Zeitschrift: Mitteilungen / Schweizerische Vereinigung der
Versicherungsmathematiker = Bulletin / Association Suisse des
Actuaires = Bulletin / Swiss Association of Actuaries

Herausgeber: Schweizerische Vereinigung der Versicherungsmathematiker

Band: - (1991)

Heft: 1

Artikel: Bayesian graduation on a spreadsheet
Autor: Koller, Bruno

DOl: https://doi.org/10.5169/seals-967278

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-967278
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

67

Bruno KOLLER, Riehen

Bayesian Graduation on a Spreadsheet

1 Spreadsheets
1.1 Characteristics of spreadsheets

The first spreadsheet, Visicalc, was developed by Daniel Bricklin and Robert
Frankston in 1978 (see Licklider; 1989). In the meantime there are many
similar products; the most widespread is “1-2-3" from Lotus.

A spreadsheet consists of cells, arranged in a matrix. All cells together
form the sheet. A cell 1s identified by a cell-address. A cell may contain a
function assignment; together with the arguments of the function, it determines
uniquely the cellvalue of the cell. The arguments are cellvalues of other cells;
referencing the arguments is done by celladdress. All function assignments
together form the spreadsheet program.

In a spreadsheet cells can be concatenated freely: a cellvalue may serve as
input to another cell, its cellvalue in turn may be the input for another cell.
On entering a new function assignment the cellvalues are recalculated, thus
the sheet contains always the actual results.

The following example explains the working of a spreadsheet. The program
calculates the present value of an annually payable annuity. The upper part
of the table shows the cellvalues, as seen on the computer screen (formatted
in a suitable manner). The numbers on the left and the letters above are not
part of the sheet. They are coordinates for the cell-addresses. For instance,
the cell with address B3 has the value 10. With the celladdress one can find
in the lower part of the table the corresponding function assignment.

The simplest case of a function is the constant function. In cell A1 we have, for
example, the constant function “interest i ” and in cell B1 the constant function
0.03. Cell B5 has been assigned the function a(v,n, R) = R-(1—v")/(1 —v); the
argument v is stored in cell B2 — itself a function defined as v(i) = 1/(1 + i).
The isolated constant functions which are not arguments to a function are
not part of the program: they are only comments.

Function assignments may involve several operations. Besides the four basic
arithmetic operations (+, —, *, /) and the exponential operation (*) most
spreadsheets offer numerous higher functions. We shall use the exponential
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A B G
1l |interest i 0.03
2 |discount factor v 0.970874
3 |duration n 10
4 lannuity R 1000
5 |present value a 8786
6

Al: interest i

Bl: +0.03

A2: discount factor v
B2: +1/(1+B1)

A3: duration n

B3z 10
A4: annuity R
B4: +1000

A5: present value a
B5: +B4*(1-B2"B3)/(1-B2)

function e* (written @EXP (x)) and the matrix-operations inversion and
multiplication.

No programming language fits every application well. Spreadsheets are best
suited for calculation-oriented problems: ledger, financial analysis, statistics,
modelling, systems analysis and (Monte-Carlo-)simulation. Actuarial problems
that can be solved well in spreadsheets are: calculation of present values,
reserves, frequency and claim distributions, modelling of collectives, prognosis
and graduation. Most spreadsheets offer preprogrammed financial functions.
Spreadsheets are inappropriate for symbol manipulation. Also very calcula-
tion-intensive problems, like the evaluation of a aggregate claim distribution,
may be out of reach.
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1.2 Spreadsheets as objectbased, functional languages

Programming languages can be divided into generations. Normally machine
and assembler languages are classified as first and second generation
languages. Languages of the third and fourth generation differ in their
organisations: imperative programming languages as Fortran, C and Pascal
belong to the third generation, declarative languages (Spreadsheets, Lisp,
Prolog, FP, Hope) to the fourth generation (Schneider, 1986).

