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BiorN SunDT, Oslo

On excess of loss reinsurance with reinstatements

1 Introduction

The topic of the present paper is calculation of premiums for excess of loss
(xI) reinsurance with reinstatements. In practical applications of x/ reinsurance
one often applies reinstatements. However, in the actuarial literature they are
very rare; an exception is Simon (1972).

In Sections 2 we define some concepts from practical x! reinsurance. Section
3 is devoted to calculation of pure premiums. This theory is generalized to
loaded premiums according to the standard deviation principle in Section
4. In Sections 3 and 4 we consider the distribution of the aggregate claims
payments of the reinsurer as given. In Section 5 we discuss how to evaluate
this distribution when the aggregate claim is generated by a compound
distribution. In Section 6 we look at a special case of the model of Section 5,
assuming that the number of claims is Poisson distributed and the severities
are Pareto distributed. A numerical example is given.

An carlier version of the present paper was presented at the XXIInd
ASTIN Colloquium in Montreux in September 1990. At the same colloquium
Bernegger (1990) presented similar ideas independent of the present paper.
However, for loaded premiums Bernegger applies the variance principle instead
of the standard deviation principle.

2 Some concepts from practical excess of loss reinsurance

When the present author in 1989 started working with x/ reinsurance in
practice, he immediately discovered that the area was much more complex
than the impression he had got from the actuarial literature. He was not
familiar with concepts like reinstatement, aggregate deductible, and aggregate
limit. As some of the readers might be in the same situation, we shall try to
explain some of these concepts.

We consider an insurance portfolio during one year. Let N denote the number
of claims occurred in the portfolio during the year and Y; the size of the ith
of these claims (i= 1, ... , N).

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 1/1991
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X! reinsurance is a non-proportional reinsurance form that covers the part of
cach claim that exceeds a deductible I, that is, the reinsurer covers

Z; = max(0,Y; — ) (2.1)

of claim i. In practice there is also often a limit m on the payment of each
claim, that 1is, the reinsurer covers

Z; = min(max(0, Y; — 1), m). (2.2)
We call this an xI reinsurance for the layer m in excess of | (mxsl). If m = o,
we have an unlimited layer with deductible [.
Before continuing the presentation of reinsurance concepts, we make a
notational remark. When comparing formulae (2.1) and (2.2), we see that
in (2.1) we have used the symbol Z; for a claim to the unlimited layer with
deductible [ whereas in (2.2) we have used the same symbol for a claim to the
layer mxsl. To avoid confusion, we could have denoted the two quantities
by e.g. respectively ;Z; and ["Z;. However, to not overload our notation with
bells and whistles, we try to keep the explicit use of indices to a minimum,
hoping that this will not confuse our readers.
We assume an x/ reinsurance for the layer mxsl. Let X denote the aggregate
claim to the layer, that is,

with Z; given by (2.2); we make the convention that Z?:l = 0. For simplicity
we assume that X has finite variance. However, most of the results of the
paper hold under more relaxed assumptions.

In practice there is often an aggregate deductible L. This means that the
reinsurer covers only the part of the aggregate claim that exceeds L, that is,

X' = max(0,X — L).

This is called an x!/ reinsurance for the layer mxs ! xs L in the aggregate. Often
there is also an aggregate limit M, that is, there is a limit M on the aggregate
claim; the reinsurance covers

X' = min(max(0, X — L), M).
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We say that the aggregate layer is M xs L. The aggregate deductible and
the aggregate limit are usually given as whole multiples of the limit m. If
M = (K 4 1)m, we have an x/ reinsurance for the layer m xs L in the aggregate
with K reinstatements. The idea is that the reinsurance is thought of as being
for an aggregate layer of the same size as the layer for the individual claims,
and thus the reinsurance has to be reinstated if the aggregate payment exceeds
a whole multiple of the limit. If M = m, we have an x/ reinsurance with no
reinstatements.

There are several ways of paying premiums for an x! reinsurance with
reinstatements. We shall distinguish between free and paid reinstatements. The
simplest case is when all the reinstatements are free. For an xI reinsurance for
the layer mxslxs L in the aggregate with K free reinstatements, we simply
consider finding a fixed premium for an x/ reinsurance for the layer mxs|
with aggregate layer (K + 1)mxs L. With paid reinstatements the idea for
the term reinstatement becomes more clear; to reinstate the layer, the ceding
company has to pay a reinstatement premium, which in practice is given as a
percentage of the premium initially paid for the layer. The premium for the
next reinstatement is paid pro rata of the claims to the layer.

