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Bj0rn Sundt, Oslo

On excess of loss reinsurance with reinstatements

1 Introduction

The topic of the present paper is calculation of premiums for excess of loss

(xl) reinsurance with reinstatements. In practical applications of xl reinsurance

one often applies reinstatements. However, in the actuarial literature they are

very rare; an exception is Simon (1972).

In Sections 2 we dehne some concepts from practical xl reinsurance. Section
3 is devoted to calculation of pure premiums. This theory is generalized to
loaded premiums according to the standard deviation principle in Section
4. In Sections 3 and 4 we consider the distribution of the aggregate claims

payments of the reinsurer as given. In Section 5 we discuss how to evaluate
this distribution when the aggregate claim is generated by a compound
distribution. In Section 6 we look at a special case of the model of Section 5,

assuming that the number of claims is Poisson distributed and the severities

are Pareto distributed. A numerical example is given.

An earlier version of the present paper was presented at the XXIInd
ASTIN Colloquium in Montreux in September 1990. At the same colloquium
Bemegger (1990) presented similar ideas independent of the present paper.
However, for loaded premiums Bemegger applies the variance principle instead

of the standard deviation principle.

2 Some concepts from practical excess of loss reinsurance

When the present author in 1989 started working with xl reinsurance in

practice, he immediately discovered that the area was much more complex
than the impression he had got from the actuarial literature. He was not
familiar with concepts like reinstatement, aggregate deductible, and aggregate
limit. As some of the readers might be in the same situation, we shall try to

explain some of these concepts.
We consider an insurance portfolio during one year. Let N denote the number
of claims occurred in the portfolio during the year and Y, the size of the ith
of these claims (i 1, N).
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XI reinsurance is a non-proportional reinsurance form that covers the part of
each claim that exceeds a deductible I, that is, the reinsurer covers

Z, max(0, Y, — I) (2.1)

of claim i. In practice there is also often a limit m on the payment of each

claim, that is, the reinsurer covers

Z, min(max(0, Yt — l),m). (2.2)

We call this an xl reinsurance for the layer m in excess of I (mxsl). If m oc,

we have an unlimited layer with deductible I.

Before continuing the presentation of reinsurance concepts, we make a

notational remark. When comparing formulae (2.1) and (2.2), we see that
in (2.1) we have used the symbol Z, for a claim to the unlimited layer with
deductible I whereas in (2.2) we have used the same symbol for a claim to the

layer mxsl. To avoid confusion, we could have denoted the two quantities
by e.g. respectively /Z, and Z,. However, to not overload our notation with
bells and whistles, we try to keep the explicit use of indices to a minimum,
hoping that this will not confuse our readers.

We assume an xl reinsurance for the layer mxsl. Let X denote the aggregate
claim to the layer, that is,

N

X t,z-
1=1

with Z, given by (2.2); we make the convention that ]T°=1 0. For simplicity
we assume that X has finite variance. However, most of the results of the

paper hold under more relaxed assumptions.
In practice there is often an aggregate deductible L. This means that the
reinsurer covers only the part of the aggregate claim that exceeds L, that is,

X' max(0,X-L).
This is called an xl reinsurance for the layer mxslxsL in the aggregate. Often
there is also an aggregate limit M, that is, there is a limit M on the aggregate
claim; the reinsurance covers

X' min(max(0, X — L), M).
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We say that the aggregate layer is MxsL The aggregate deductible and
the aggregate limit are usually given as whole multiples of the limit m If
M (K + \)m. we have an xl reinsurance for the layer mxsL in the aggregate
with K reinstatements The idea is that the reinsurance is thought of as being
for an aggregate layer of the same size as the layer for the individual claims,
and thus the reinsurance has to be reinstated if the aggregate payment exceeds

a whole multiple of the limit If M m, we have an xl reinsurance with no
reinstatements
There are several ways of paying premiums for an xl reinsurance with
reinstatements We shall distinguish between free and paid reinstatements. The
simplest case is when all the reinstatements are free. For an xl reinsurance for
the layer mxslxsL in the aggregate with K free reinstatements, we simply
consider finding a fixed premium for an xl reinsurance for the layer mxsl
with aggregate layer (K + l)mxsL With paid reinstatements the idea for
the term reinstatement becomes more clear, to reinstate the layer, the ceding

company has to pay a reinstatement premium, which in practice is given as a

percentage of the premium initially paid for the layer The premium for the
next reinstatement is paid pro rata of the claims to the layer.
To clarify the ideas, let P be the initial premium and c^P the premium for
the Ath reinstatement; c*. 0 if the /cth reinstatement is free We say that the
Ath reinstatement is at lOOc^ % This reinstatement covers

fLk min(max(0, X — km — L), m);

for simplicity we call the cover of the original layer the Oth reinstatement
Then the premium to be paid for the /cth reinstatement, is CkPrik-\/m The

aggregate claim payments on this reinsurance are

K

Rlk =^ru min(max(0, X — L), (K + 1 )m),

and the total premium income is

(2 3)