For commercial applications imperative languages dominate. Imperative
languages specify explicitly the order of computation in a program. Declarative
languages on the other hand do not control the stepwise transformation of
an initial state to a final state. They describe a problem, identifying directly
the relations between input and output data. Declarative languages must have
a mechanism to find the solution to a problem; the programmer does not
specify how to solve it.

When the dependencies between input and output are formulated as functions
from the admissible input data to the correct output data, we speak of
functional or applicative programming languages. If the dependencies are
in the form of relations, they are called relational programming languages.
Spreadsheets, Lisp and Logo are functional languages; Prolog is a relational
language.

A programming language is objectbased, if it supports “objects”. Objects have
evolved from modules. They are informationcarriers, which can be queried and
manipulated by well-defined operations. Programs in objectbased languages
are ensembles of objects exchanging messages. Ada 1s an example of a object-
based programming language.

The cells of a spreadsheet can be understood as objects. A cell has a
value, which can be queried by other cells and which can be changed
subject to other cellvalues. Each cell acts as a small computer. A sheet
consists of numerous, communicating objects. A. Kay calls spreadsheets
“tissuelike superobjects” (Kay, 1984). Spreadsheets are object-based, but not
objectoriented languages like Smalltalk or C + +; missing are the higher
language elements “classbuilding™ and “inheritance” (see Wegner, 1989).
Functional languages have several advantages over traditional imperative
languages: simple grammar, clear and unique semantics. The so-called
referential transparency (lack of a computing history) opens the possibility to
program transformation: first write a program concentrating on clarity and let
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a compiler transform it, in a second step, to an efficient, semantically equivalent
program. Thanks to their data-centered approach declarative languages are a
natural fit for parallel programming. On today’s computers these languages
are not as fast as imperative languages; this will certainly change with the
upcoming of parallel computers.

2 Bayesian graduation

2.1 Graduation as statistical problem

Graduation is the process of drawing a curve through a sequence of sample
data; the curve should be smooth, yet fit the given data to a certain degree.

There are numerous graduation methods. Most of them are easy to implement
on a spreadsheet. Especially the method of “moving averages” can quickly be
programmed for a first impression (see e.g. Miller, 1946, chapter 4).

One would expect that most graduation procedures treat graduation as a
statistical problem, given the stochastic nature of sampling. This is not the
case, for classical statistics deal only with observation. The sample is the
only source of information — pre-existing experience is neglected. But without
the assumption that “in reality” succeeding data are correlated, one has to
draw the curve through the observed data points. A full integration of the
graduation problem into the theory of statistics is possible with Bayesian
statistics: the correlation of adjacent values is expressed as prior information.
The proposal of graduation using Bayesian statistics stems from George S.
Kimeldorf and Donald A. Jones (Kimeldorf/Jones, 1967).

Statistics deal with inference from observational data, produced by an
unknown probability distribution, about the underlying distribution. For
graduation of n data points we have to assess a n-dimensional probability
distribution. We will use its n-dimensional vector of expectations as graduated
data, but other moments or quantiles may serve better regarding the purpose
of the graduation.

For Bayesian statistics the pre-existing information about the parametric
values to be estimated is quantified as probability distribution over the
parameter space. We quantify smooth paths in our prior distribution higher
than unsmooth paths. Combining the prior information with the actual
observations according to Bayes’ theorem defines the posterior distribution.
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The posterior distribution will still assign smooth curves higher probabilities
than uneven curves, producing a graduation.

Bayesian graduation is computationally intensive — it can only be done on
a computer. In turn the method is theoretically sound. The knowledge,
which justifies graduation, is specified explicitly and integrated with never
observations to give a accurate picture of the available information.

2.2 Graduation of health insurance data

We illustrate Bayesian graduation using an example from health insurance.
More than realistic assumptions we shall stress the methodological aspects of
the method.

The data stem from a Swiss investigation in the years 1972/73 about average
sickness days of males, age x = 30 to 65. The average number of days,
the 36-dimensional vector u, are stored in column B, rows 23 to 58 of the
spreadsheet (see table in the appendix). As we see in graph 1 (see Appendix),
the observed data vary around a climbing slope.