To clarify the ideas, let P be the initial premium and ¢, P the premium for
the kth reinstatement; ¢, = 0 if the kth reinstatement is free. We say that the
kth reinstatement is at 100c; %. This reinstatement covers

rrx = min(max (0, X — km — L), m);
for simplicity we call the cover of the original layer the Oth reinstatement.

Then the premium to be paid for the kth reinstatement, is ¢, Prp;/m. The
aggregate claim payments on this reinsurance are

K
RLK — Z)"Lk = min(max(O,X === L),(K + l)m),
k=0
and the total premium income is

K
1
T=pP{14+— S F1k—1 ). 2.3
( +mk§=16k’"L,k 1) (2.3)

As an alternative to deductible, we sometimes have a franchise. Then the
reinsurer covers claims exceeding the franchise, usually up to a finite limit. An
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xl reinsurance with franchise d and limit m (> d) covers

- 0 (Yl < d)
o { min(Y;,m). (Y; >d)

of the ith claim. An aggregate franchise 1s defined analogously to a franchise
on the individual claim.

We mention that there exists a multiple of other variants of x/ reinsurance
that will not be covered in the present paper.

3 Pure premiums

We consider an x!/ reinsurance for the layer m xs | and keep the notation from
Section 2. We introduce the cumulative distribution G of X and its stop loss
transform G given by

[s 8} oo

G(t) = ](x — 1) dG(x) = f(l — G(x))dx = Emax (0, X —t),
t t
cf. e.g. Sundt (1991, subsection 10.3). The pure premium for the aggregate

layer M xs L is G(L) — G(L + M). In particular, the pure single premium for
the kth reinstatement is

dix = Erpy = G(L + km) — G(L + (k + 1)m).

We introduce the cumulative quantity

k
Dy = ERy = Zdu = G(L) — G(L + (k+ 1)m),
=0

which is the pure premium for an x/ reinsurance for the layer mxs/ xsL in
the aggregate with k free reinstatements. By letting k approach infinity, we
obtain

v 0]
Ry p =3 Z ri = max(0, X — L)
i=0

Dy = ERpoo = Zdu = G(L);
=0

In particular, Dy, = EX.
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Our reinsurance is assumed to have K reinstatements, that is, M = (K + 1)m.
For the Oth reinstatement the premium is P. The kth reinstatement is at
100¢k %. The pure premiums should satisfy

ET = ERyk

with T given by (2.3), that is,

K
1
P (1 + p Z deL.kl> =Dpk. (3.1)
k=1

We see that (3.1) gives some sort of global equilibrium; the expected premium
income should be equal to the expected claim payments. Using this idea on
each reinstatement, that is, the expected reinstatement premium should be
equal to the expected claim payments on that reinstatement, we obtain

P =d; (3.2)
Pcde_k_l/m=de, (k=1,2,...,K)
that is,
w12, K) (3.3)
(I‘_PdLJ\ik T Ay ey mieal .

In practice, the reinstatement percentages ¢, are usually fixed in advance,
usually equal to 100 % or 50 % (or 0% if the reinstatement is free). If the
ci’s are fixed in advance, we solve (3.1) for P to obtain
B Dik
14 % Z[I\;l deL,k—l

(3.4)

If all reinstatements are at 100¢ %, then (3.4) reduces to

Dk

D1
1+C.T

P =

By letting K — oo we obtain

) D;,
P = Im P=;E.
R e
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In particular, if L = 0, that is, no aggregate deductible, we have

EX
4 Loaded premiums

Let U be an arbitrary risk. By the standard deviation principle, the premium
for this risk is

Py = EU +vyvVarU

for some loading 7y (cf. e.g. Sundt (1991), Chapter 4). In Section 4 we shall apply
this principle to the pro rata payment of reinstatement premiums described
in Section 2. Unfortunately it is not obvious how to proceed in this case as
the premium income itself is a random quantity correlated with the claim
payments on the reinstatement.

