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WERNER HURLIMANN, Winterthur

Absicherung des Anlagerisikos,
Diskontierung der Passiven und Portfoliotheorie

Einfuhrung

Der Schwerpunkt des Interesses der Risikotheorie hat sich auf das Studium der Fi-
nanzrisiken verlagert, was zur Grindung der Sektion AFIR der IAA fiihrte. Eine
wichtige Aufgabe in diesem Bereich besteht darin, die Erfahrungen der Versiche-
rungsmathematiker mit dem Wissen der modernen Finanzokonomie zu verbinden.
Durch einen Konvergenzprozess sollen gemeinsame Modelle aufgezeigt werden, die
moglicherweise Anwendungen sowohl in den Versicherungs- als auch in den Fi-
nanzmarkten finden.

Dieser Aufsatz behandelt das Problem der Absicherung von Finanzrisiken im Rah-
men der Verpflichtungen einer Versicherungsgesellschaft. Die Arbeit beschrinkt
sich darauf, Hauptkonzepte sowie erste Interpretationen und Folgerungen darzule-
gen. Auf eine umfassende Darstellung und auf weitere Konsequenzen kann hier nicht
eingegangen werden.

Gestiitzt auf wohlbekannte aktuarielle Techniken wird fiir stochastische Aktiven und
deterministische Passiven in Abschnitt 1 ein Absicherungsmodell fiir die Rendite der
Passiven konstruiert. Das vorgestellte Bewertungsmodell zerlegt den Anlageprozess
in einen Absicherungsprozess und einen Prozess, der eine effektive oder realisierte
Anlagerendite beschreibt. In Abschnitt 2 wird aus der Sicht der Optionspreistheorie
eine finanzokonomische Methode prisentiert, die den “fairen” Preis der Absicherung
liefert. Wihlt man speziell das Black-Scholes-Modell, so ist die Absicherungskon-
stante nur abhidngig von der risikofreien Verzinsung, der garantierten Verzinsung
und der Volatilitit der Rendite. Anschliessend wird in Abschnitt 3 das Problem der
Bestimmung eines geeigneten Zinsfusses zur Diskontierung der Passiven diskutiert.
Vorgestellt werden unterschiedliche aktuarielle und finanzokonomische Methoden,
deren spezifische Eigenschaften weitere Untersuchungen erfordern.

Die Beriicksichtigung der Kapitalanlagestruktur wird moglich durch die Integration
des Absicherungsmodells in die moderne Portfoliotheorie. In diesem Zusammen-
hang wird nur der einfachste Ansatz von Markowitz behandelt. In den Abschnitten 4
und 5 wird eine “optimale” Absicherung einer Portfolio-Rendite mit, beziehungs-
weise ohne Vorhandensein einer risikofreien Anlage prisentiert. Der erste Fall wird
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ausfiihrlich analysiert und diskutiert. Es ist bemerkenswert, dass abgesicherte Port-
folios hohere erwartete Renditen bei kleinerer Varianz im Vergleich zu den klassi-
schen effizienten Portfolios liefern. Insbesondere wird eine absolute Grenze fiir den
Ertrag eines abgesicherten Portfolios aufgezeigt. Ist die erwartete Minimalrendite
kleiner als die risikofreie Rendite, so ist mit der vorgestellten Methode im Extremfall
hochstens die risikofreie Rendite im Erwartungswert zu erreichen. Die Ergebnisse
werden durch einfache numerische Beispiele aus einem typischen Anwendungsbe-
reich, der Absicherung der technischen Riickstellungen einer Versicherungsgesell-
schaft, illustriert. Schliesslich behandeln wir in Abschnitt 6 das Gleichgewichtsmo-
dell fiir Aktiven von Sharpe und Lintner, das sogenannte CAPM (= capital asset
pricing model), unter dem Gesichtspunkt der Absicherung. Ein “risikoangepasstes™
CAPM besitzt eine lineare Marktlinie, die an das CAPM von Black erinnert.