For simplicity we assume that the sample distribution may be approximated
by a 36-dimensional normal distribution. A multivariate normal distribution
is given by the vector of expectations and the covariance matrix. Let the
covariances be known; the expectations have to be estimated. We make the
usual assumption that the random variables of the sample distribution are
independent; the covariance matrix B = (b;;) becomes a diagonal matrix:
bij > 0 for i = j and b;; = 0 otherwise. In the table we set the variances all to
four, i.e. b; = 4.

The prior distribution weighs our pre-existing knowledge about the 36
expected values for the ages 30 to 65 of the sample distribution. As prior
distribution we choose a 36-dimensional normal distribution. It is defined by
the 36-dimensional expectation vector v and the 36 x 36 covariance matrix A.
Let the vector v of the expectations be defined by

v(x) = ky - 23035 x =30, 31, ..., 65.

In the example k; and ky are 1 respectively 2.772589, giving: v(30) = 1 and
v(65) = 16. The expected values of the prior distribution are plotted in graph 1.
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We follow the advice of Kimeldorf/Jones and define the covariance matrix
A= (Clij) as

a; = k3 fori = j,

aj=ky- ki fori> j

ij = k3 ky ori > j,

aj =ky - k™ fori < j,

ky >0, 0<hksy <l
We observe that the elements of the matrix diagonal, k3, are the variances
of the random variables; k{ /) respectively k™" are the correlations of the
random variables i and j. This way two consecutive random variables are
more correlated than distant random variables. One can easily show that the

matrix A is positive definite. In our example k3 has been set to 1 and k4 to
0.9.

Let us state our prior information once again: we judge a exponential increase
of sickness days as most probable. The uncertainty about the number of days
has been expressed as a variance of 1. And we assumed a correlation of
sickness days decreasing exponentially with increasing distance.

We now calculate the posterior distribution. One can show (see for instance
DeGroot, 1970, page 175), that normal distributions form a conjugate family:
Bayes’ theorem transforms a normal prior distribution for any normal sample
distribution into a normal posterior distribution. In our case we get a 36
dimensional normal distribution with expectation vector

w=AT"+B Yy B u+ A )
and covariance matrix
(A7 + B,
The expectation vector w may be written in a form which is easier to calculate:

w___u_HA—l_FB—l)ui,[(Bq gt A1 -u)—(A_l +B_1)'u]
=ut+ A1 +B Y T[4 (0 —u)]
=u+[A"+B Y)Y AT w—u)
=u+[A- (A" + B Y (0 —u)
=u+(A-B '+ (v—u).

I is the unit matrix.
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To calculate the vector we proceed as follows (see sheet in the appendix, rows
23 to 58): column B contains the observed data u. The diagonal elements
1/bj; of the matrix B~! are stored in column C. The vector v is calculated in
column D using the parameters k; (cell C7) and k; (cell C8). The difference
vector r of v and u is in column E. The 36 x 36-matrix C = (¢;;), columns [
to AR, is defined as (4- B! 4+ I):

C,'j=k3/bij+1 fori=j

Cij = (k}/bu) : I\’iii fori <j

cij = (ks/byj) - k' fori > j.
Using the matrix operations we invert C and store the matrix D = C~! in
columns AT to CC. The matrix D is then multiplied with the vector r to give

the vector s (column F). The vector w in column G is the sum of the vectors
u and s. We get:

C=(A-B'+1I)

D=1
r=v—u
ge=Dwr

wW=1u-+Ss.

In graph 1 besides the observed values and the expectations of the prior
distribution, one can see the expected values of the posterior distribution,
which defines the graduation curve.

Graduations with different parameters k3 and k4 are plotted in the graphs
2 to 5. They give an impression of how the prior distribution influences
the graduation curve. In graph 2 the variance parameter k3 is increased to
2, i.e. the pre-information about the number of sickness days is considered
less reliable. The graduation curve follows rather the observational data. An
increase of the parameter ks from 0.9 to 0.95 has the effect of smoothing; this
amounts to a higher interdependency of the yearly sickness days (graph 3).

