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Werner Hurlimann, Winterthur

Absicherung des Anlagerisikos,
Diskontierung der Passiven und Portfoliotheorie

Einfuhrung

Der Schwerpunkt des Interesses der Risikotheorie hat sich auf das Studium der
Finanzrisiken verlagert, was zur Gründung der Sektion AFIR der IAA führte. Eine

wichtige Aufgabe m diesem Bereich besteht dann, die Erfahrungen der

Versicherungsmathematiker mit dem Wissen der modernen Finanzökonomie zu verbinden.
Durch einen Konvergenzprozess sollen gemeinsame Modelle aufgezeigt werden, die

möglicherweise Anwendungen sowohl in den Versicherungs- als auch in den

Finanzmarkten finden.

Dieser Aufsatz behandelt das Problem der Absicherung von Finanzrisiken im Rahmen

der Verpflichtungen einer Versicherungsgesellschaft. Die Arbeit beschrankt

sich darauf, Hauptkonzepte sowie erste Interpretationen und Folgerungen darzulegen.

Auf eine umfassende Darstellung und auf weitere Konsequenzen kann hier nicht

eingegangen werden.

Gestutzt auf wohlbekannte aktuarielle Techniken wird für stochastische Aktiven und

deterministische Passiven in Abschnitt 1 ein Absicherungsmodell für die Rendite der

Passiven konstruiert. Das vorgestellte Bewertungsmodell zerlegt den Anlageprozess

in einen Absicherungsprozess und einen Prozess, der eine effektive oder realisierte

Anlagerendite beschreibt. In Abschnitt 2 wird aus der Sicht der Optionspreistheorie
eine finanzökonomische Methode präsentiert, die den "fairen" Preis der Absicherung
liefert. Wählt man speziell das Black-Scholes-Modell, so ist die Absicherungskonstante

nur abhangig von der risikofreien Verzinsung, der garantierten Verzinsung
und der Volatilität der Rendite. Anschliessend wird in Abschnitt 3 das Problem der

Bestimmung eines geeigneten Zinsfusses zur Diskontierung der Passiven diskutiert.

Vorgestellt werden unterschiedliche aktuarielle und finanzokonomische Methoden,
deren spezifische Eigenschaften weitere Untersuchungen erfordern.

Die Berücksichtigung der Kapitalanlagestruktur wird möglich durch die Integration
des Absicherungsmodells in die moderne Portfohotheone. In diesem Zusammenhang

wird nur der einfachste Ansatz von Markowitz behandelt. In den Abschnitten 4

und 5 wird eine "optimale" Absicherung einer Portfolio-Rendite mit, beziehungsweise

ohne Vorhandensein einer risikofreien Anlage präsentiert Der erste Fall wird

Mitteilungen der Schweiz Vereinigung der Versicherungsmathematiker, Heft 2/1991
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ausführlich analysiert und diskutiert Es ist bemerkenswert, dass abgesicherte Port

tolios höhere erwartete Renditen bei kleinerer Varianz im Vergleich zu den klassi

sehen efhzienten Portfolios liefern Insbesondere wird eine absolute Grenze fur den

Ertrag eines abgesicherten Portfolios aufgezeigt Ist die erwartete Minimalrendite
kleiner als die risikofreie Rendite, so ist mit der vorgestellten Methode im Extremfall
höchstens die risikofreie Rendite im Erwartungswert zu erreichen Die Ergebnisse
werden durch einfache numerische Beispiele aus einem typischen Anwendungsbereich,

der Absicherung der technischen Ruckstellungen einer Versicherungsgesell
schaft, illustriert Schliesslich behandeln wir m Abschnitt 6 das Gleichgewichtsmo
dell fur Aktiven von Shatpe und Lintnei, das sogenannte CAPM capital asset

pricing model), unter dem Gesichtspunkt der Absicherung Ein "nsikoangepasstes"
CAPM besitzt eine lineare Marktlinie, die an das CAPM von Black erinnert

1. Ein Absicherungsmodell fur das Anlagerisiko

Diese Arbeit nimmt Bezug auf das dynarmsch-stochastische Bewertungsmodell fur

Anlagerisiken, das in Brighton im Rahmen des 2 AFIR Kolloquiums präsentiert
worden ist Zur Vollständigkeit werden die wesentlichen Zuge dieses Modells

zusammen mit einigen ergänzenden Eigenschaften, nochmals beschrieben

Das Problem der Kongruenz zwischen Aktiven und Passiven wird wie folgt behan

delt Gegeben sind stochastische Aktnen A(t) zur Zeit f, die detetmimstische
Passiven P(t) zur Zeit t decken sollen Zur Vereinfachung wird in dieser Arbeit nur das

statische Modell diskutiert, d h wir beschranken uns auf die zukunftige finanzielle

Lage an einem bestimmten Stichtag t Fur diese Arbeit wählen wir t 1 In die

ser speziellen Situation wird der Index fur die Zeitabhangigkeit weggelassen Somit
werden zur Zeit t — 1 zufälligen Aktiven A feste Passiven P gegenübergestellt Es

bezeichne weiter

ip die jahrliche Rendite, die zur Diskontierung der Passiven be¬

nutzt wird
/ p 1 + iF der zu ip gehörige Aufzinsungsfaktor P/A0)
A0 P/rp der Wert der Aktiven, die zu Beginn der Anlagepenode auf

den Finanzmarkt investiert sind
iA — E[A]/A0 — 1 die jährliche erwartete Anlagerendite auf den Aktiven, die

genügen soll, um die Passiven zu decken

iA 1 + iA der zu iA gehörige Aufzinsungsfaktor
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i? AjAü die Zutallsvariable des akkumulierten Renditeprozesses zum

investierten Kapital Ao

f A - P. falls A> P
{A-p)* =(a

Es wird vorausgesetzt, dass E[A — P] (rA — rp)A0 > 0 ist. Dies bedeutet,
dass in der Zukunft positive Cash-flows erwartet werden. Diese Situation ist geradezu

typisch fur Versicherungsunternehmen. Üblicherweise werden die technischen

Ruckstellungen mit einem Zinsfuss akkumuliert, der kleiner als die erwartete
Anlagerendite ausfallt.

Zur Deckung eines möglichen Verlusts A < P am Ende einer Anlagepenode halte

der Finanzmanager bei gutem Anlageergebnis einen Betrag RB — RB{A,P)
zurück, der bestimmt werden soll Der Ruc kbehalt RB genügt der Ungleichung
0 < RB < {A — P)+ Die Zufallsvanable U U{A.P) {RB + P - A) +
beschreibt den Fmanzubeischaden, d h. der mögliche Verlust, der nach Abzug des

Ruckbehalts vom technischen Anlageergebnis entstehen kann. Die resultierende

Zufallsvanable

NE-RB-U (11)

beschreibt das technische Netto-Finanzergebnis nach Abzug einer möglichen
Dividende m der Hohe D [A — P — RB) + wobei der Betrag RB zur Deckung
des Finanzrisikos reserviert worden ist. Mathematisch ausgedruckt gelten folgende
Formeln:

NE (A — P) — D (1.2)

A={P + D) + (RB-U) (13)

Im Durchschnitt ist es angebracht zu verlangen, dass keine Gewinne und Verluste

entstehen:

E[NE] E[RB -U} 0 (14)

Verschiedene Kandidaten sind tur den Ruckbehalt RB möglich. Alleidings stellt die

Funktion

RB mm{B.{A-P)+} (15)

wobei B eine Konstante ist, die vom stochastisc'nen Renditeprozess abhangt, die

stabilste Wahl des Ruckbehalts dar, in dem Sinne, dass die Varianz des Ruckbehalts
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Var[/?B] durch diese Wahl minimiert wird. Dieses Resultat soll hier kurz begründet
werden (siehe auch Um hmann 11991b]). Aus der Bedingung 0 < RB < (A — PK
erhalt man die Founel U (P — A) h fur den Finanzuberschaden. Betrachte die

Menge

M {RB : 0 < RB < [A - P)+ und E[NE\ 0} (1.6)

aller möglichen Ruckbehalte. Da E[NE] 0 folgt

E[RB] E[U] E[(P - A) +] const. (1.7)

Das stochastische Optimierungsproblem

Var[7?i?] min (1.8)

wird nun durch die Wahl (1.5) des Rtickbehalts gelost (siehe hierzu Beard et al.