1. Ein Absicherungsmodell fiir das Anlagerisiko

Diese Arbeit nimmt Bezug auf das dynamisch-stochastische Bewertungsmodell fiir
Anlagerisiken, das in Brighton im Rahmen des 2. AFIR Kolloquiums prisentiert
worden ist. Zur Vollstindigkeit werden die wesentlichen Ziige dieses Modells,
zusammen mit einigen erginzenden Eigenschaften, nochmals beschrieben.

Das Problem der Kongruenz zwischen Aktiven und Passiven wird wie folgt behan-
delt. Gegeben sind stochastische Aktiven A(t) zur Zeit t, die deterministische Pas-
siven P(t) zur Zeit t decken sollen. Zur Vereinfachung wird in dieser Arbeit nur das
statische Modell diskutiert, d.h. wir beschrinken uns auf die zukiinftige finanzielle
Lage an einem bestimmten Stichtag ¢ . Fiir diese Arbeit withlen wir ¢ = 1. In die-
ser speziellen Situation wird der Index fiir die Zeitabhéngigkeit weggelassen. Somit
werden zur Zeit t = 1 zufilligen Aktiven A feste Passiven P gegeniibergestellt. Es
bezeichne weiter

.[)

3 die jahrliche Rendite, die zur Diskontierung der Passiven be-
niitzt wird

pP = 1447 der zu i’ gehorige Aufzinsungsfaktor (= P/Ap)

Ay = P/r? der Wert der Aktiven, die zu Beginn der Anlageperiode auf

den Finanzmarkt investiert sind

it = B[A]/Ao — 1 die jihrliche erwartete Anlagerendite auf den Aktiven, die
geniigen soll, um die Passiven zu decken

pA e= ] 4t der zu i”* gehorige Aufzinsungsfaktor
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R=A/A die Zufallsvariable des akkumulierten Renditeprozesses zum
investierten Kapital Ay

, _JA-P, fallsA>P
(A= P)y - {(}. sonst

Es wird vorausgesetzt, dass E[A — P] = (r? — )4y > 0 ist. Dies bedeutet,
dass in der Zukunft positive Cash-flows erwartet werden. Diese Situation ist gera-
dezu typisch fiir Versicherungsunternehmen. Ublicherweise werden die technischen
Riickstellungen mit einem Zinsfuss akkumuliert, der kleiner als die erwartete Anla-
gerendite ausfiallt.

Zur Deckung eines moglichen Verlusts A < P am Ende einer Anlageperiode halte
der Finanzmanager bei gutem Anlageergebnis einen Betrag RB = RB(A,P)
zuriick, der bestimmt werden soll. Der Riickbehalt RB geniigt der Ungleichung
0 < RB < (A — P)..Die Zufallsvariable U = U(A,P) = (RB+ P — A),
beschreibt den Finanziiberschaden, d.h. der mogliche Verlust, der nach Abzug des
Riickbehalts vom technischen Anlageergebnis entstehen kann. Die resultierende
Zufallsvariable

NE =R —U (1.1)

beschreibt das technische Netto-Finanzergebnis nach Abzug einer moglichen Divi-
dende in der Hohe D = (A — P — RB)., wobei der Betrag RB zur Deckung
des Finanzrisikos reserviert worden ist. Mathematisch ausgedriickt gelten folgende
Formeln:

NE=(A-P)-D, (1.2)
A=(P+D)+(RB-U). (1.3)

Im Durchschnitt ist es angebracht zu verlangen, dass keine Gewinne und Verluste
entstehen:

E[NE] = E[RB - U] =0. (1.4)

Verschiedene Kandidaten sind fiir den Riickbehalt B moglich. Allerdings stellt die
Funktion

RB =min{B.(A - P)4}, (1.5)

wobei B eine Konstante ist, die vom stochastischen Renditeprozess abhingt, die
stabilste Wahl des Riickbehalts dar, in dem Sinne, dass die Varianz des Riickbehalts
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Var|[R B] durch diese Wahl minimiert wird. Dieses Resultat soll hier kurz begriindet
werden (siehe auch Hiirlimann [1991b]). Aus der Bedingung 0 < RB < (A - P),
erhiilt man die Formel U = (P — A)_ fiir den Finanziiberschaden. Betrachte die
Menge

M={RB:0<RB<(A-P), und E[NE] =0} (1.6)
aller moglichen Riickbehalte. Da E[N E] = 0 folgt