As an alternative to deductible, we sometimes have a franchise. Then the

reinsurer covers claims exceeding the franchise, usually up to a finite limit An
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xl reinsurance with franchise d and limit m (> d) covers

o (y, < d)
zt

min(Y„m). (Y, > d)

of the ith claim. An aggregate franchise is defined analogously to a franchise

on the individual claim.
We mention that there exists a multiple of other variants of xl reinsurance
that will not be covered in the present paper.

3 Pure premiums

We consider an xl reinsurance for the layer mxsl and keep the notation from
Section 2. We introduce the cumulative distribution G of X and its stop loss

transform G given by

CO 00

G(t) J (x — t)dG(x) J (I — G(x)) dx Emax (0, X — t),

t t

cf. e.g. Sundt (1991, subsection 10.3). The pure premium for the aggregate
layer M xsL is G(L) — G(L + M). In particular, the pure single premium for
the kth reinstatement is

dLk ErLk G(L + km) — G(L + (k + l)m).

We introduce the cumulative quantity

k

DLk ERLk Y, du G(L) - G(L +(k+ 1 )m),
1=0

which is the pure premium for an xl reinsurance for the layer mxslxsL in
the aggregate with k free reinstatements. By letting k approach infinity, we
obtain

CO

Kloo ^rLl max(0, X — L)
i=0

CO

Dlod ER-Lm ^ du G(L);
1=0

In particular, Do® EX.
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Our reinsurance is assumed to have K reinstatements, that is, M (K + \)m.
For the Oth reinstatement the premium is P. The fcth reinstatement is at
lOOcj, %. The pure premiums should satisfy

ET ERlk

with T given by (2.3), that is,

P (1 H—Cj,dL,i-= Dlk• (3.1)
V

We see that (3.1) gives some sort of global equilibrium; the expected premium
income should be equal to the expected claim payments. Using this idea on
each reinstatement, that is, the expected reinstatement premium should be

equal to the expected claim payments on that reinstatement, we obtain

P dLo (3.2)

PckdL,k~\/m du,, {k 1, 2, K)

that is,

^ (k=l,2,...,K) (3.3)
PAlx-i

In practice, the reinstatement percentages c/< are usually fixed in advance,
usually equal to 100% or 50% (or 0% if the reinstatement is free). If the

q's are fixed in advance, we solve (3.1) for P to obtain

p j—ir^ • (14)
1 + m

£jL=1 CkdL,k-\

If all reinstatements are at 100c %, then (3.4) reduces to

Dlk
P

i+c£m%
'

By letting K —> oo we obtain

Dloc
Poo lim P

K.—>cci | _j— q LSL.
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In particular, if L 0, that is, no aggregate deductible, we have

P
EX

•* CO 1+c^

4 Loaded premiums

Let U be an arbitrary risk. By the standard deviation principle, the premium
for this risk is

Pu EU + yv/Var U

for some loading y (cf. e.g. Sundt (1991), Chapter 4). In Section 4 we shall apply
this principle to the pro rata payment of reinstatement premiums described
in Section 2. Unfortunately it is not obvious how to proceed in this case as

the premium income itself is a random quantity correlated with the claim

payments on the reinstatement.
We shall need the quantities

vLl] Cov(rL„ rLj) VLk Var RLk.

VLk vLkk VL+km,i Var rLk wLk u/jt-Uc-

We have

VLk Var RLk ER2Lk - E2RLk

L+(fc+l)m

(x - L)2dG(x) + (k+ l)2m2(\ - G(L + (k + l)m)) - D2Lk

L

=G (L)- G(L + (k+ 1 )m) - 2(L + (k + 1 )m)G(L + (k+ 1 )m) - D2Lk

with

CO

G (t) J(x-r)2dG(x).
i

As a special case we obtain

VLk =G (L + km)— G (L + (k+ 1 )m) — 2mG(L + (k + l)m) — dlk.
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For j > i,

vuj Co\(rLl,rLj) ErLlrLj -EruErL} dLj(m-dLl).