[ 1984], S. 172- 173). Durch Einsetzen in die Gleichgewichtsbedingung (1.4) folgt,
dass che Konstante B Losung der Gleichung ist

E[A-P] E[{A-P-B)+]. (1.9)

Eine zweidimensionale Skizze soll diesen Sachverhalt geometrisch erläutern:

Die Konstante B, die den Preis fur die Übernahme des Anlagensikos darstellt, erhalt

man als Schnittpunkt des Graphen zur "Stop-Loss-Kurve" y E[(A — P — ,r)+]
mit der konstanten Geraden y E[A — P]. Gibt man sich als spezielles Ziel die

deterministischen Passiven in der Hohe P E[A] — B vor, so gilt B E[(A — /<)+]

mit /i E\A\ der Erwartungswert der Passiven. In diesem Fall entspricht die
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"Risikopranne" B der schraffierten Flache rechts unteihalb des Graphen /ur Dichte
der Zu talisvariable A

h E[A] x Wert der Passiven

Beispiel. Ist A noimalverteilt mit Erwartungswert /t und Vauanz <t2. so erhalt man

B als Losung der nicht-linearen impliziten Gleichung

B 1 -N P + B- p

\f2rt

wobei N( i) die kumulative Veiteilungsfunktion dei Standaid-Normalveiteilung ist

Im Spezialfall P — p — B gilt die einfache Formel B — a/\/2n.
Weitere Ökonomische Interpretationen dieses Modells, insbesondere betreffend

Pareto-optimale Eigenschaften, findet man mHui limann [ 1991b] Autgrund derZei-
legung (13) ist das vorliegende Modell als Absic hei ungsmodellfiu die Rendite dei

Passnen zu deuten Nach (1 3) gilt nämlich die Zerlegung

A Ae + zT. Ae P + D Aa RB-U, (1 10)

wobei A" dei Ahsu hei ungspiozess und Ae das effektn e oder leahsiei te Anlageei
gehms darstellt Fui diese Prozesse gelten die detaillierteren Formeln

A" mm{B, (A - P) + }-(P- A)+

A-P-(A-P-B) +

B- (B + P-A)+
\l> — (h + rp — R)+]Ao (1 fl)

,4e — P + D

A- ,4"

P + (A-P-B)+
[,p+ (R-,p-b)+}A0 (112)
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wobei b B/Aq die konstante Reserverate für che Deckung des Anlagerisikos per
Einheit des investierten Kapitals darstellt. In (1.12) ist ersichtlich, dass unter den

Modellannahmen, insbesondere rA > rp, die Verzinsung rp auf den Passiven

sichergestellt wird. In Worten ausgedruckt interpretiert das vorliegende Bewei tungs-
modell den Wert der Aktiven Ende der Anlageperiode als

A — Wert der Anlage
garantierter Wert der Passiven

+ Dividende bei gunstigem Verlauf der Rendite

+ Reserve fur die Deckung des Anlagerisikos
— Finanzüberschaden

In invarianter Darstellung gelten dieselbe Aussagen und Formeln tur den

akkumulierten Renditeprozess. Insbesondere ist die Konstante b Losung der Gleichung
(siehe (1.9)):

Bemerkungen

(a) Der Rückbehalt ist keineswegs an die optimale Wahl (1.5) gebunden. Alterna¬

tive Möglichkeiten definieren ebenfalls attraktive Bewertungsmodelle. Zum

Beispiel fragt man nach einer stabilen Dividende, so ist die Varianz der

Dividendenformel zu minimieren. In diesem Fall lautet die optimale Wahl

P + D + B- (B + P-A) +

rA — rp E[(R — rp — b) j_] (1 13)

D mm{B.(A- P) + } (1.14)

mit zugehörigem Ruckbehalt

RB (A - P — B)+ (1.15)

wobei die Konstante B folgende Erwartungswertgleichung erfüllt

E[(A -P- B)+} - E[(P - A)+] £? — E[A — P]. (1.16)

Unter der Annahme, dass die Dividendenformeln die Eigenschaft
0 < D < (A — P) + besitzen, wird die Formel (1.14) analog wie (1.5) hergeleitet

(siehe auch Huriiniann 11991b]).
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(b) Da am Finanzmarkt Baisse und Hausse fur verschiedene Anlagen meistens

parallel veilaufen, ist das Konzept des Ruckbehalts eigentlich nur über mehrere

Perioden sinnvoll dehniert Es muss nämlich die Möglichkeit vorhanden

sein, die Schwankungen der Rendite über einen längeren Zeitiaum
aufzufangen Das vorliegende Einpenodenmodell setzt sonnt stillschweigend die

Annahme einer stabilen zukunftigen Entwicklung voraus Die Formulieuing
eines Meinpei loclenmodells dei Absiebet img benotigt einen Mehrautwand,
sollte abei technisch möglich sein

2. Anwendung der Optionspreistheorie

Eine "Option" ist ein Vertrag, der das Recht ubertiagt, spezifisches Eigentum,
z B Wertpapiere, zu einem testen Preis, genannt Ausitbuni>spieis, zu einem testen

Preis wahrend oder nach Ablauf einer bestimmten Frist kaufen oder verkauten

zu können Dabei hat der Abnehmer des Optionsvertiags das Recht, aber nicht
die Obligation, das spezifische Eigentum zu kaufen oder zu veikauten In den

Finanzmarkten weiden verschiedene Optionen angeboten, die sich nach der Alt
des Rechtes unterscheiden Bei einer Call-Optum erhalt dei Kaufer das Recht, das

spezifische Eigentum zu kaufen Eine Put-Option beinhaltet ein entsprechendes
Vorkaufsrecht

Als Ausgangspunkt unserer Betrachtung ziehen wir die Gleichung (1 13) heran Wir
schreiben nun r'' — rmm fur die Minimalrendite, die auf den Passiven erzielt werden

soll Die Formel (I 13) identifiziert die Differenz zwischen erwaiteter Rendite und

Minimalrendite als aufqezinstei Pieis emei Call-Option zum Ausuhungspi eis K
b + 'mm fur em imestieites Kapital 5=1 Untei Verwendung der Identität

{R — > mm — b)+ R — lmn — b + (b + / mm — i?)+ (2 1)

erhalt man die äquivalente Gleichung

b E[(b + i m,i, — R)+] (2 2)

Damit ist die Konstante b implizit als aufgezmste Put-Option dehnieit Um den

"fairen" Preis P dieser Option am Anfang der Anlageperiode zu bestimmen, benutze

man das folgende Rezept aus der Optionspreistheorie (falls die mathematischen

Bedingungen dafür erfüllt sind) Man diskontiere mit dem Faktoi Uf 1///, wobei

i i der Aufzinsungsfaktor der risikofreien Anlage ist, und transformiere das zu R
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gehörige Mass so, dass der Renditeprozess die /Wa/t»?gr//-Eigenschaft besitzt Das

transformierte Mass wird nsikoneutrales Mass genannt und mit * bezeichnet. In

Formeln ausgedrückt lautet der Preis der Put-Option

P b- vj vf E*[(b + imm - f?)+] (2.:5)

Die Anwendung der Put-Call Parität

P C — S + K vf, (2 4)

liefert weiter den Preis C der Call-Option, nämlich

c 1 - t'mm Vf Vf E*[(R - rmln - b)+] (2 5)

Damit ist der "faire" Preis clei Absuherungskonstante b, die keine Arbitrage
ermöglicht, im Prinzip berechenbar. Konkrete Ergebnisse erhalt man durch Anwendung

eines spezihschen Optionspreismodells. Zum Beispiel ergibt die Blat k-St holes

[ 1973]-Formel die implizite Gleichung

t f ~ rmin rt N(.r) - (b + rmm) N(.r - er) (2 C)

wobei

X= ^ÜÜS- + -(T.
(7 2

ct y^Vai[ln(7?j] die Volatilität.

N(x) die kumulative Verteilungsfunktion der Standard Normalverteilung.