We shall need the quantities

vLij = Cov(rpi, rr;) Vik = Var Ry.
We have

Vix = Var Ry, = ER?, — E’Ry;,
LA4-(k+1)m

(x — L)?dG(x) + (k + 1)’m*(1 — G(L + (k + 1)m)) — D3,

E

G (L)— G (L + (k+ 1)m) — 2(L + (k + 1)m)G(L + (k + 1ym) — D2,

with

QI

(1) = /(x—r)sz(x).

As a special case we obtain

vk =G (L + km)— G (L + (k + Dm) — 2mG(L + (k + \ym) — d2,
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For j > i,
vrij = Cov(rri,rrj) = Erpirpj — ErpiEry; = dpj(m — dpi).
Furthermore, for k > 0, l

Vik =VarRyy = Var(Rpx—1 +rik) = Vik—1 + vk +2Cov(Rpkx—1,7Lk)

k=1 k=1
= V0ot + 00k + 2D vpik = Viger +opx+2 ) di(m — dp),
=0 =0

that 1s,
Vik = Vig—1 + vek + 2dii((k — Ym — Dp 1),

which allows a recursive evaluation of V.
We now want to generalize formulae (3.2) and (3.3). For (3.2) we let

P =Ero+y+/Varr =dpo + y+4/v10. (4.1)

For the kth reinstatement (k > 0) it seems natural to let the reinstatement
percentage ¢, be determined by

E [C—kPrL.k—l] = Erpx + y\/\/ar [f‘Lk o= C—kPrL.k—l] ; (4.2)
m m

the expected premium income should be equal to the expected claims plus a
safety loading proportional to the standard deviation of the fluctuating risk,
and this fluctuating risk is now equal to rpx — S5 Prpy . For simplicity we
introduce the rate on line

o PCk

Pk =
m

and obtain

Epirii—1 = Erpg +y+/Var(rie — pirpi—1),

that 1s,

prdpk— —dix =7y \/Ul.k + PRULk—1 — 2PkWiLk - (4.3)
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A problem with the present variant of the standard deviation principle is that
(4.3) does not necessarily have a real-valued solution. Let us introduce the
function

h(x) =dpj—1x —dp, — V\/Uu + v g—1X2 — 2wWpix.

As h(dpx/drx—1) < 0, we see that if the equation h(x) = 0 has no real-valued
solution, then h(x) < 0 for all x. To analyse under what conditions this
equation has a solution greater than the pure rate on line dyx/dy x|, we could
discuss the derivative of h . However, we shall take a less messy and less
complete approach. As

. hix
lim -(—) =dpk—1 — V/VLk—1 5

xfoo X

we see that if

Y <dpp—1//Vk—1,

then h(x) = 0 will have a solution greater than the pure rate on line. Thus
the equation has an acceptable solution at least for sufficiently small loading
factor y.

By taking the square of (4.3) we obtain

(Prdrp—1 — i) = * (01 + PRoLk—1 — 2PkWLE),
which we rearrange as
(df oy — Y vrk—0)PF — 2(drk—1drk — Y’wrpk +di — 7o = 0. (4.4)

This is a quadratic equation with two solutions. As the smaller one is the
solution of

prdpj—1 —dpx = —y \/ULk + pivrk—1 — 2pkWrk

we are left with

Pk =

2 2 20 2 o
{dL,k—lde — P TWik & '\/(dL.klde —92wre)? — (d} o — Y2oLe—1)(dF, — y?vre)
max

d EJH — P20 k-1
(4.5)

} .
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Let us now generalize the premium scheme described by formula (3.4) to
loaded premiums. Analogous to (4.2), we let the initial premium P be
determined by

ET = ER g +7+/Var(Rix — T)

with T given by (2.3), that is,

K K
1 P
E (P (1 -+ - ZW‘L.k—l)) = ER;x +7y,| Var [RLK - Z Cer.kq] . (4.6)

k=1

Introduction of the rate on line p = P/m gives

K V K
E (p (m + Z Ckr]_’k_|)) =ER;x +7y Var(Rpx —p Z CklLk—1) »
k=1

k=1

that 1s,

pA—Dix =7/ Vik + p*B —2pC (4.7)

with

K
A=m+ Z crdp g1
o]

K K
B = Var (Z cer,k_l) = Z CiCjULi—1, j—1
k=1 i=1 j=I
K K K
C =Cov (Z ChPLi~1s RLK) = z Z CrUL k—1.-
k=1 k=1 i=0

Analogously to our previous discussion, we see that (4.7) has an acceptable
solution at least if y < A/ v/B:; numerical studies indicate that it has an
acceptable solution in most cases of practical interest.

