027439 AV23 -0.0824310392
G23 +B23+F23 AW2 3 -0.0640630417
123 +C23*C10+1 AX 2 3 -0.0497879608
J23 +C24*C10*C11~ 1 AY2 3 -0.0386937773
K23 +C25*C10*C11~ 2 AZ23 -0.0300716963
L23 +C26*C10*C11~ 3 BA23 -0.0233708626
M23 + C27 *C10*C11" 4 BB23 -0.0181631673
N23 +C28*C10*C11~ 5 BC23 -0.0141158966
023 +C29*C10*C11" 6 BD2 3 -0.0109704749
P23 +C30*C10*C11~ 7 BE23 -0.0085259446
Q23 +C31*C10*C11" 8 BF23 -0.0066261274
R23 +C32*C10*C11" 9 BG23 -0.0051496462
S23 +C33*C10*C11" 10 BH23 -0.0040021701
T23 +C34*C10*C11~ 11 BI23 -0.0031103882
U23 +C35*C10*C11~ 12 BJ23 -0.0024173256
V2 3 +C36*C10*C11~ 13 BK23 -0.0018787032
W2 3 +C37*C10*C11" 14 BL23 -0.0014601091
X23 +C38*C10*C11~ 15 BM23 -0.0011347997
Y23 +C39*C10*C11" 16 BN2 3 -0.0008819914
Z23 +C40*C10*C11" 17 B023 -0.0006855326

AA23 +C41*C10*C11" 18 BP2 3 -0.0005328716
AB2 3 +C42*C10*C11~ 19 BQ23 -0.0004142553
AC23 +C43*C10*C11" 20 BR23 -0.0003221053
AD23 +C44*C10*C11~ 21 BS23 -0.0002505342
AE23 +C45*C10*C11" 22 BT23 -0.0001949694
AF2 3 +C46*C10*C11" 23 BU23 -0.0001518611
AG2 3 +C47*C10*C11" 24 BV2 3 -0.000118455
AH2 3 +C48*C10*C11~ 25 BW2 3 -0.0000926168
AI23 +C49*C10*C11" 26 BX2 3 -0.0000726958
AJ2 3 +C50*C10*C11" 27 BY23 -0.0000574193
AK23 +C51*C10*C11* 28 BZ23 -0.0000458112
AL2 3 +C52*C10*C11" 29 CA23 -0.00003713
AM2 3 +C53*C10*C11" 30 CB23 -0.0000308209
AN2 3 +C54*C10*C11" 31 CC23 -0.000026481
A023 +C55*C10*C11" 32



Row 58

A5B + 65 AP58 +C56*C10*C11"2
B 5 8 +11.667 AQ58 +C57*C10*C11"1
C58 + 0.25 AR58 +C58*C10+1
D58 + C7*®EXP (C8MA58-301/35) AT58 -0.000026481
E58 +D58-B58 AU58 -0.0000308209
F58 +4.4308432443 AV5 8 -0.00003713
G5 8 +B58+F58 AW 5 8 -0.0000458112
158 +C23*C10*C11~35 AX58 -0.0000574193
J58 +C24*C10*C11"34 AY58 -0.0000726958
K58 + C25*C10*C11~ 33 AZ5 8 -0.0000926168
L58 +C26*C10*C11"32 BA58 -0.000118455
M5 8 +C27*C10*C11~31 BB58 -0.0001518611
N58 + C28*C10*C11~ 30 BC58 -0.0001949694
058 +C29*C10*C11~29 BD58 -0.0002505342
P58 +C30*C10*C11~28 BE58 -0.0003221053
Q58 +C31*C10*C11~27 BF58 -0.0004142553
R58 +C32*C10*C11"26 BG58 -0.0005328716
S 5 8 + C33*C10*C11~ 25 BH58 -0.0006855326
T58 +C34*C10*C11~24 BI58 -0.0008819914
U58 +C35*C10*C11"23 BJ58 -0.0011347997
V58 +C36*C10*C11~22 BK58 -0.0014601091
W58 +C37*C10*C11"21 BL58 -0.0018787032
X58 +C38*C10*C11"20 BM58 -0.0024173256
Y58 +C39*C10*C11"19 BN58 -0.0031103882
Z58 +C40*C10*C11"18 B058 -0.0040021701