Bemerkenswert fur diese finanzökonomisihe Methode ist die Tatsache, dass die

gesuchte Konstante b nicht von der erwarteten Rendite r abhangt, sondern nur

von der Volatilität er, der garantierten Verzinsung /Inm, und von der risikofreien

Verzinsung t / Das Absicherungsmodell aus Abschnitt 1 zeigt, dass die realisierte

(stochastische) Rendite gleich ist

hum + [R ~ rmm ~ b)+ (2.7)

wobei zu bemerken ist, dass die erwartete Verzinsung im allgemeinen verschieden

von > sein wird. Durch obiges Verfahren wird nämlich nicht Gleichung (1.13) gelost,
sondern das Nicht-Arbitrage-Prinzip angewendet. Allerdings stellt die vorgeschlagene

Methode nui eine Näherung dar, die auf die Rendite eines Aktienindexes praktisch

anwendbar ist. Die explizite Berücksichtigung der Portfohozusammensetzung,
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in der Regel Aktien und Obligationen verkompliziert das allgemeine Problem aber

ganz erheblich

Zu erwähnen ist ebenfalls das folgende fundamentale Ergebnis dei Optionspreis-
theorie das als direkte Konsequenz von (2 5) anzusehen ist Da dei Wert der Call

Option immer positiv ist. folgt rmm < r f
Dies bedeutet dass in allen mathematisch zulassigen Optionspreismodellen nui

eine Mimmalrendite gaiantiert werden kann die höchstens gleich der risikofreien
Rendite ist

3. Zinsfuss zur Diskontierung der Passiven

In einer risikobehafteten und unsicheren Ökonomischen Umgebung lasst sich eine
konstante Rendite auf den Aktiven einer Versicherungsgesellschaft kaum realisieren

Im allgemeinen werden die Renditeschwankungen durch eine reduzierte Ren

dite auf den Passiven ausgeglichen, als Beispiel sei der traditionelle Zinstuss in der

Lebensversicherung erwähnt Die Frage nach einem geeigneten Zmsfuss zw Dis-
kontiei unq da Passisen ist am 2 AFIR Kolloquium in Bnghton ergiebig diskutieit

woi den Forschungen auf diesem Gebiet sind aus verschiedenen Gl unden erwünscht

(vgl hierzu Wilkie [ 1991 ], S 3)

Gestutzt auf das Absicherungsmodell dieser Arbeit und seine Konsequenzen sind

verschiedene Methoden denkbar, um diese Frage zu beantworten Vorgestellt weiden

eine aktuai teile und eine fmanzokonomisthe Methode

Mit 7?4 bezeichnen wir den akkumulieiten Renditeprozess auf den Aktiven, nut t
A

den Aufzinsungsfaktor auf den Aktiven und mit / p den Aufzinsungsfaktor auf den

Passiven, dei garantiert werden soll

Zuerst wird die aktuanelle Methode vorgestellt Laut Gleichung (113) genügt es

eine Anlage mit erwarteter Rendite

,A=b + rp (3 1)

zu finden Die Konstante h wird als akkumulierter Preis des Risikos inteipietiert, das

dutch che schwankende Rendite entsteht Durch Bezahlung dieser Risikopramie"
erwartet dei Anleget eine Rendite, die um 1006% hoher ist als die Minimalrendite
Mit dieser Bedingung folgt dass r 4 Losung der impliziten Gleichung

4 - >p E[(BA - rA)+]
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ist Unter der natürlichen Voraussetzung rA > rp besitzt diese Gleichung im
allgemeinen eine eindeutige Losung rA 1st der Renditeprozess bekannt, so kann man
diese Gleichung numerisch mit der alqebiaisthen Momentenmethode losen (vgl
Hinhmann 11991a]) Ein offenes Problem ist die Wahl eines geeigneten
Renditeprozesses Dieses Modelherungsproblem oder äquivalent dazu die Festlegung der

Zinssatzsti uktui term structure of interest rates) scheint mit erheblichen
Schwierigkeiten mathematischer Natur verbunden zu sein Setzt man voraus, dass 7?4

lognormal verteilt ist mit Erwartungsweit // und Standardabweichung er, so gilt

/y ln(r 4) - i(j2 (3 3)

it2 Vai[ln(Y?4)],

die erste Beziehung wegen i 4 E[RA] cxp(/i+ |rr2) Durch Berechnung oder

durch Anwendung der Blac k-Sc hole%-Fom\e[ fur Call-Optionen erhalt man

E[(RA-7A)+] rA [2iv(^) -l] (3 4)

Ein Vergleich mit (3 2) ergibt folgende Beziehung zwischen Rendite auf den

Passiven und Rendite auf den Aktiven (vgl Formeln (3 8) und (3 9) in Hmhmann

[1991a])

rp =2 r4 l-N{\a)\ (35)

Das Absicherungsmodell zeigt, dass die realisierte (stochastische) Rendite auf den

Aktiven gleich

rp + (Ra - t 4)+ (3 6)

ist Nach (3 2) ist der Erwaitungswert der realisierten Rendite gleich r
4 Im Spezialfall

einer deterministischen Ökonomie ist a 0, d h. rp i 4, wie es sein sollte
Die Schwierigkeit bei der piaktischen Anwendung dieser Methode hegt dann, das->

zur Zeit unbekannt ist, ob der Erwartungswert t
4 einer Anlage vorausgesagt werden

kann

Eine mögliche finanzokonomist he Methode folgt durch Anwendung der Options-
preistheorie wie in Abschnitt 2 auf die transformieite Gleichung (3 2)

E*[RA]-rp E*[(Ra-ta)+] (3 7)
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Die Absicheiung erfolgt in diesem Fall nicht duich Selbstfinanzierung, sondein

durch Kauf einei Call-, Put- oder kombinierten Call-Put-Option auf dem Finanzmarkt

Im Bitte k-St holes-ModeW erhalt man folgende Beziehung

>/J '4 [l + ^i -N(a-x)- ^ 7V(.r)], (3 8)

wobei

1

+ ^a 2

Wie in Abschnitt 2 ist daraufhinzuweisen, dass die explizite Poitfohostruktur dabei

unberücksichtigt bleibt Deshalb kann die Methode vorerst nui tui die Rendite eines

Aktienindexes praktisch verwendet werden

Von besonderem Interesse ist der Spezialfall tA j f des risikofreien Aufzinsungs-
laktors, der nach Abschnitt 2 die höchste Minimalrendite ist, die in Optionspieis-
modellen garantiert werden kann Dabei ist zu beachten, dass der zugrunde hegende

Renditeprozess stochastischer Natur ist Man erhalt die Formel

rp 2 j} (3 9)

die ebenfalls aus (2 6) folgt, falls man b + rmm b + rp — / / setzt

Nehmen wir nun an, dass der Diskontierungsfaktor auf den Passiven garantiert
weiden soll Aus dei ei wähnten Tatsache, dass höchstens rA tf auf den Aktiven

garantiert werden kann, und aus Gleichung (3 7) folgt, dass dann der garantierte
Diskontieiungsfaktor auf den Passiven in einer risikobehatteten Ökonomie immer
kleiner als der risikofreie Diskontierungsfaktor ist Dasselbe (qualitative) Eigebnis
wird unabhängig in Kozik [ 1991J gezeigt
Eine mögliche einparametrige Schar von Absicherungsstrategien mit dem Scharpa-

uimeter 0 < i/> < 1 besteht darin, dass man das investierte Kapital 5=1 wie folgt
anlegt

w [1 — 7P Vj) in einer Call-Option mit Ausubungspreis ; j
(1 — a') (1 — ip Vf) m einer Put-Option mit Ausubungspreis i/•. (3 10)

t p
Vf in dei risikofreien Anlage i f

Fui diese Absicherungsstrategie lautet die realisierte (stochastische) Rendite auf den

Aktiven

ip + it (i?
1

— t/ )+ + — iv) (i f — 7?4)+>? p + mm{w,l — w} |7?4 — rf\ (3 1L)
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1st w 1, so paitizipiert man an dem Autwartstrend des Aktienindexes durch die

Call-Option. Ist dagegen w 0, so partizipiert man an dem Abwartstrend durch die

Put-Option, und ist w so profitiert man von den starken Schwankungen der

Rendite des Aktienindexes.

Im Fall r
1

rj, w 1 und unter den obigen Modellvoraussetzungen ist die

aktuarielle mit dei hnan/okonomischen Methode gleichwertig. Es ist ip eindeutig
durch dieselbe Formel bestimmt, und die realisierten stochastischen Renditen sind

gleich.