When we decrease the variance from 1 to 0.5 — assuming one knows quite well
the average number of sickness days — the graduation curve is nearly identical
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with prior data (graph 4). Decreasing the postulated correlations from 0.9 to
0.75 produces a curve with better fit (graph 95).

B. Koller
Dinkelbergstrasse 21
4125 Riehen
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Appendix
A B C D E F G

1 |[BAYESIAN GRADUATION OF HEALTH STATISTICS DATA

2

3

4

5 |Prior distribution: multivariate normal distribution

6 Parameters for expectation vector v

7 k1l 1.000000

8 k2 2.772589

9 Parameters for covariance matrix A

10 k3 1.0

11 k4 0.9

21 x u 1/bjj v r s w
22

23 30 0.929 0., 250 1.000 0.071 0.434 1.363
24 31 1.853 0.250 1.082 -0.771 -0.345 1.508
25 32 1.511 0.250 1.172 -0.339 0.137 1.648
26 33 5.386 0.250 1.268 -4.118 -3 580 1.806
27 34 1.680 0.250 1. 353 -0.307 0.110 1.790
28 35 1.810 0.250 1.486 -0.324 -0.017 1.793
29 36 0.820 0.250 1.608 0.788 0.987 1.807
30 37 1.973 0.250 1.741 =0 ; 232 -0.,087 1.886
31 38 3.521 0.250 1.885 -1.636 =L 547 1.974
32 39 2.962 0.250 2.040 -0.922 -0.970 1.992
33 40 0.000 0.250 2.208 2.208 1.971 1.971
34 41 0.411 0.250 2390 1.979 1654 2.065
35 42 3.180 0.250 2587 -0.593 -0..922 2i5258
36 43 1.806 0,250 2.801 0.995 0.610 2.416
37 44 0.170 0.250 3.031 2.861 2.448 2.618
38 45 4.183 0.250 3.281 -0.902 -1.219 2.964
39 46 1.013 0.250 3552 2:539 2,251 3.264
40 47 7.429 0.250 3.845 -3.584 -3.728 3.701
41 48 0.361 0.250 4.162 3.801 3.602 3.963
42 49 8.286 0.250 4.505 -3.781 -3.846 4.440
43 50 2.333 0.250 4.876 2.543 2.408 4.741
44 51 3.671 0.250 5.278 1.607 1.527 5.198
45 52 10.656 0.250 5.713 -4.943 -4 _.887 5.769
46 53 9.676 0.250 6.184 -3.492 -3.558 6.118
47 54 3.591 0.250 6.694 3.103 2:7286 6.317
48 55 11.440 0.250 7.246 -4.194 -4.742 6.698
49 56 1.829 0. 250 7.843 6.014 5.039 6.868
50 57 4.656 0250 8.490 3.834 2.686 7.342
5.1 58 2.130 0.250 9.190 7.060 5.869 7.999
52 59 14.369 0.250 9.947 -4.,422 -5.360 9.009
53 60 3.730 05250 10.767 7.037 6.060 9.790
54 61 8.174 0.250 11.655 3.481 25 9.3 10.947
55 62 15:519 0250 12.616 -2.903 -3.204 12.315
56 63 10.286 0.250 13.656 3.370 3.304 13.590
57 64 27.575 0.250 14.781 -12.794 -12.451 15.124
58 65 11.667 0.250 16.000 4. 3:33 4.431 16.098
59
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 J K

cil ci2 ci3
1,250 0.225 0.203
0225 1.250 0..225
0.203 0.225 1.250
0.182 0.203 0.225
0.164 0.182 0.203
0.148 0.164 0.182
0.133 0.148 0.164
0.120 0133 0.148
0.108 0120 Qsd33
0.097 0..108 (.. 120
0.087 0.097 0.108
0.078 0.087 0.097
0.071 0.078 0.087
0.064 0..071 0.078
0.057 0.064 0.071
0.051 0.057 0.064
0.046 0051 0057
0.042 0.046 0.051
0.038 0.042 0.046
0.034 0.038 0.042
0.030 0.034 0.038
0.027 0.030 0.034
0.025 0.027 0.030
0.022 0.025 0.027
0.020 0.022 0.025
0.018 0.020 0.022
0.016 0.018 0.020
0.015 0.016 0.018
0.013 0.015 0.016
0.012 0.013 0.015
0.011 0.012 0.013
0.010 0.011 0.012
0.009 0.010 0.011
0.008 0.009 0.010
0.007 0.008 0.009
0.006 0.007 0.008