E[RB] = E[U] = E[(P — A)+] = const. (1.7)
Das stochastische Optimierungsproblem

Var[RB] = min . (1.8)

wird nun durch die Wahl (1.5) des Riickbehalts geltst (siehe hierzu Beard et al.
[1984], S. 172 173). Durch Einsetzen in die Gleichgewichtsbedingung (1.4) folgt,
dass die Konstante B Losung der Gleichung ist

E[A-P|=E[(A- P - B),]. (1.9)

Eine zweidimensionale Skizze soll diesen Sachverhalt geometrisch erldutern:

A

y = E[(A — P —x),]

y = E[A — P]

Y

Die Konstante B, die den Preis fiir die Ubernahme des Anlagerisikos darstellt. erhilt
man als Schnittpunkt des Graphen zur “Stop-Loss-Kurve” y = E[(A — P — )|
mit der konstanten Geraden y = E[A — P]. Gibt man sich als spezielles Ziel die
deterministischen Passiven in der Hohe P = E[A]— B vor,sogilt B = E[(A—pu). ]
mit ;4 = FE[A] der Erwartungswert der Passiven. In diesem Fall entspricht die
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“Risikoprimie™ B der schraffierten Fliche rechts unterhalb des Graphen zur Dichte
der Zufallsvariable A:

g Pl B A o i S -
X = Wert der Passiven

Beispiel. st A normalverteilt mit Erwartungswert j und Varianz o, so erhilt man
B als Losung der nicht-linearen impliziten Gleichung

B- (1_1\-' (ﬁ?;“)) = (P—p)-N (@) +(»,“§ ()" o ‘
o % Vor

wobei N (.r) die kumulative Verteilungsfunktion der Standard-Normalverteilung ist.
Im Spezialfall P = p — B gilt die einfache Formel 5 = a/\/ﬂ.
Weitere okonomische Interpretationen dieses Modells, insbesondere betreffend
Pareto-optimale Eigenschaften, findet man in Hiirlimann [1991b]. Aufgrund der Zer-
legung (1.3) ist das vorliegende Modell als Absicherungsmodell fiir die Rendite der
Passiven zu deuten. Nach (1.3) gilt namlich die Zerlegung

A=A+ A" A°*=P+D, A*=RB-U, (1.10)
wobei A“ der Absicherungsprozess und A€ das effektive oder realisierte Anlageer-
gebnis darstellt. Fiir diese Prozesse gelten die detaillierteren Formeln

A =min{B,(A—-P), } - (P - A),

=A-P-(A-P-B),
=B—-(B+P—~Al.

=[b-(+r" - R) Ay (1.11)
A°=P+D
= A- A°

=[P+ (R-+" —b)4]A0 (1.12)
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wobei b = B/A die konstante Reserverate fiir die Deckung des Anlagerisikos per
Einheit des investierten Kapitals darstellt. In (1.12) ist ersichtlich, dass unter den
Modellannahmen, insbesondere 74 > ¥, die Verzinsung r* auf den Passiven si-
chergestellt wird. In Worten ausgedriickt interpretiert das vorliegende Bewertungs-

modell den Wert der Aktiven Ende der Anlageperiode als

A

Il

Wert der Anlage

garantierter Wert der Passiven

Dividende bei giinstigem Verlauf der Rendite
Reserve fiir die Deckung des Anlagerisikos
Finanziiberschaden
P+D+B—-(B+P—-A),

+ + |

I

In invarianter Darstellung gelten dieselbe Aussagen und Formeln fiir den akku-
mulierten Renditeprozess. Insbesondere ist die Konstante b Losung der Gleichung
(siche (1.9)):

A — P = Bl(R—-+F —1b),]. (1.13)

Bemerkungen

(a)  Der Riickbehalt ist keineswegs an die optimale Wahl (1.5) gebunden. Alterna-
tive Moglichkeiten definieren ebenfalls attraktive Bewertungsmodelle. Zum
Beispiel fragt man nach einer stabilen Dividende, so ist die Varianz der Divi-
dendenformel zu minimieren. In diesem Fall lautet die optimale Wahl