4. Absicherung der Portfolio Rendite, falls eine risikofreie Anlage
verfügbar ist

Die in der Praxis am häufigsten angewendete Methode, um den Kapitalertrag eines

gemischten Portfolios von Anlagen unter Berücksichtigung des Risikos zu maximie-
ren, ist der Ansatz von Maikowitz [1952/59] Mit dieser Methode werden effiziente
Portfolios im folgenden Sinn ermittelt: fur eine vorgegebene Rendite wird das Portfolio

nut der kleinsten Varianz der Rendite gewählt und fur eine vorgegebene Varianz

der Rendite wird das Portfolio mit dei höchsten erwarteten Rendite gewählt Untei

allen möglichen derart bestimmten Portfolios, den sogenannten Gienzpoi tfolios. in

der Erwartungswert/Varianz-Ebene, gibt es ein eindeutig bestimmtes Portfolio mit
minimaler Varianz der Rendite, nämlich das Mimmum-Vai ianz-Poi tfoho Grenz-

portfohos, deren erwartete Rendite streng grosser ist als das Minimum-Varianz-
Portfoho heissen effiziente Portfolios Zweckmassige Einführungen zur Portfolio-
Analyse von Markowitz findet man in den Lehrbuchern Ingeisoll [1987] oder Huang
und Litzenberger [1988]. Unsere Darstellung folgt den letztgenannten Autoren.

Es stellt sich wie in Abschnitt 3 die Frage, unter welchen Bedingungen ein vorgegebenes

Niveau der Passiven erreicht werden kann. Mit anderen Worten:

(a) welche Poitfohogewichte sind im Rahmen der Maikowitz Portfolio Analyse

geeignet, um eine Minimalrendite zu erzielen?

(b) wie kann eine Portfoho-Rendite abgesichert werden?

Diese Fragen werden hier unter Berücksichtigung des Absicherungsmodells aus

Abschnitt 1 untersucht. Es entstehen neuartige / isikoangepasste effiziente Poitfolios
oder abgesuheite effiziente Poitfolios, deren Eigenschaften weitere Forschungen

anregen durften.
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Folgende Notationen werden durchwegs benutzt

i f dei lisikofreie Autzinsungsfaktoi,
l lllm der Autzinsungsfaktor zur Minimalrendite, die

garantiert werden soll,
R — (Rj R\ der Vektoi der zufälligen Aufzinsungsfaktoren

zu N verschiedenen risikobehafteten Anlagen,

/_=(![. t \ der Vektor der ei warteten Aufzinsungsfaktoren
der N Anlagen,

w — (wi w\ der Vektoi der Portfohogewichte der
nsikobehafteten Anlagen

J_ (1 1) der Einheitsvektor,
R u_7 R die Zufallsvanable des akkumulieiten

Renditeprozesses des Poitfohos,
/ E\R] dei erwartete Aufzinsungsfaktor des Portfolios,
V ((T,j) die Varianz/Kovananzmatrix der

an — C\w[Rn Ri] Renditen der

il l N risikobehafteten Anlagen

Es wud angenommen, dass Portfohogewichte negativ sein können, dass also ein

unbegrenzter Verkauf erlaubt ist Weiter wird vorausgesetzt, dass rt^i, fur / ^ j
ist d h dass verschiedene Anlagen verschiedene erwartete Aufzinsungsfaktoren
haben Ausseidem sollen die zufälligen Aufzinsungsfaktoren Rj, ,f?\ linear

unabhängig sein mit einer positiv dehniten Varianz/Kovarianzmatnx V 1st keine

risikofreie Anlage voihanden (Abschnitt 5), so wird zusätzlich die Budgeti>leii Innig
u_T 1=1 angenommen Ist eine risikofreie Anlage verfügbar, so kann auf eine

Budgetgleichung aus folgendem Grund verzichtet werden Die residuale Grosse 1 -
u_' 1 stellt, falls positiv, den investierten Anteil in der risikofreien Anlage, oder, falls

negativ, den risikofreien Anteil, der benotigt wird, um die risikobehaftete Anlage

zu finanzieren, dar Kompliziertere Falle mit Restnktionen der Portfohogewichte
werden numerisch mit Methoden der Operations Reseaich gelost Von Interesse sind

/ B

w > 0 Verkaufe sind ausgeschlossen,
Aw < b Restriktionen auf die möglichen Gewichte, z B über die

maximalen Anteile von Anlagekategonen, usw
(A eine N x JV-Matrix, b ein A-Vektor)
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Um eine vorgegebene minimale akkumulierte Rendite rm,„ eines Portfolios zu

erreichen, genügt es laut Gleichung (1.13) eine Anlage mit erwaiteter Rendite

r — b + rmm (4.1)

zu finden. Mit dieser Bedingung folgt, dass r Losung der impliziten Gleichung

r-rmin E[(R-r)+} (4.2)

ist. Diese hinreichende Bedingung setzt voraus, dass gewisse stochastische
Eigenschaften des Renditeprozesses bekannt sind oder prognostiziert werden können. Ist

zum Beispiel die Standardabweichung a \/Vai'[i?] bekannt, so gilt nach Benk-

tandei [ 19771 die Approximation

0.4(7. (4.3)ml" sf^K

Diese Formel ist exakt für normalverteilte Renditen und liefert eine vorsichtige
Schätzung fur viele Verteilungen, insbesondere auch für unendlich teilbare
Verteilungen. Nach Bowers [1969] gilt folgende beste obere Schranke, die fur eine Zwei-

punkteverteilung angenommen wird:

E[(B-r)+]<^a. (4.4)

Dies fuhrt zu der verteilungsfreien besten Abschätzung

r < Urnn + • (4.5)

Die praktische Anwendung der Formel (4.2) bereitet Schwierigkeiten, da der
stochastische Renditeprozess und insbesondere die erwartete Rendite einer Anlage

nur mit Muhe, wenn überhaupt, prognostiziert werden kann. Trotz Bedenken
betreffend die Schatzbarkeit einer erwarteten Rendite werden diese Ergebnisse im
Rahmen der Erwartungswert/Varianz Portfolio Analyse von Markowitz angewendet.

Zur Unterstützung dieses Anliegens beachte man, dass letztlich Relevanz nicht

in den Voraussetzungen, sondern in den Implikationen hegt. Hierzu das Zitat von

Sharpe [1985], Kap. 8, S. 194: "As always, the issue is not the relevance of the

assumptions, but the validity of the implications." Darüberhinaus wird die Portfolio-
Analyse durch die Nutzentheone untermauert. Beschrankt man sich auf multinor-
mal verteilte Anlagerenditen, oder werden spezielle Nutzenfunktionen verwendet
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(HARA-Klasse: Nutzenfunktionen mit der sogenannten hyperbolischen absoluten

Risikoaversion), so wird die Gültigkeit von Erwartungswert/Varianz-Analyse
anhand des Pitnzips der Maxinnerung des erwarteten Nutzens begründet.
Die Integration der Bedingung (4.1) in der modernen Porttohotheorie fuhrt somit zu

folgendem approximativen Ansatz:

'• Gum + r ct. n>(). (4.6)

Dabei ergibt die Wahl c | die "verteilungsfreie beste" Sicherheit und c 1/\/2tt
entspricht einer "realistischen" Einschätzung des Anlagerisikos. Im Rahmen der

Portfolio-Analyse nach Markowitz ist folgendes abgeänderte Optimierungsproblem
zu losen:

min | -irTVGcj (4.T)

unter der Nebenbedingung

M!1 (r - Irf) + ff + c\/wTVw

Im ursprünglichen Ansatz von Markowitz wird lediglich der Fall c 0 behandelt.

Die abgeänderte Fassung des Optimierungsproblems modelliert das Bedürfnis, ein
"realistisches" Ziel an Stelle eines absoluten Ziels für die Rendite zu vei langen. Als

Spezialfall diskutieren wir zunächst den Fall TV 1 einer einzigen unsicheren
Anlage mit Portfohogewicht w„. erwarteter Aufzinsung iu und Standardabweichung
der Rendite ct„ Die Nebenbedingung lautet

wui„ + (1 - u'u)rt rimn + sgii(wu)wucc7u (4.8)

und liefert die Losung

0 falls / / rmin
sgn(i/'u)|icu|, |w„| beliebig, falls /} ,-u - sgii(uiu)r'CTu

I f ~ /"mm ^

I f - Gm.. + Sgll{WU)C(TU
sonst.