Furthermore, for k > 0,

Fu Var RLk Var(RL,t-i + >"u) Vlj<-i + vLk +2 Cov(Rf.,t-i > rLk)

t-1 k-\
Fuk-1 + + 2 ^ + VLk + 2 ^ dLk(tn — du),

1=0 1=0

that is,

Fu Fl,/c_i + i?u + 2dLk{(k — \)m — Duk-1),

which allows a recursive evaluation of Vkk.
We now want to generalize formulae (3.2) and (3.3). For (3.2) we let

P ErL0 + y^VarrL0 dL0 + yv^Zo- (4.1)

For the kth reinstatement (k > 0) it seems natural to let the reinstatement

percentage ck be determined by

Cl<
D— Pruk-1

m
ErLk +y WVar rLk ~ —Pruk-1

m
(4.2)

the expected premium income should be equal to the expected claims plus a

safety loading proportional to the standard deviation of the fluctuating risk,
and this fluctuating risk is now equal to rik — ^Pruk-i• For simplicity we

introduce the rate on line

Pk
PCk

m

and obtain

EpkrL,k-\ ErLk + y y/Vat(rLk - pkrU-i),

that is,

PkdL,k-1 - dLk y\jVLk+ PkVL.k-l - IPkWLk (4.3)
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A problem with the present variant of the standard deviation principle is that
(4.3) does not necessarily have a real-valued solution. Let us introduce the

function

h(x) dLx-\x - dLk -yyJvLk + vuk-ix2 - 2\vLkx.

As h(dLk/dL.k-\) < 0, we see that if the equation h{x) 0 has no real-valued

solution, then h(x) < 0 for all x. To analyse under what conditions this

equation has a solution greater than the pure rate on line du/dtx-x, we could
discuss the derivative of h However, we shall take a less messy and less

complete approach. As

r i /hm dLJl-1 - yJvUk-\,
Xtoo X v

we see that if

1 < d^ji-\/^/VL,k-\ >

then h(x) 0 will have a solution greater than the pure rate on line. Thus
the equation has an acceptable solution at least for sufficiently small loading
factor y.

By taking the square of (4.3) we obtain

(PkdL,k-i ~ duJ2 y2(vLk + p2kvL,k-i - 2pkwLk),

which we rearrange as

('d2L,k-\ - y2VL,k-\)pt - 2(dLtk-idLk - y2wLk)pk + d2u - y2vLk 0. (4.4)

This is a quadratic equation with two solutions. As the smaller one is the
solution of

pkdL,k-1 - dLk ~y\JvLk + p2kvL,k-i ~ 2pkwLk,

we are left with

Pk

dL,k-idLk ~ y2wLk ± yj(dLk-idLk - y2wLk)2 - (dlk_{ - yzvL.k-i)U'u ~ 72i'r.k)

(4.5)

max ^
dtk-1 ~ y vL,k-\
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Let us now generalize the premium scheme described by formula (3.4) to
loaded premiums. Analogous to (4.2), we let the initial premium P be

determined by

ET ERlk +y^Var(RLK - T)

with T given by (2.3), that is,

A
VarE\py + =erlk + 7

Introduction of the rate on line p P/m gives

E P\ m + X cT*A-i erlk + }'

1

Rlk > ckruk-1
m

k=\

(4.6)

k=l \ Var(Rlk -p^Ckr^k-i),
k=1

that is,

pA — D/.x y Vlk + p2B — 2pC (4.7)

with

A m + ^ ckdL,k-1

t=i

B Var ^ ckruk-\ X X! cicjvl,i-i,j-i
lc=l

K

K K

1 j= 1

C Cov I Y_CkrL,k-URLK ] ^^CkV^k-l,!.
k=1

K K

k=1 i=0

Analogously to our previous discussion, we see that (4.7) has an acceptable
solution at least if y < Aj\[B\ numerical studies indicate that it has an
acceptable solution in most cases of practical interest.

Taking the square of (4.7) gives

(pA - Dlk)2 y (Vlk + P B - 2pC),
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which we rearrange as

(A2 - y2B)p2 - 2(ADlk - y2C)p + D2K - y2 VLK 0.

This is a quadratic equation with two solutions, but like with equations (4.4),
the smaller one drops out, and we are left with

Let us look at the special case when all reinstatements are at 100c %. Then

A m + cDl,x-I
B Var(c/?L,K_i) c2VUK_x

C Co\(cRLJi-X,RLK)

c{Varf?L,K-i + Cov(/?L,K-I> T,/<)}

ciVui-i + dLk((K - 1 )m - Dl,K-i)).