D =min{B,(A—-P),}. (1.14)
mit zugehorigem Riickbehalt

RB=(A-P-B),, (1.15)
wobei die Konstante B folgende Erwartungswertgleichung erfiillt
E[(A—-P—-B),|-E[(P-A),]=B—-FE[A-P]. (1.16)
Unter der Annahme, dass die Dividendenformeln die Eigenschaft

0 <D < (A— P), besitzen, wird die Formel (1.14) analog wie (1.5) herge-
leitet (siehe auch Hiirlimann [1991b]).
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(b)  Da am Finanzmarkt Baisse und Hausse fiir verschiedene Anlagen meistens
parallel verlaufen, ist das Konzept des Riickbehalts eigentlich nur iiber meh-
rere Perioden sinnvoll definiert. Es muss namlich die Moglichkeit vorhan-
den sein, die Schwankungen der Rendite iiber einen lingeren Zeitraum auf-
zufangen. Das vorliegende Einperiodenmodell setzt somit stillschweigend die
Annahme einer stabilen zukiinftigen Entwicklung voraus. Die Formulierung
eines Mehrperiodenmodells der Absicherung bendtigt einen Mehraufwand,
sollte aber technisch moglich sein.

2. Anwendung der Optionspreistheorie

Eine “Option” ist ein Vertrag, der das Recht ilibertragt, spezifisches Eigentum,
z.B. Wertpapiere, zu einem festen Preis, genannt Ausiibungspreis, zu einem festen
Preis wiihrend oder nach Ablauf einer bestimmten Frist kaufen oder verkaufen
zu konnen. Dabei hat der Abnehmer des Optionsvertrags das Recht, aber nicht
die Obligation, das spezifische Eigentum zu kaufen oder zu verkaufen. In den
Finanzmirkten werden verschiedene Optionen angeboten, die sich nach der Art
des Rechtes unterscheiden. Bei einer Call-Option erhilt der Kédufer das Recht, das
spezifische Eigentum zu kaufen. Eine Put-Option beinhaltet ein entsprechendes
Verkaufsrecht.

Als Ausgangspunkt unserer Betrachtung ziehen wir die Gleichung (1.13) heran. Wir
schreiben nun r!” = 7, fiir die Minimalrendite, die auf den Passiven erzielt werden
soll. Die Formel (1.13) identifiziert die Differenz zwischen erwarteter Rendite und
Minimalrendite als aufgezinster Preis einer Call-Option zum Ausiibungspreis K =
b+ ruwin fir ein investiertes Kapital S = 1. Unter Verwendung der Identitiit

(R — 'min — b)+ — R — P, — b + (b + I'min — R)+ (21)
erhilt man die dquivalente Gleichung
b = E[(() + I'min — R)+] . (22)

Damit ist die Konstante b implizit als aufgezinste Put-Option definiert. Um den
“fairen” Preis P dieser Option am Anfang der Anlageperiode zu bestimmen, beniitze
man das folgende Rezept aus der Optionspreistheorie (falls die mathematischen
Bedingungen dafiir erfiillt sind). Man diskontiere mit dem Faktor vy = 1/r, wobei
r ¢ der Aufzinsungsfaktor der risikofreien Anlage ist, und transformiere das zu R
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gehorige Mass so, dass der Renditeprozess die Martingal-Eigenschaft besitzt. Das
transformierte Mass wird risikoneutrales Mass genannt und mit © bezeichnet. In
Formeln ausgedriickt lautet der Preis der Put-Option

P=b-vs=vs  E*[(b+ rmin — R)+]. (2.3)
Die Anwendung der Put-Call Paritdt

P=C-5+K - v, (2.4)
lietert weiter den Preis C' der Call-Option, nimlich

C'= 1~ Papin =05 = V7 = B [[B = P — b)t] « (2.5)

Damit ist der “‘faire” Preis der Absicherungskonstante b, die keine Arbitrage er-
moglicht, im Prinzip berechenbar. Konkrete Ergebnisse erhilt man durch Anwen-
dung eines spezifischen Optionspreismodells. Zum Beispiel ergibt die Black-Scholes
[1973]-Formel die implizite Gleichung

Pr = Pmin = T N{EB) — (0 I Pt} - VL& — ), (2.6)
wobel
In 4 1
b-+rmi
T = min _+_ f
l o 2

o = y/Var[ln(R)] die Volatilitiit ,

N (x) die kumulative Verteilungsfunktion der Standard Normalverteilung.