Das Minimum-Vananz-abgesicherte Portfolio entspricht der risikolosen Anlagestra-

tegie. die das verfugbare Kapital mit dem Satz 77 akkumuliert. Bei vorgegebenem

rmm erhalt man im allgemeinen einen eindeutig bestimmten Anteil </>„ mit Portfo-
hovananz ct2 (wucru)2 Wir nennen wu den optimalen risikoangepassten oder

abgesicherten Anteil. Das klassische Modell von Maikowitz ohne Absicherung der
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geforderten Minimalrendite tmm wird als Spezialfall c 0 des obigen Optimie-
rungsproblems angesehen Fur N 1 erhalt man den optimalen cleteimuustisihen
Anteil

wd

0,

beliebig,
J) ~ rnn

i f ~ru

falls rf rml
falls r-f i u

(4 10)
sonst.

Es ist interessant, die "Performance" oder Risiko/Ertrag-Leistung der deterministischen

Losung nut unseren abgesicherten Portfolios zu vergleichen. Fur die Diskussion

setzen wir voraus, dass 0 < a>u < wd, was in folgenden Fallen erfüllt ist

(I) t mm < If, ru < 1 f < i f + cau
(II) 7'nim > If, I u > Tf + l CT u > t f

Es sei noch /?„ die Zufallsvariable der Autzinsung für che unsichere Anlage Die

Aufzinsung im deterministischen Fall ist dann

R" (1 - wd)rf + wdRu

mit Erwartungswert und Varianz

E[RJ} t mm, Vat[7?rf] (wdau)2

Die Autzinsung im abgesicherten Portfolio lautet

Rnl' (1 - wu)r} + wuRu

mit Erwartungswert und Varianz

E[Rab] i„„„ + C(W,i<T„) > E[Rd}.

Vai [Rab] (wua„)2 < Vai [Rd].

Es ist bemerkenswert, dass das nsikoangepasste Portfolio, neben abgesicherter Mi-
nimalrendite, einen höheren erwarteten Ertrag bei kleinerer Varianz als das

deterministische Portfolio liefert. Em ähnliches Phänomen wird mit Hilfe von Simulationen
durch MciLclonald [1991] festgestellt (siehe auch che suggestive Formel [4.12] in
Hin hmann [ 1991 a [).
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Beispiel 1: Absicherung der technischen Ruckstellungen einer Versicherungsgesellschaft

Bekanntlich werden die technischen Ruckstellungen, als Guthaben der

Versicherungsnehmer. mit einem technischen Aufzinsungsfaktor >
p verzinst, der gewöhnlich

unter dem risikofreien r /• hegt. Wir nehmen an, dass die Versicherungsgesellschaft

einen Teil des Kapitals in einer unsicheren Anlage investiert, zum Beispiel in Aktien

an der Börse. Wird die Verzinsung ;mm ip abgesichert, so ergibt sich, in

Abhängigkeit der Standardabweichung der Aktienrendite, ein eindeutig bestimmter

optimal risikoangepasster Aktienanted. Die folgende Tabelle illustriert an numerischen

Beispielen die unterschiedlichen Anteile in einer deterministischen und einer
stochastischen Ökonomie. In gewissen Fallen explodiert der benötigte optimale sto-

chastische Anteil, was auf ein chaotisches Verhalten hinweisen konnte.

Nun wenden wir uns dem allgemeinen Fall N > 2 des Optimierungsproblems (4.7)

zu. Die La »/wige-Funktion

L -wpVir + X (rf — rnnn + wT(r — Iff) — cx/ wT V w) (4.11)

fuhrt zu den folgenden hinreichenden und notwendigen Bedingungen fur ein globales

Extremum:

dL
— V w + X
die (r-lr,)-cV -

\ZteTVui-
0 (4 12)

dL t /

-—=rf-rmm + tv (r - Ii j) - c\JwrVw 0 (4.13)
OA

Multipliziert man (4.12) skalar mit wJ unter Berücksichtigung von (4.13), so folgt

wTVw X{rf - rnun) > 0 (4.14)

Zur Abkürzung setze man d — \f\rp - rIlim|, ecl sgn(77 - rmm), ex sgn(A).
Dann gilt

s/wTVw - vlÄf (1, ex - Ed (4 15)
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Tabelle 1: Optimaler Anteil einer unsicheren Kapitalanlage

Werte der Parameter optimaler Anteil

deteimimstisch stochastisch

Tf rm,n 1 u (Ta r 0 r -)=2tv c= I
1 05 1 01 1 03 0 01 0 5 0 417 0 4

0 02 0 5 0 357 0 333

1 04 0 01 1 0 715 0 667

0 02 1 0 556 0 5

1 05 1 06 1 06 0 01 1 1 664 2

0 02 1 4 948 1 153 10

1 07 0 01 0 5 0 625 0 667

0 02 0 5 0 832 1

1 06 1 04 1 03 0 01 0 667 0 589 0 571

0 02 0 667 0 527 0 5

1 05 0 01 2 1 43 1 333

0 02 2 1 112 1

1 06 1 05 1 04 0 01 0 5 0 417 0 4

0 02 0 5 0 357 0 333

1 05 0 01 1 0 715 0 667

0 02 1 0 556 0 5

1 06 1 07 1 07 0 01 1 1 664 2

0 02 1 4 948 1 153 10r>

1 08 0 01 0 5 0 625 0 667

0 02 0 5 0 832 1
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Durch Einsetzen in die obigen Bedingungen erhält man das nicht-lmeare

Gleichungssystem

Vw(d — £aC\/[^I) + ^d{r — lrj) 0. (-4-16)

d(edd - cy/\X\) + UlT{r - 1 rf) 0 (4.17)

Die Auflösung der ersten Gleichung nach w ergibt

ül= 7= (4.18)
£a<VIAI - d

Eingesetzt in der zweiten Gleichung folgt eine Bedingung für A:

d{edd-c\J|Ä|) - - • (r - lrf)TV~1(r — lrf) 0.
d-£XCsJ |A|

Zur Abkürzung setzt man

H (r - lrffV-^r-lrj) > 0 (4.19)

und sieht, dass

Edd-csf\\\ y==. (4.20)
d - £acv!aI

oder

(d - edcy/\X\)2 |A| H.

Die Losung dieser quadratischen Gleichung für >/|X| liefert die Bedingung

\/\X\(£dC + eVh) — d, £ ±1,

wonach folgt

lAl (—T^/w)2' £ ±1- (4'21)
^£dC + £\IH'

Andererseits lautet die Portfoliovarianz

a2 wTVw X(rf - rmin) ^7=)
K£dC -t- H '
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Dieser Ausdruck ist minimal für e 1, falls e,i 1, und fur e — 1, falls Ed —1.

In beiden Fallen gilt

a2=f>f-r y (4 22)
c+s/H /

Mit (4.18) und (4.20) folgt fur die Portfohogewichte

_
c(l\AM - e<id2

H V-l(r-lrf).

Abel man hat e^d2 i f — rmm und dy/|Ä| s/Mrf — rmln) er. Somit
lauten die optimalen Portfoliogewichte für ein risikoangepasstes Portfolio oder

abgesichertes Portfolio:

K
'm'" +y°

~ r/
• V-\L - 1rf). (4.23)

wobei nach (4.22) gilt

' 111111
~~ f f r 11 \r~— falls rmm > tj

i c + VH / I o i \(J= { ,._r <4-24)
/ null r 11

__. falls r-inin rjC+VH

Dieses Resultat ist ein risikoangepasstes Analogon der Markowitz-PovÜ'oWo-Analyse
mit einer risikofreien Kapitalanlage (siehe Huang und Litzenberger [1988],
Abschnitt 3.18, S. 76-80). Wie in der klassischen Analyse bilden die Grenzportfohos
in der (a, rmm)-Ebene zwei Halbgeraden mit Steigungen c+ \/H und — (c+
die vom Punkt (0. rj) ausgehen. Ein Vergleich mit der klassischen Lösung ist

aufschlussreich. Fur jedes r > 0 definiert die Losung des erweiterten Markow itz-

Optimierungsproblems ein Portfolio mit Autzinsungsfaktor Rc, der eindeutig
bestimmt ist durch (4.23) und (4.24). Fur die Erwartungswerte und Varianzen gelten
die Ungleichungen

E[RC\ vmm + cg > rmm £[jR0], (4.25)

Var[i?r] )2 < (r/ "^'""l)2 Var[i?0] •

In Verallgemeinerung zum Fall TV 1 liefern die nsikoangepassten Portfolios, im
Rahmen von Erwartungswert/Varianz-Analyse, die höheren erwarteten Renditen bei
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kleinerer Varianz. Noch überraschender ist folgende Beobachtung Mit wachsendem

c steigt der erwartete Ertrag mit fallender Varianz, d h fur c > c' gilt

E[RC] > E[Rci], Var[Rc] < Var[Äc/] (4 26)