By letting K approach infinity like in Section 3, we obtain

A m + CDLcc B C2Vlgo C CVloc,

where we have introduced

VLoo VarRLx =G (L) — D2Loo.

In particular, To«, Var X.
In the special case when all reinstatements are free, (4.6) reduces to

P E Ri k + y \/Var RLK DLK + y \/Vlk

which is a traditional application of the standard deviation principle.
There is an inconsistency between the approach for determination of P and
the pk s by (4.1) and (4.5) and the one for determination of p by (4.8). For
consistency one should have

p max
ADlk - y2C ± y/(ADlk - y2C)2 - (A2 - y2B)(D2LK - y2VLK)

A2 - y2B

(4.8)
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Unfortunately, this equality is not in general satisfied as

\
Var rL0 + ^(ru - pkrL,k-1)) + VWarrL0+^ VYar(ru -P/fU-O-

k=1 7 fc=l

5 Compound distributions

We now assume that the T,'s are independent and identically distributed with
common distribution Fo and independent of N. We introduce

q„ Pr(N n). (n 0, 1, 2,

Let F denote the cumulative distribution of the Z,'s given by (2.2). Then

f Fo(l + z) (0 < z < m)

The distribution G is now a compound distribution given by

'X

G £ qnFn'

n=0

with Fn denoting the n-fold convolution of F. There exists a vast literature
on exact and approximate evaluation of compound distributions.
For the moment we assume that the T,'s are integer-valued, and that / and m

are integers. Let

/(z) Pr(Z z) (z 0, 1, m)

g(x)=Pr(X x) (x 0, 1,

(we drop indices when they do not contain any information). Then, by (5.1)

/(0) F0(l)

f(z) F0(l Tz) — Foil + z — 1) (z 1, 2, m— 1)

fim) 1 — Foil + m — 1).
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We introduce the tail Gc 1 — G of G From the values of g we can evaluate

Gc, G, and G recursively by

Gc(-1) 1

G(0) EX ENEZ

G (0) EX2 ENVarZ + EN2E2Z.

Gc(x) G'(x- 1) -g(x)
G(x) G(x- 1) — Gc(x — 1)

G (x) =G (x - 1) - 2G(x - 1) + G'(x - 1).

We assume that q„ satisfies the recursion

q„-1- («=1,2,q„
b

a + -
n

Theorem 1 in Sundt/Jewell (1981) gives that the non-degenerate distributions
satisfying this recursion are the Poisson, the negative binomial, and the
binomial distributions, and from formula (6.3) in that paper we see that

g can be evaluated recursively by

g(0)

g(x)

C e~b( 1-/(0))

- « / (0)

— a

(a 0)

(a + 0)
(5.2)

1

1 - af(0) Z
z=0

a + b- /(z)g(x-z). (x 1, 2,

The assumption that the Y/s are integer-valued, is more general than it may
seem at first glance as we have not made any restriction to a particular
monetary unit. Thus the assumption really means that the Y/s are distributed
on the set {0, h, 2h, ...} for some positive number h. Such a distribution is

called arithmetic, and the smallest h for which the (YJh/s are integer-valued,
is called the span of the distribution
If the distribution F is not arithmetic, we can approximate it with an arithmetic
distribution Such approximations can be useful even if F actually is arithmetic.
Then we approximate it to obtain a larger span and less time-consuming
computations. For numerical evaluation of xl premiums we have applied the
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method of mass dispersal We approximate F by a distribution on the t + 1

points ih(i 0, 1, t) with h m/t For i 1, t we distribute the

probability mass F(ih) — F((i — 1 )h) of the interval ((i — \)h,ih] at the two
end-points (i — l)h and ih such that the mean is preserved For the interval
[0, h] we proceed in the same way, but include the left end-point As the

mean is preserved for each of the discretisation intervals, the approximation
also preserves the total mean of F Furthermore, it can be shown that the

method of mass dispersal gives an upper bound for the stop-loss transform G

For more details on this method we refer to Gerber (1982) and Panjer/Lutek
(1983), who also discuss other methods of anthmetisation

6 Example

We have implemented some of the algorithms described in this paper
in Mathematica under the assumptions of Section 5 with the additional

assumptions that N is Poisson distributed with parameter / and the F,'s are

Pareto distributed with parameters I and a, that is,

ein ~.e

F0(y) 1 - (l/yf

From (5 1) and (6 2) we obtain

/

(n 0, 1,2,. ,/>0)
(y > I > 0, a > 0)