AP AQ AR
ci34d Ci35 c138
0.008 0.007 0.006
0.009 0.008 0.007
0.010 0.009 0.008
0.011 0.010 0.009
0.012 0.011 0.010
0.06213 0.012 0.011
0.015 0.013 0.012
0.016 0.015 0.013
0.018 0.016 0.015
0.020 0.018 0.01s6
0.022 0.020 0.018
0.025 0.022 0.020
0.027 0.025 01022
0.030 0.027 0.025
0.034 0.030 0.027
0.038 0.034 0.030
0.042 0.038 0.034
0.046 0.042 0.038
0.051 0.046 0.042
0.057 0.051 0.046
0.064 0.057 0.051
0.071 0.064 0.057
0.078 0.071 0.064
0.087 0.078 0.071
0.097 0.087 0.078
0.108 0.097 0.087
0.120 0.108 0.097
0.133 0.120 0.108
0.148 0.133 0.120
0.164 0.148 Q133
0.182 0.164 0.148
0.203 0.182 0.164
0.225 0.203 0.182
1250 0.225 0.203
0225 1,250 0.225
0.203 0. 225 L.280
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

AT AU AV

di1l diz di3
0.864 -0.106 -0.082
-0.106 0.877 -0.096
-0.082 -0.096 0.884
-0.064 -0.075 -0.090
-0.050 -0.058 -0.070
-0.039 -0.045 -0.054
-0.030 -0.035 -0.042
-0.023 -0.027 -0.033
-0.018 -0.021 =0.025
-0.014 -0.016 -0.020
-0.011 -0.013 -0.015
-0.009 -0.010 -0.012
-0.007 -0.008 -0.00%9
-0.005 -0.006 -0.007
-0.004 -0.005 -0.006
-0.003 -0.004 -0.004
-0,002 -0,003 ~-0.003
-0.002 -0.002 -0.003
-0.001 -0.002 -0.002
-0.001 -0.001 -0.002
-0.001 -0.001 -0.001
-0.001 -0.001 -0.001
-0.001 -0.001 -0.001
0.000 0.000 -0.001
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

CA CB cc

di34 di3s dile
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.0a0
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
-0.001 0.000 0.000
-0.001 -0.001 -0.001
-0.001 -0.001 -0.001
-0.001 -0.001 =0 001
=0.002 -0.001 -0.001
-0.002 -0.002 =000 L
-0.003 -0.002 -0.002
-0.003 -0.003 -0.002
-0.004 -0.004 -0.003
-0.006 -0.005 -0.004
-0.007 -0.006 -0.005
-0.009 -0.008 -0.007
-0.012 -0.010 -0.009
=0..015 ~0.013 =0.011
-0.020 -0.016 -0.014
-0.025 -0.021 -0.018
0033 ~0;027 -0.023
-0.042 -0.035 -0.030
-0.054 -0.045 -0.039
-0.070 -0.058 -0.050
-0.090 -0.075 -0.064
0.884 -0.096 -0.082
-0.09¢6 0.877 -0.106
-0.082 -0.106 0.864
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Row 23

A23:
B23%
023
D23:
E23:
F23:
G23:
123;:
J23:
K23:
L:i23%
M23:
N23:
023
P23:
Q23:
R23:
S23:
T23:
U23:
V23:
W23:
X23:
¥23:
Z23:
AA23:
AB23:
AC23:
AD23:
AE23:
AF23:
AG23:
AH23:
AT23:
AJ23:
AK23:
AL23:
AM23:
AN23:
AOQ23:

+30
+0.929
+0.25

+C7T*@EXP (C8* (A23-30) /35)

+D23-B23
+0.4337027439
+B23+F23
+C23*C10+1
+C24*C10*C11"1
#C25*C10*C11°2
+C26*C10*C11"°3
+C27*C10*C1174
+C28*C10*C11"5
+C29*C10*C11"6
+C30*C10*C11"7
+C31*C10*C11"°8
+C32*C10*C11"9
+C33*C10*C11" 10
+C34*%C10*C11711
+C35*C10*C11"12
+C36*C10*C11713
+C37*C10*C11"14
+C38*%C10*C11"15
+C39*C10*C11"16
+C40*C10*C11"17
+C41*C10*C11"18
+C42*C10*C11°19
+C43*C10*C11"20
+C44*C10*Cl1"21
+C45*%C10*C11722
+C46*C10*C11°23
+C47*C10*C11"24
+C48*C10*C11"25
+C49*C10*C11"26
+C50*C10*C11"27
+C51*C10*C11°28
+C52*C10*C11"29
+C53*C10*C11°30
+C54*C10*C11°31
+C55*C10*C11"32

AP23:
AQ23:
AR23:
AT23:
AU23:
AV23:
AW23:
AX23:
AY23
AZ23
BA23:
BB23:
BC23:
BD23:
BE23:
BF23:
BG23:
BH23:
BI23:
BJ23:
BK23:
BL23:
BM23:
BN23:
B0O23:
BE23:
BQ23:
BR23:
BS23:
BT23:
BU23:
BV23:
BW23:
BX23:
BY23:
BZ23:
CA23:
CB23:
CC23:

+C56*C10*C11°33
#E5T*CLO*CE1 L™ 34
¥C58*C1L0*C11" 35
+0.8635237062
-0.1060654641
-0.0824310392
-0.0640630417
-0.0497879608
-0.0386937773
-0.0300716963
-0.0233708626
-0.0181631673
-0.0141158966
-0.0109704749
-0.0085259446
-0.0066261274
-0.0051496462
-0.0040021701
-0.0031103882
-0.0024173256
-0.0018787032
-0.0014601091
-0.0011347997
-0.0008819914
-0.0006855326
-0.0005328716
-0.0004142553
-0.0003221053
-0.0002505342
-0.0001949694
-0.0001518611
-0.000118455
-0.0000926168
-0.0000726958
-0.0000574193
-0.0000458112
-0.00003713
-0.0000308209
-0.000026481
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Row 58

A58:
B58:
C58:
B58:
E58:
E5B:
Go B
L 5B
J58:
K58:
I;58%
M58:
N58:
058:
P58
Q58:
R58:
858!
T58 :
Us58:
V58:
W58 :
X58:
Y58 ¢
Z58:
AASS:
AB58:
AC58:
AD58:
AES58:
AF58:
AG58:
AH58:
ATSH:
AJ58:
AKS58:
ALS8B:
AM58:
ANS58:
AO58:

+65
+11.667
+0.25

+C7T*@EXP (C8* (A58-30) /35)

+D58-B58
+4.,4308432443
+B58+F58
+023*C10*C11735
+C24*C10*C11" 34
+C25*C10*C11"°33
+C26*C1LO*C11"32
+C27*C10*C11"731
FC28*C1L0*C11" 30
+C29*C10*C11729
+C30*C10*C11"28
+C31*C10*C11"27
#Q32*C10*CL1" 26
+C33*C10*C11"25
+C34*C10*C11" 24
+C35*C10*C11723
+C36*C10*C11"22
+C37*C10*C11"21
+C3B*C10*C11°20
+C39*C10*C11719
+C40*C10*C11"18
+C41*C1L0*CL1 ™17
+C42*%C10*C11716
+C43*C10*C11715
+C44*C10*C11"714
+C45*C10*C11713
+C46*C10*C11712
+C47*C10*C11711
+C48*C10*C11710
+C49*C10*C1179
+C50*C10*C11"8
+C51*C10*C11"7
+C52*C10*C1l176
+C53*C10*C11"°5
+C54*C10*C117°4
+C55*C10*C11"3