Im Grenzfall R0c lim Rc erhalt man
C—*00

E[Roo} - rmm + \rf - rmm\, Var[i?oo] 0 (4 27)

Mit Hilfe der Ungleichung von Tsehebyschev zeigt man, dass die Zufallsvanablen
Rc fur c —> oc gegen den Erwartungswert E{R^:] stoehastiseh konvergieren Dies

bedeutet, dass zu jedem e, 8 > 0 ein N — N(e, 6) existiert mit der Eigenschaft

Pr{\Rn ~ rmm - \r} - rmm|| > e) < S fur alle n>N
Damit ist eine absolute Grenze fur den Ertrag eines abgesicherten Portfolios mit
c > 0 aufgezeigt In der Praxis ist diese Grenze natürlich nicht erreichbar, da die

Portfoliogewichte w Restriktionen über das maximal investierte Kapital unterworfen

sind Als illustratives Beispiel dient der explodierende stochastische Anteil in
Tabelle 1 In praktischen Anwendungen dieser Ergebnisse ist ein nicht-lineares Op-

timierungsproblem mit linearen Ungleichungen und einer nicht-linearen Gleichung
zu losen Solche Probleme werden mit Hilfe von Operations Research Methoden

numerisch gelost Es bleibt zu prüfen, wie gut das leahstisch abgesicherte Poi tfolio
c l/\/27r und das veiteilungsfieie beste abgesichelte Portfolio c — \ wirklich
abschneiden, falls man den Absicherungsprozess berücksichtigt Nach Abschnitt 1

und nach Konstruktion gilt fur die Aufzinsung eines abgesicherten Portfolios mit
beliebigem c > 0 die Zerlegung

R, Rec + Rac,

K t"min + (Rc - £[-Rc])+

Rac c a- (E[RC] - Rc)+ (4 28)

Dabei stellt Rf den Abstehetungspiozess dar, der um so sicherer ist, je grosser c

gewählt wird Im klassischen Modell ist c 0 und die Minimalrendite rmm ist

überhaupt nicht abgesichert, da in diesem Fall 7?" < 0 Die Wahl c | stellt den

veiteilungrfieien besten Abstehetungsptozess dar, in dem Sinne, dass er im
Erwartungswert die allfalhgen Renditeverluste auf jeden Fall aufzufangen vermag
Aufgrund der früheren Diskussion ergibt c \j\phe einen lealistisehen Abstehet ungs-

prozess Die Variable Rec stellt den effektiven oder leahsieiten Aufzimungspwzess
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dar. Nach Benktander [1977] ist die erwartete effektive Aufzinsung approximativ
gegeben durch

E[R"C] rmin + E[(RC - £[fic])+] (4.29)

~ rmin +
c+VH

wobei c 1/\/27r für das realistisch und c | für das verteilungsfreie beste

abgesicherte Portfolio einzusetzen ist. Die zugehörige Schwankung wird unter Annahme
einer Normal verteilung gemessen durch

Var[RTC] Var[(J?c - E[RC})+] (4-3°)

Beispiel 2. Das Beispiel 1 wird unter Hinzufügung einer weiteren unsicheren
Anlage fortgesetzt. In diesem Fall ist TV 2 und es bezeichne q der Korrelationskoeffizient

zwischen den risikobehafteten Anlagen 1 und 2. Dann gilt cr12 <721

Qu1 rr2. Die benötigten Berechnungen können mit einem Taschenrechner

durchgeführt werden. Die Formel (4.19) lautet in diesem Spezialfall:

H= -i-j (tlZllV (4.31)
1 — Qz \ <7i (J2 / \ (J2 /

In Abhängigkeit vom Parameter c werden die optimalen risikoangepassten Anteile
laut (4.23) ermittelt:

(n
-rf ^ r2~rf \^ "CT2

(4.32)
r*-y ri~ri I ^

a\ e er 1 a2

wobei

/ \ _ 1 Irf~ rmin| /ll(c) — rmin ~b C '
j—— (4.33)

c + \ H

der Erwartungswert des akkumulierten Renditeprozesses ist.
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Tabelle 2: Optimale Portfolios: Absicherung vs. Markowitz

Fall Parameterwahl

rf rmin r i T2 tri <72 ß

a) 1 05 1 04 1 03 1.06 0.01 0 02 - 0 5

b) 1 055 1 06 1 06 1 07 0.01 0 02 - 0 9

c) 1.06 1.08 1.07 1 08 0 08 0 15 0.9

d) 1 07 1 075 1.075 1 08 0 01 0 02 0.5

e) 1 08 1 05 1 06 1.08 0 01 0 02 - 0.5

optimale risikoangepasste Anteile

c 0 c 1/i/27r lC= 2

U'2 Uli U>2 W\ U>2

a) 0.538 0 077 0 452 0.065 0 434 0 062

b) 0.395 0 202 0.444 0 227 0.455 0.232

c) 0.367 0.816 0.642 1 428 0.657 1.460

d) 0 500 0 250 0.704 0 352 0.732 0 366

e) 1.500 0.094 1.279 0.080 1 233 0.077

Renditeprozesse im Vergleich

c 0 C 1/s/Ö/K lC= 2

ß er ß (7 ß er

a) 1 0400 0.00480 1 0416 0 00403 1 0419 0.00387

b) 1.0600 0.00179 1.0606 0.00156 1.0608 0 00152

c) 1.0800 0 14945 1.0950 0 03754 1.0958 0 03155

d) 1 0750 0.00866 1.0770 0.00512 1.0773 0.00464

e) 1.0500 0.01299 1 0544 0 01107 1 0553 0.01068
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5. Absicherung, falls eine risikofreie Anlage nicht verfügbar ist

Möchte man in einer unsicheren ökonomischen Umgebung mit N > 2 risikobehafteten

Anlagen ohne risikofreie Investitionsmöglichkeit die Minimalrendite rmin
eines Portfolios absichern, so ist analog zu Abschnitt 4 das folgende Optimierungsproblem

zu lösen:

min j-wTUu;j (5.1)

unter den Nebenbedingungen

wT • r rmm + c • \fwTVw, wT -1 1.

Die Lagt ange-VüvkXion

L ^wTVw + A(rmin + cs/uFVw - wT r) + 7(1 - wTl) (5.2)

führt auf das folgende Gleichungssystem

!^ Vw-\(r-c--1¥=—)->yl=0. (5.3)

dL
"HT r + c - \/wTVw-wT T 0, (5.4)o\
dL T— 1-WT-1 0. 5.5)
07

Multipliziert man (5.3) skalar mit wT und berücksichtigt dabei die Nebenbedingungen

(5.4) und (5.5), so erhält man

wTVw — Armin + 7 > 0 (5.6)

Das Einsetzen in (5.3) und die Auflösung nach w ergibt

w (1 + Ac/a/Armin +7) 1
• [A(U xr) + 7(1/ *1)]. (5.7)

Setzt man diesen Ausdruck in den Nebenbedingungen ein, so folgt das nicht-lineare

Gleichungssystem für A und 7:

A(rTV 1r) + 7(1tU V) (l +
Ac

(rmin + c y/Xrmm + 7), (5.8)
v V Armin + 7/

A^V"1!) + 7(1TV-11) (l +
AC

(5.9)
^ vAfmin+7'
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Mit den Abkürzungen

A lTV~1r rTV~ll, B rTV~1r, C= 1TV_1I, (5.10)

erhält man weiter

BX + Ay (l + -77—AC Vmm + c yjXrmin + 7 + Ac2 (5.11)
v V Armm +7/

Ac
AA + C7 - 1+ (5.12)

VArnun + 7

Die Elimination des Ausdrucks 1 + Ac/y/Xrmm + 7 liefert die quadratischen
Gleichungen

[aA + try]2 c2(Armm + 7), (5.13)

[aA + by}\AX + Cy - 1] c2A, (5.14)

wobei zur Abkürzung gesetzt wird

a — B c b — A CYmin. (5.15)

Die Lösung dieses Systems geht über die lineare Transformation

x — aX + by, y AX + Cy — l (5.16)

Aufgelöst nach A und 7 erhält man:

b + by — Cx Ax - ay — a~
D ' 7 <5'17)

wobei D Ab — Ca. Damit hat man das äquivalente System

D x2 - D rmm xy A c2 x - a c2 (y + 1), (5.18)