Bemerkenswert fiir diese finanzékonomische Methode 1st die Tatsache, dass die
gesuchte Konstante b nicht von der erwarteten Rendite r abhingt, sondern nur
von der Volatilitit o, der garantierten Verzinsung r;,, und von der risikofreien
Verzinsung 7y . Das Absicherungsmodell aus Abschnitt 1 zeigt, dass die realisierte
(stochastische) Rendite gleich ist

Tmin T (R — Pmin — b)+ ) (

no
»

wobei zu bemerken ist, dass die erwartete Verzinsung im allgemeinen verschieden
von r sein wird. Durch obiges Verfahren wird ndmlich nicht Gleichung (1.13) gelost,
sondern das Nicht-Arbitrage-Prinzip angewendet. Allerdings stellt die vorgeschla-
gene Methode nur eine Niherung dar, die auf die Rendite eines Aktienindexes prak-
tisch anwendbar ist. Die explizite Berticksichtigung der Portfoliozusammensetzung,
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in der Regel Aktien und Obligationen, verkompliziert das allgemeine Problem aber
ganz erheblich.

Zu erwihnen ist ebenfalls das folgende fundamentale Ergebnis der Optionspreis-
theorie, das als direkte Konsequenz von (2.5) anzusehen ist. Da der Wert der Call-
Option immer positiv ist, folgt r,,;, < 7y

Dies bedeutet, dass in allen mathematisch zuldssigen Optionspreismodellen nur
eine Minimalrendite garantiert werden kann, die hochstens gleich der risikofreien
Rendite ist.

3. Zinsfuss zur Diskontierung der Passiven

In einer risikobehafteten und unsicheren 6konomischen Umgebung lésst sich eine
konstante Rendite auf den Aktiven einer Versicherungsgesellschaft kaum realisie-
ren. Im allgemeinen werden die Renditeschwankungen durch eine reduzierte Ren-
dite auf den Passiven ausgeglichen, als Beispiel sei der traditionelle Zinsfuss in der
Lebensversicherung erwiihnt. Die Frage nach einem geeigneten Zinsfuss zur Dis-
kontierung der Passiven ist am 2. AFIR-Kolloquium in Brighton ergiebig diskutiert
worden. Forschungen auf diesem Gebiet sind aus verschiedenen Griinden erwiinscht
(vgl. hierzu Wilkie [1991], S. 3).

Gestiitzt auf das Absicherungsmodell dieser Arbeit und seine Konsequenzen sind
verschiedene Methoden denkbar, um diese Frage zu beantworten. Vorgestellt werden
eine aktuarielle und eine finanzokonomische Methode.

Mit R bezeichnen wir den akkumulierten Renditeprozess auf den Aktiven, mit 7!
den Aufzinsungsfaktor auf den Aktiven und mit r¥" den Aufzinsungsfaktor auf den
Passiven, der garantiert werden soll.

Zuerst wird die aktuarielle Methode vorgestellt. Laut Gleichung (1.13) geniigt es
eine Anlage mit erwarteter Rendite

rA =b4+rP (3.1)
zu finden. Die Konstante b wird als akkumulierter Preis des Risikos interpretiert, das
durch die schwankende Rendite entsteht. Durch Bezahlung dieser “Risikoprimie”

erwartet der Anleger eine Rendite, die um 10006% hoher ist als die Minimalrendite.
Mit dieser Bedingung folgt, dass r? Losung der impliziten Gleichung

rd —r” = E[(R" —r*)4] (3.2)
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ist. Unter der natiirlichen Voraussetzung ' > 7%’ besitzt diese Gleichung im allge-
meinen eine eindeutige Losung 7 . Ist der Renditeprozess bekannt, so kann man
diese Gleichung numerisch mit der algebraischen Momentenmethode 16sen (vgl.
Hiirlimann [1991a]). Ein offenes Problem ist die Wahl eines geeigneten Rendite-
prozesses. Dieses Modellierungsproblem oder dquivalent dazu die Festlegung der
Zinssatzstruktur (= term structure of interest rates) scheint mit erheblichen Schwie-
rigkeiten mathematischer Natur verbunden zu sein. Setzt man voraus, dass R log-
normal verteilt ist mit Erwartungswert ;¢ und Standardabweichung o, so gilt