Taking the square of (4.7) gives

(pA — Drk)* = y*(Vik + p*B — 2pC),
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which we rearrange as
(4* —y*B)p’ — 2ADik —y*C)p+ Dix —v*Vik = 0.

This is a quadratic equation with two solutions, but like with equations (4.4),
the smaller one drops out, and we are left with

AD x —y*C + \/(ADrx —9*C)? — (4> —y?B)(Di g — y*Vik)
p = max L .
A+ —y°B
(4.8)

Let us look at the special case when all reinstatements are at 100c %. Then

A=m+cDpg_y
B = Var(cR x_1) = >V
C = Cov(cRp k-1, Rrk)
= c{VarRp k1 + Cov(Rrk—1,"k)}
= c(Vik—1 +dik((K — )m — D g 1))

By letting K approach infinity like in Section 3, we obtain
A=m+cDi, B=cVi, C=cVi,,

where we have introduced
Vi = Var Rip =G (L) — D2, .

In particular, Vy,, = Var X.
In the special case when all reinstatements are free, (4.6) reduces to

P — ERLK +'})\/VarRLK == DLK +?\/ VLK&

which is a traditional application of the standard deviation principle.

There is an inconsistency between the approach for determination of P and
the pi’s by (4.1) and (4.5) and the one for determination of p by (4.8). For
consistency one should have

K K
E (P + Z Per,k—1> = ERk +7,| Var (RLK - Z Pk"l“kl)-

k=1 k=1
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Unfortunately, this equality is not in general satisfied as

K K
Var (FLO + ok — Per,k_l)) # /Varrio+) | y/Var(rix — pervi).
k=1 k=1

5 Compound distributions

We now assume that the Y;’s are independent and identically distributed with
common distribution Fy and independent of N. We introduce

go=PrilN =mn), (n#=0,12,...)

Let F denote the cumulative distribution of the Z;’s given by (2.2). Then

Flz) = { Fo(l+2z) 0<z<m) 5.0)

1. (z >m)

The distribution G is now a compound distribution given by

o0
G=Y quF"

n=0

with F"" denoting the n-fold convolution of F. There exists a vast literature
on exact and approximate evaluation of compound distributions.

For the moment we assume that the Y;’s are integer-valued, and that [ and m
are integers. Let

f(z) = Pr(Z =z) (2 =18, 1; sey M)
g(x) = Pr(X =x) x=01,...)

(we drop indices when they do not contain any information). Then, by (5.1)
f(0) = Fo(l)

f@)=Fl+z2)—Fl+z—1 (=12 ....,m—1)
f(m)=1—Fo(l+m—1).
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We introduce the tail G = 1 — G of G. From the values of g we can evaluate

G°, G, and G recursively by

G'(—=1) =1

G(0)=EX =ENEZ

G (0) = EX> = ENVarZ + EN*E*Z.

G (x) = G(x— 1) — g(x)
G(x)=G(x—1)—=G(x—1)

G (x) =G (x — 1) — 2G(x — 1) + G“(x — 1).

We assume that ¢, satisfies the recursion

qn = [a-{- g]q”_l. (h=1, 2, ...]

Theorem 1 in Sundt/Jewell (1981) gives that the non-degenerate distributions
satisfying this recursion are the Poisson, the negative binomial, and the
binomial distributions, and from formula (6.3) in that paper we see that
g can be evaluated recursively by

e—b(1=1(0) (a =0)

g(0) = I — af(0) . (3.2
[T] a0

g(x) = 1_af0)2[a+b ]f()(»c—z). (x=1,2...)

The assumption that the Y;’s are integer-valued, is more general than it may
seem at first glance as we have not made any restriction to a particular
monetary unit. Thus the assumption really means that the Y;’s are distributed
on the set {0, h, 2h, ...} for some positive number h. Such a distribution is
called arithmetic, and the smallest h for which the (Y;/h)’s are integer-valued,
is called the span of the distribution.