D xy - C c2 x + b c2 {y + 1). (5.19)

Die Elimination des Terms in (y + 1) liefert die lineare Bedingung

b x + (a - b- rmm) y c2 (5.20)
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wobei angenommen wird, dass x ^ 0 und D ^ 0 Dann eliminiert man den Term

mit rtj und erhalt unter Berücksichtigung von (5 20) die quadratische Gleichung

D x1 — 2 b c2 x + c2 [c2 + a — b rmm] 0

Damit wurde gezeigt, wie man das Optimierungsproblem zur Konstruktion eines

abgesichelten Poitfohos von nm risikobehafteten Anlagen losen kann

Der autgezeigte mathematische Weg in den Abschnitten 4 und 5 hinterlasst dem

Theoretiker und Praktiker manche Details und Schwierigkeiten, die vorerst
uberwunden werden müssen Als Anregung sollen folgende Punkte hervorgehoben wer
den

(a) Fur die Anwendungen wird c 1/\/2tc oder c | suggeriert Fuhren diese

Werte zu irgendwelchen pathologischen Beispielen7 Angenommen c variiert

auf der positiven reellen Achse Konvergieren dann die entsprechenden

zufalligen Renditen stochastisch gegen einen Grenzwert wie in Abschnitt 47

(b) Trotz Absicherung und Optimierung bleiben beträchtliche Restrisiken übrig
Laut Abschnitt 1 wird die Rendite eines optimal abgesicherten Portfolios in
zwei Komponenten zerlegt die effektive oder realisierte Rendite und die Rendite

des Absicherungsprozesses Beide Komponenten sind Schwankungen un
terworfen und definieren deshalb Restrisiken, die durch die entsprechenden
Varianzen gemessen werden Eine nähere Analyse der Zusammensetzung dieser

Risiken ist erwünscht In Abschnitt 4 gibt Gleichung (4 25) Auskunft über

das Gesamtrisiko und (4 30) beschreibt die Risikokomponente der effektiven
Rendite in einem Spezialfall

(c) Weiterfuhrende Restriktionen über die Portfoliogewichte, die eine zusätzli¬

che Diversifikation erzwingen, erfordern, wie in Abschnitt 4 den Einsatz von
Methoden der Operations Research

6. Absicherung und Gleichgewichtsmodelle fur Aktiven

Seit der Einfuhrung des CAPM capital asset pricing model) durch Shaipe und

Lintnei [1963/65] hat sich die moderne Portfohotheone als unerlasshches Werkzeug

der Finanzokonomie erwiesen Das ursprünglich überaus einfache Modell findet

trotz berechtigten Mangeln Anwendung in der täglichen Finanzpraxis (verglei
che zB Hamn^ton [1987]) Im theoretischen Sinn hat das Modell bedeutende

Weiterentwicklungen und Verallgemeinerungen erfahren (vergleiche z B Inqei soll
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[1987]). Ohne auf die neuesten Entwicklungen einzugehen, wird gezeigt, welchen
Einfluss die Absicherung auf Gleichgewichtsmodelle ausübt. Es sind verschiedene

alternative Modelle denkbar, die vom Anwendungsziel abhangen. Wir begnügen uns

mit der Behandlung eines einzigen Modells.
Unsere Analyse beschränkt sich auf das klassische CAPM. Vorhanden ist eine
risikofreie Anlage, deren zufalliger Aufzinsungsfaktor Rj den Erwartungswert rf
besitzt. Weiter gibt es N verschiedene risikobehaftete Anlagemoglichkeiten mit
akkumulierten zufalligen Renditen Rz mit Erwartungswerten rt, i 1,..., N. Die
akkumulierte Rendite des Finanzmarktes sei beschrieben durch die Zufallsvanable

R\i mit Erwartungswert r^/. Es sollen minimale akkumulierte Renditen r"un < r„
i 1 N, und r")>n < r^j abgesichert werden. Die Ansichten oder Erwartungen
über den möglichen zukunftigen Verlauf dieser Minimalrenditen sind im allgemeinen

verschieden. Wir nehmen an, dass die Ansichten der Anleger über die akkumulierten

minimalen Renditen durch Zufallsvariablen i 1,..., N, und R}"
beschrieben sind. Im CAPM von SharpelLmtner setzt man voraus, dass erste und

zweite Momente dieser Zufallsvariablen für alle Investoren gleich sind. Darüber

hinaus wird vorausgesetzt, dass jeder Investor ein effizientes Portfolio auswählt.

Eine detaillierte Beschreibung und Diskussion der benötigten Modellannahmen findet

man in Harrington [1987], Kap. 2. Das CAPM liefert folgende lineare Beziehung

Wir betrachten nun das gesamte Marktangebot, das durch das Marktportfoho
beschrieben wird. Es sei Wf das in der risikofreien Anlage investierte Kapital und Wt
das in der risikobehafteten Anlage i investierte Kapital, i 1,..., N Das gesamte
investierte Kapital ist somit W Wf + ^Wt. Das Marktportfolio, das alle

Anlagen im Verhältnis zu ihren Marktwerten hält, wird durch folgenden Vektor von
Portfoliogewichten beschrieben:

C'n-rf (rTr-rf)ßr\ * 1.nun (6.1)

der Beta-Faktor.

(6.2)

Wir treffen noch folgende

Annahme:

Marktangebot fur die risikofreie Anlage verschwindet, d.h. uij1 0

(6.3)
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Dann gelten folgende Budgetgleichungen

Ew*M

^ln E^min' ^
rM E1W,M7\

Um die Minimalrenditer abzusichern, ist nach Abschnitt 1 eine "Risikoprämie"
6m im Absicherungsprozess zu reservieren. Dies wird durch einen höheren

Erwartungswert der Marktrendite belohnt, und zwar laut Gleichung (1.13):

rM =r^n + E[(RM-r^a-bM)+}. (6.5)

Wie in den Abschnitten 3 und 4 setzt man zur Vereinfachung

6.m rM - r/" E[(Rm - rAf)+]. (6.6)

Wie hoch sollen nun die "Risikoprämien" 6j r, — r)nm zur Absicherung der
Minimalrenditen der einzelnen Anlagen sein? Durch Subtraktion der Budgetgleichungen
für t'm und r")"1 folgt die Beziehung

6M EwtIbl (6.7)

Um diese Gleichung zu erfüllen,setzt man unter Berücksichtigung der Annahme

(6.3) nun am einfachsten 6, 6m, i 1, N. Dies bedeutet, dass der Preis für
eine abgesicherte Minimalrendite unabhängig von der gewählten risikobehafteten

Anlage ist. Damit gelten insgesamt die Beziehungen

rMn rM ~ E[(Rm ~ rM)+], (6.8)

rt-E[(RM-rM)+],„min

Setzt man diese Beziehungen im CAPM (6.1) ein, so erhält man nach Umformung
das folgende "risikoangepasste" CAPM:

rt (1 -ßln)-(rf + E[(RM-rM)+}+ßm-RM, i 1,..., N .(6.9)

Die Form dieser Gleichung erinnert an die Version des CAPM von Black [1972], In
der Literatur ist keine Erklärung für jenes Modell bekannt (vergleiche Harrington
[1987], S. 38, und S. 61). Diese Gleichung suggeriert folgende Identifikation:

EIR,] (1 - ß?)E[Rz] + ß E[Rm], i 1 JV, (6.10)

Rz Rf + (RM - tm)+
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Dabei spielt die Variable R: die Rolle der sogenannten "Null-Beta-akkumulierte

Anlagerendite" in der Blac Äschen Version des CAPM, ohne mit dieser notwendigerweise

identisch zu sein. Um Widerspiuche und Missverstandnisse zu vermeiden, ist

es wichtig folgenden Modellunterschied hervorzuheben. Das klassische CAPM (6.1)

ist ein "Ei wartimgsmodeU", das die Ansichten der Anleger über das Marktgeschehen
modelliert (auch wenn die Renditen nicht als minimal interpretiert werden). Das Modell

(6.9) ist ein gemischtes Modell, das reale Elemente mit Ansichten verbindet. Die
realen Elemente sind die akkumulierten Renditen Rt,R\i,Rf, und die Erwartungen

i,, r\i, 11 Das Ansichtselement ist der Beta-Faktoi J""n Diese Unterscheidung
ist tur korrekte statistische Tests und praktische Anwendungen dieser Modelle
äusserst fundamental (vergleiche z.B. Heuungton [19871, S. 27, S. 56, und S. 75). Aus

diesem Grund ist (6.9) als theoretische Konstruktion anzusehen. Wie im klassischen

CAPM wird man in der Praxis annehmen, dass Cov[/?""n, R]["n] Cov[i?,, R\/],
d.h. auch U,111111 ß, Cov[R,, R\i}/Vai[7?iU] Diese Bedingung ist zum Beispiel
dann erfüllt, falls man die Renditeerwartungen der Anleger mit den realen Renditen

wie folgt verknüpft:

Annahme • 7?"im 7?, — b, R, — b\j. i 1 N (6.11)

7?\r Ru- bu

Weitere praktische Erfahrungen über die Identifikation und die Messung der benotigten

Variablen findet man in Harrington [ 1987].