AP58:
AQ58:
AR58:
AT58:
AUS8:
AV58:
AW58:
AX58:
AY58:
AZ58:
BA58:
BB58:
BC58:
BD58:
BE58:
BF58:
BG58:
BH58:
BI58:
BJ58:
BK58:
BL58:
BM58:
BN58:
BO58:
BP58:
BQ58:
BR58:
BS58:
BT58:
BUS8:
BV58:
BW58:
BX58:
BY58:
BZ58:
CA58:
CB58:
CC58:

#C56*C10*T11" 2
#HCET*C10*C11" 1
#E58*C1L0+]
-0.000026481
-0.0000308209
-0.00003713
-0.0000458112
-0.0000574193
-0.0000726958
-0.0000926168
-0.000118455
-0.0001518611
-0.0001949694
-0.0002505342
-0.0003221053
-0.0004142553
-0.0005328716
-0.0006855326
-0.0008819914
-0.0011347997
-0.0014601091
-0.0018787032
-0.0024173256
-0.0031103882
-0.0040021701
-0.0051496462
-0.0066261274
-0.0085259446
-0.0109704749
-0.0141158966
-0.0181631673
-0.0233708626
-0.0300716963
-0.0386937773
-0.0497879608
-0.0640630417
-0.0824310392
-0.1060654641
+0.8635237062
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Summary

Bayesian statistics can be used for graduation. The prior probability distribution quantifies the
preexisting information about the true position of the data points under examination. This
multivariate distribution is transformed according to the observational data into a multivariate
posterior distribution. Bayesian graduation is a theoretically sound, but computationally intensive
method.

On a spreadsheet Bayesian graduation can be implemented elegantly. Spreadsheets are functional,
objectbased programming languages. They are suited for most financial and acutarial problems.
The article first characterizes spreadsheet and explains their language concepts. In the second
part Bayesian graduation is demonstrated using an example from health insurance.

Zusammenfassung

Ausgleichungen konnen mit Hilfe der Bayes-Statistik vorgenommen werden. Die Priori-Verteilung
quantifiziert die vorbestehende Information iiber die wahre Lage der zu untersuchenden
Werte. Diese mehrdimensionale Verteilung wird entsprechend den Beobachtungsdaten in eine
mehrdimensionale Posteriori-Verteilung transformiert. Die Ausgleichung nach Bayes ist eine
theoretisch gut fundierte, aber rechenintensive Methode.

Mittels einer Tabellenkalkulation konnen Bayes-Ausgleichungen elegant realisiert werden.
Tabellenkalkulationen sind funktionale, objektbasierte Programmiersprachen. Sie eignen sich
bestens zur Behandlung finanz- und versicherungsmathematischer Probleme.

Im ersten Teil der Arbeit wird die Tabellenkalkulation charakterisiert und ihr Sprach-
Konzept erliutert. Im zweiten Teil wird die Bayes-Ausgleichung an einem Beispiel aus der
Krankenversicherung demonstriert.

Résume

Il est possible d’utiliser la statistique bayesienne pour rcalisier des opérations de lissage. La
distribution a priori quantific 'information préexistante sur la position réelle de I'ensemble
des points considérés. Cette distribution multivarice est transformée en accord avec les données
observées en une distribution multivariée a posteriori. Le lissage bayesien est une méthode efficace
en théorie, mais conduit a des opérations de calcul numérique nombreuses.

Le lissage bayesien peut étre implanté elegamment sur un tableur. Les tableurs proposent des
langages de programmation fonctionnels et oriente objets. Ils conviennent a la plupart des
opérations numérique des domaines financiers et actuariels.

Le présent article caractérise premierement la technique des tableurs et explique leurs concepts
linguistiques. La seconde partie déemontre la mise en oeuvre d’un lisssage bayesien par un exemple
tiré de I'assurance-maladie.
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