I the distribution F is not arithmetic, we can approximate it with an arithmetic
distribution. Such approximations can be useful even if F actually is arithmetic.
Then we approximate it to obtain a larger span and less time-consuming
computations. For numerical evaluation of x/ premiums we have applied the



63

method of mass dispersal. We approximate F by a distribution on the ¢ + 1
points ih(i = 0, 1,...,t) with h = m/t. For i = 1,...,t we distribute the
probability mass F(ih) — F((i — 1)h) of the interval ((i — 1)h,ih] at the two
end-points (i — 1)h and ih such that the mean is preserved. For the interval
[0,h] we proceed in the same way, but include the left end-point. As the
mean is preserved for each of the discretisation intervals, the approximation
also preserves the total mean of F. Furthermore, it can be shown that the
method of mass dispersal gives an upper bound for the stop-loss transform G.
For more details on this method we refer to Gerber (1982) and Panjer/ Lutek
(1983), who also discuss other methods of arithmetisation.

6 Example

We have implemented some of the algorithms described in this paper
in Mathematica under the assumptions of Section 5 with the additional
assumptions that N is Poisson distributed with parameter 4 and the Y;’s are
Pareto distributed with parameters [ and a, that is,

o= e n=0,1,2,....4>0) 6.1)
n:

Foy)=1=(/y)*.  (»=1>0; a>0) (6.2)
From (5.1) and (6.2) we obtain

[

]_[TT] 0<z<m)

F(z) =

which we arithmetise as described in Section 5. Under the assumption (6.1),
(5.2) reduces to
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For | = m = 100, « = 1.2, and 4 = 0.5 we have calculated pure premiums
in Table 1 and loaded premiums with y = 0.2 in Table 2 for different
aggregate deductibles and reinstatement arrangements with t = 50; within
cach arrangement we have the same reinstatement percentage ¢ for all
reinstatements. We also did the same calculations with t = 10, and they were
remarkably accurate. However, other calculations indicate that the accuracy
depends very much on the parameter values. Unfortunately we have not yet
been able to deduce upper bounds for the inaccuracy.

K= 0 1 1 2 2 00 00
L g= free 100%  free 100%  free 100 %
0 27.85 31.94 2498 32.33 2451 32.36 24 45
100 4.088 4.485 4.309 4,514 4.319 4.515 4.320
200 0.3963 04247 04230 04264 04245 04263 04246

Table 1. Pure premiums.

K= 1 | l 2 2 0'e) 00
L ¢= free 100 %  free 100%  free 100 %
0 36.11  42.15 31.10 4287 30.17 4293  30.04
100 7.635 8.583  7.983 8.677  7.990 8.682 7.990
200 1.484 1.644 1.621 1.659  1.631 1.659  1.633

Table 2. Loaded premiums.
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Summary

In the present paper we discuss calculation of reinsurance premiums with reinstatements. We
consider both pure premiums and premiums loaded by the standard deviation principle. With
paid reinstatements the premium income can be considered as random, and therefore we cannot
immediately apply the standard deviation principle in the usual way. We discuss premium
calculation when the aggregate claim is generated by a compound distribution, and give a
numerical example.

Zusammenfassung

In der vorliegenden Arbeit wird die Berechnung von Primien fiir Riickversicherungen mit
Wiederauffullung studiert. Es werden sowohl Nettopridmien als auch Bruttoprdmien unter
Zugrundelegung des Prinzips der Standardabweichung diskutiert. Bei einer vom Zedenten
bezahlten Wiederauffiillung konnen die Primiencinnahmen als zufallsbedingt angesehen werden:
demzufolge kann das Standardabweichungsprinzip nicht in seiner gewohnlichen Form verwendet
werden. Der Autor studiert Primienberechnungen fiir den Fall, wo die aufgelaufenen Schiden
einer zusammengesetzten Verteilung folgen, und illustriert dies an einem numerischen Beispiel.

Résume

Le présent article aborde la question du calcul des primes de formes de réassurance avec
reconstitution. Lauteur considere tout a la fois les primes pures et les primes chargées selon
le principe de I'écart-type. Dans le cas de reconstitutions payees, I'encaisse de prime peut étre
considérée aleatoire, ce qui ne permet par d’appliquer immédiatement le principe de I'écart-type
sous sa forme usuelle. Le calcul des primes est abordé dans le cas de charges annuelles de sinistres
générées par une distribution composée. Un exemple numérique termine 'exposé.
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