AA58 +C41*C10*C11"17 BP58 -0.0051496462
AB58 +C42*C10*C11"16 BQ58 -0.0066261274
AC58 +C43*C10*C11"15 BR58 -0.0085259446
AD58 +C44*C10*C11~14 BS58 -0.0109704749
AE58 +C45*C10*C11~13 BT58 -0.0141158966
AF58 +C46*C10*C11"12 BU58 -0.0181631673
AG58 +C47*C10*C11"11 BV58 -0.0233708626
AH58 +C48*C10*C11"10 BW58 -0.0300716963
AI58 +C49*C10*C11"9 BX58 -0.0386937773
AJ58 +C50*C10*C11"8 BY58 -0.0497879608
AK58 +C51*C10*C11~7 BZ58 -0.0640630417
AL58 +C52*C10*C11"6 CA58 -0.0824310392
AM58 +C53*C10*C11"5 CB58 -0.1060654641
AN58 +C54*C10*C11"4 CC58 +0.8635237062
A058 +C55*C10*C11~3
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NUMBER OF SICKNESS DAYS PER AGE
PRIOR DISTRIBUTION VARIANCE k3 2 0 CORRELATION k4 0 9

08SERVED + PRIOR O POSTERIOR

NUMBER OF SICKNESS DAYS PER AGE

PRIOR DISTRIBUTION VARIANCE k3 2 0 CORRELATION k4 0 95

OBSERVED



28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

NUMBER OF SICKNESS DAYS PER AGE

PRIOR DISTRIBUTION VARIANCE k3 0 5 CORRELATION k4 0 9
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PRIOR DISTRIBUTION VARIANCE k3 0 5 CORRELATION k4 0 75
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Summary

Bayesian statistics can be used for graduation The prior probability distribution quantifies the

preexisting information about the tiue position of the data points under examination This
multivariate distribution is transformed according to the observational data into a multivariate

posterior distribution Bayesian graduation is a theoretically sound, but computationally intensive
method
On a spreadsheet Bayesian graduation can be implemented elegantly. Spreadsheets are functional,
objectbased programming languages. They are suited for most financial and acutanal problems.
The article first characterizes spreadsheet and explains their language concepts In the second

part Bayesian graduation is demonstrated using an example from health insurance

Zusammenfassung

Ausgleichungen können mit Hilfe der Bayes-Statistik vorgenommen werden Die Prion-Verteilung
quantifiziert die vorbestehende Information über die wahre Lage der zu untersuchenden

Werte Diese mehrdimensionale Verteilung wird entsprechend den Beobachtungsdaten in eine
mehrdimensionale Posteriori-Verteilung transformiert Die Ausgleichung nach Bayes ist eine
theoretisch gut fundierte, aber rechenintensive Methode

Mittels einer Tabellenkalkulation können Bayes-Ausgleichungen elegant realisiert werden

Tabellenkalkulationen sind funktionale, objektbasierte Programmiersprachen Sie eignen sich

bestens zur Behandlung finanz- und versicherungsmathematischer Probleme

Im ersten Teil der Arbeit wird die Tabellenkalkulation charakterisiert und ihr Sprach-

Konzept erläutert. Im zweiten Teil wird die Bayes-Ausgleichung an einem Beispiel aus der

Krankenversicherung demonstriert

Resume

II est possible d'utihser la statistique bayesienne pour realisier des operations de lissage La

distribution a prion quantifie l'lnformation preexistante sur la position reelle de l'ensemble

des points consideres Cette distribution multivariee est translormee en accord avec les donnees

observees en une distribution multivariee a posteriori Le lissage bayesien est une methode elficace

en theone, mais conduit a des operations de calcul numerique nombreuses

Le lissage bayesien peut etre implante elegamment sur un tableur Les tableurs proposent des

langages de programmation fonctionnels et Oriente objets Iis conviennent ä la plupart des

operations numerique des domames financiers et actuariels.

Le present article caracterise premierement la technique des tableurs et exphque leurs concepts

linguistiques La seconde partie demontre la mise en oeuvre d'un hsssage bayesien par un exemple

tire de l'assurance-maladie
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