(6 1)

(6 2)

F(z) I + z

1,

(0 < z < m)

(z > m)

which we anthmetise as described in Section 5 Under the assumption (6 1),

(5 2) reduces to

g(0)
X/ v—i

:2jz-"z'g'Y"z) (x 1,2,.
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For I m 100, a 1.2, and X 0.5 we have calculated pure premiums
in Table 1 and loaded premiums with y 0.2 in Table 2 for different

aggregate deductibles and reinstatement arrangements with t 50; within
each arrangement we have the same reinstatement percentage c for all
reinstatements. We also did the same calculations with t 10, and they were

remarkably accurate. However, other calculations indicate that the accuracy
depends very much on the parameter values. Unfortunately we have not yet
been able to deduce upper bounds for the inaccuracy.

K 0 1 1 2 2 oo oo

L c — free 100% free 100% free 100%
0 27.85 31.94 24.98 32.33 24.51 32.36 24.45

100 4.088 4.485 4.309 4.514 4.319 4.515 4 320
200 0.3963 0.4247 0.4230 0.4264 0.4245 0.4263 0 4246

Table 1. Pure premiums.

K 0 1 1 2 2 oo oo

L c free 100% free 100% free 100%
0 36.11 42.15 31.10 42.87 30.17 42.93 30.04

100 7.635 8.583 7.983 8.677 7.990 8.682 7.990
200 1.484 1.644 1.621 1.659 1.631 1.659 1.633

Table 2. Loaded premiums.

Acknowledgement

The author is grateful to Christian Fotland for introducing him to excess of
loss reinsurance in practice and for several comments on numerous versions

of the present paper.

Bjorn Sundt
Um Storebrand International Insurance A/S
P.O.Box 1380 Vika
N-0114 Oslo 1

Norway



65

References

Bernegger, S (1990) Variance loading in non-proportional reinsurance - An improved method

for calculating the loading of NP-covers with the aid of personal computers Presented at

the XXIInd ASTIN Colloquium, Montreux, September 1990

Gerber H U (1982) On the numerical evaluation of the distribution of aggregate claims and its

stop-loss premiums Insurance Mathematics and Economics 1 13-18
Panjer H H / Lutek B W. (1983)' Practical aspects of stop-loss calculations Insurance Mathe¬

matics and Economics 2, 159-177
Simon. L.J (1972) Actuarial applications in catastrophe reinsurance. Proceedings of the Casualty

Actuarial Society L1X. 196-202 Discussions Proceedings of the Casualty Actuarial
Society LX, 137-156

Sundt, B (1991), An introduction to non-life insurance mathematics. (2nd ed) Verlag Ver¬

sicherungswirtschaft e.V., Karlsruhe.

Sundt B./Jewell. \V.S. (1981). Further results on recursive evaluation of compound distributions
ASTIN Bulletin 12, 27-39



66

Summary

In the present paper we discuss calculation of reinsurance premiums with reinstatements We

consider both pure premiums and premiums loaded by the standard deviation principle With
paid reinstatements the premium income can be considered as random, and therefore we cannot
immediately apply the standard deviation principle in the usual way We discuss premium
calculation when the aggregate claim is generated by a compound distribution, and give a

numerical example

Zusammenfassung

In der vorliegenden Arbeit wird die Berechnung von Prämien fur Ruckversicherungen mit
Wiederauffullung studiert Es werden sowohl Nettopramien als auch Bruttopramien unter
Zugrundelegung des Prinzips der Standardabweichung diskutiert Bei einer vom Zedenten
bezahlten Wiederauffullung können die Pramieneinnahmen als zufallsbedingt angesehen werden,
demzufolge kann das Standardabweichungsprinzip nicht in seiner gewöhnlichen Form verwendet
werden Der Autor studiert Pramienberechnungen fur den Fall, wo die aufgelaufenen Schaden

einer zusammengesetzten Verteilung folgen, und illustriert dies an einem numerischen Beispiel

Resume

Le present article aborde la question du calcul des primes de formes de reassurance avec
reconstitution L'auteur considere tout ä la fois les primes pures et les primes chargees selon
le principe de 1'ecart-type Dans le cas de reconstitutions payees, l'encaisse de prime peut etre
consideree aleatoire, ce qui ne permet par d'appliquer immediatement le principe de l'ecart-type
sous sa forme usuelle Le calcul des primes est aborde dans le cas de charges annuelles de simstres

generees par tine distribution composee Un exemple numerique termine l'expose
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