In diesem Zusammenhang ist es interessant, das Modell (6.9) weiter zu vereinfachen.

Nimmt man an, wie in Abschnitt 4. dass die "spezielle" Stop-Loss-Pramie in (6.9)

proportional zur Standardabweichung angesetzt werden kann, also

E[(R\i — ''\/)+] - I'm, r > 0, (6-12)

so folgt die Beziehung

r, i f + c (tm + (r\i — rf — c OA/)U,111111, / 1 N. (6.13)

Der Spezialtall r — 1/\f2tt ergibt eine "realistische" hneaie Marktlinie in der

(U,mm. i, )-Ebene. Insbesondere sind die Formeln für multmormalverteilte Renditen

exakt. Im Falle c 0 und /7"1111 ßt erhalt man das klassische CAPM als Spezialfall
zurück.

In verschiedenen empirischen Untersuchungen seit Bestehen von CAPM sind
substantielle Abweichungen der linearen Marktlinie von beobachteten Marktlinien
aufgezeigt worden (wohlbekannt ist z.B. die Studie Black, Jensen und Schates \ 1972]).
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Tabelle 3: CAPM vs risikoangepasstes CAPM

Titel Beta Faktor Prognose des erwarteten Gewinns r, — i j

CAPM nsikoangepassles CAPM

1 1 05 0 10500 0 1026 5

2 1 05 0 10500 010263

3 0 9b 0 09600 0 09790

4 1 04 0 10400 0 10210

5 1 00 0 10000 0 10000

6 1 18 0 11800 0 10945

7 0 95 0 09500 0 09737

8 1 16 0 11600 0 10840

9 1 27 0 12700 0 11118

10 0 89 0 08900 0 09122

11 1 25 0 12500 0 11313

12 1 17 0 11700 0 10893

13 1 00 0 10000 0 10000

14 1 02 0 10200 0 10105

15 0 61 0 06100 0 07952

16 0 8b 0 08600 0 09265

17 0 90 0 09000 0 09475

18 0 96 009600 0 09790

19 0 82 0 08200 0 09055

20 1 21 0 12100 0 11103

21 1 15 0 11500 0 10788

22 1 52 0 15200 0 12731

25 0 39 0 03900 0 06797

21 1 05 0 10500 0 10263

25 0 64 0 06400 0 08109

26 1 18 0 11800 0 10945

27 1 30 0 13000 011575

28 1 19 0 11900 010998

29 1 41 0 14400 0 12311

30 1 19 0 14900 012573
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Ob der Ansatz dieser Arbeit hilft, dieses Phänomen zu erklaren? Die Strukturen (6.9)
und (6 13) hegen im Trend dei vorgeschlagenen Modellerweiterungen. Nach Hcn-

imgton [1987], Kap. 2, insbesondere S. 47, besitzen |ene Modelle eines der folgenden

Merkmale:

1. Die Ordinate in der (/J;, r,)-Ebene ist grosser als die risikofreie Aufzinsung
/ j und die Steigung der Marktlmie ist kleiner als r\j — T-f.

2 Es ist eine Vielfachheit an Markthmen vorhanden.

Diese Modelle (6.9) und (6.13) erfüllen offensichtlich das erste Merkmal und sollten

aus diesem Grund naher an der empirischen Marktlmie hegen.

Beispiel 3. Der praktische Nutzen des Modells (6 13) kann anhand jeder Tabelle

von berechneten Beta-Faktoren und Volatilitäten fur Aktiemndices in Finanzzeitschriften

überprüft werden. Zur Illustration dient der interessante Artikel "Volatilität

- das unbekannte Wesen", erschienen in "Das Wertpapier", Heft 14, Juni 1989

Die Tabelle 3 enthalt eine mögliche Renditeprognose aufgrund der Kenn/ahlen der

N 30 DAX-Werte, die durch die Frankfurter Börse Tag fur Tag errechnet werden.

Die Annahme t / 1.05, r\j 1 15 dient lediglich der lllusti ation und kann

in diesem Beispiel nicht begründet werden. Wir setzen c 0 bzw. < \j \p2r; in

(6.12) und berechnen die Standardabweichung der Marktrendite aus der historischen

Volatilität v\i — y/Vai[ln(i?r/)] 0 113 mit Hilfe der Transformationsformel

(T\I \ZVAI[RM] i f yjexvii'lf) - 1, (6.14)

die zum Beispiel duich Annahme einer log-normalen Verteilung und das

NichtArbitrage Aigument begründet wird. Die charaktenstischen Werte der Marktlmie
lauten im Vergleich:

CAPM risikoangepusstes CAPM

Ordinate 1 OS 1 09508

Steigung 0 1 0 0S492

Die Titel Nr. 22 bzw. 23 mit dem grossten bzw. kleinsten Beta-Faktor lassen in beiden

Modellen den höchsten bzw. kleinsten Gewinn erwaiten. Die absolute Differenz in
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der (prognostizierten) erwarteten Performance ist jedoch nicht vernachlassigbar und

betragt 2.5% bzw. 2.9%.
Werner Hurlimann

Allgemeine Mathematik
Winterthur-Leben
Romerstrasse 17

8401 Winterthui
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Zusammenfassung

Ein Absicherungsmodell tui Anljgerisiken wnil mit Hille aktuarieller Techniken heigeleitet Es /erlegl
den Anlageprozess in einen Absiebet ungsprozess und einen Pio/ess dei eine realisierte Rendite deliniert
Im Rahmen dci Oplionspreistheone wird ge/cigl wieder faire Preis der Absicherung zu bestimmen ist

Weitei wird eine aktuaricllc und eine hnan/okonomische Methode vorgestellt um den geeigneten Zins
luss /in Diskontierung der Passiven zu eimitteln Anschliessend witd eine Integration des Abstcherungs
modells in die Portfoliotheone von Maiko\\it~ vorgestellt Insbesondere werden abgesicherte Poitlohos
konstnueit die eine höhere erwaitcte Rendite bei kletnetei Vananz als die herkömmlichen klassischen

effizienten Portlohos autweisen Schliesslich wnd noch ein risikoangepasstes CAPM konstruieit das

eine lineare Markthnie besitzt die an die Blacksehe Veision des CAPM erinnert

Resume

Un modele de couverture des risques de placement est dehni a 1 aide de techniques aituanelles II

decompose le pioccssus de placement en un ptocessus de couverture et un processus qui dehnit une

notion de rendement realise Dans le cadie de la theone du pnx des options on montie comment on

pent determiner le pnx 'conect' pour une couverture sans "atbitrage De plus nous presentons deu\
methodes 1 line actuarielle et I autie economique hnancieie pour evaluer le taux d'escompte appropte

pour les passtfs Ensuite nous integrons le modele de couvciture dans la theorie des porteteuilles de

Maikouir En particuhet des poiteteuilles ptoteges contre le usque sont construits et presentent un

rendement espere plus elevc poui un ecart type teduit pat rapport aux porteteuilles efficients classiques
Finalement nous construisons un CAPM "a|uste pour le risque ' possedant une ligne de marche hneatre

qui tappelle la veision de Black du CAPM

Summary

A model to cover investment risks is denvcd using actuarial techniques It decomposes the investment

process into a covering process and a ptocess which detines a notion ot realized vteld In the context ot

option pi icing theory it is shown how to determine the lair puce forcoveimg Further an actual tal and

a financial economic method to evaluate the appropriate nite tot discounting liabilities is presented Then

the coveting model is integiated into Maikov.it- portfolio theory In particular covered portlohos are

constiucted which show a higher expected yield tor a lowei vanance than classical efficient portfolios
Finally a risk adjusted CAPM is constiucted with a linear market line which recalls the Black CAPM
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