L,
p=In(rt) - Zo?, (3.3)

o

o? = Var[ln(RY)],

die erste Beziehung wegen 1! = E[R"“‘] = exp(pu+ %02) . Durch Berechnung oder
durch Anwendung der Black-Scholes-Formel fiir Call-Optionen erhilt man

E(RA—rAp]zrﬂ-BN(%g)fl}. (3.4)

Ein Vergleich mit (3.2) ergibt folgende Beziehung zwischen Rendite auf den Pas-
siven und Rendite auf den Aktiven (vgl. Formeln (3.8) und (3.9) in Hiirlimann
[1991a]):

P =9.,4. {1 _ N(%gﬂ . { 3.D)

Das Absicherungsmodell zeigt, dass die realisierte (stochastische) Rendite auf den
Aktiven gleich

r? 4+ (R —r?),. (3.6)

ist. Nach (3.2) ist der Erwartungswert der realisierten Rendite gleich 7' . Im Spezi-
alfall einer deterministischen Okonomie ist o = 0, d.h. ¥’ = 1, wie es sein sollte.
Die Schwierigkeit bei der praktischen Anwendung dieser Methode liegt darin, dass
zur Zeit unbekannt ist, ob der Erwartungswert 7 einer Anlage vorausgesagt werden
kann.

Eine mogliche finanzdkonomische Methode folgt durch Anwendung der Options-
preistheorie wie in Abschnitt 2 auf die transformierte Gleichung (3.2):

E*[R* —rP = EB*[(R? — r*)4]. (3.7)
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Die Absicherung erfolgt in diesem Fall nicht durch Selbstfinanzierung, sondern
durch Kauf einer Call-, Put- oder kombinierten Call-Put-Option auf dem Finanz-
markt. Im Black-Scholes-Modell erhilt man folgende Beziehung
] Iy 77 s P o oo
=t 14 L N —a)— L. N (;l-)} , (3.8)
wobel
In %

T = +
o

a.

Lo =

Wie in Abschnitt 2 ist darauf hinzuweisen, dass die explizite Portfoliostruktur dabei
unberiicksichtigt bleibt. Deshalb kann die Methode vorerst nur fiir die Rendite eines
Aktienindexes praktisch verwendet werden.

Von besonderem Interesse ist der Spezialfall 7! = r; des risikofreien Aufzinsungs-
faktors, der nach Abschnitt 2 die héchste Minimalrendite ist, die in Optionspreis-
modellen garantiert werden kann. Dabei ist zu beachten, dass der zugrunde liegende
Renditeprozess stochastischer Natur ist. Man erhilt die Formel

v i-n()]. (39)

die ebenfalls aus (2.6) folgt, falls man b + i, = b+ 17 = 1} setat.

Nehmen wir nun an, dass der Diskontierungsfaktor auf den Passiven garantiert
werden soll. Aus der erwihnten Tatsache, dass héchstens r = ¢ auf den Aktiven
garantiert werden kann, und aus Gleichung (3.7) folgt, dass dann der garantierte
Diskontierungsfaktor auf den Passiven in einer risikobehafteten Okonomie immer
kleiner als der risikofreie Diskontierungsfaktor ist. Dasselbe (qualitative) Ergebnis
wird unabhiingig in Kozik [1991] gezeigt.

Eine mogliche einparametrige Schar von Absicherungsstrategien mit dem Scharpa-

rameter 0 < w < 1 besteht darin, dass man das investierte Kapital S = 1 wie folgt
anlegt:

w-(1-7F. vy) ineiner Call-Option mit Ausiibungspreis 7 ,
(1 —w)-(1—r"-vs) ineiner Put-Option mit Ausiibungspreis FEs (3.10)
rP . vy in der risikofreien Anlage r .
Fiir diese Absicherungsstrategie lautet die realisierte (stochastische) Rendite auf den
AKtiven

rP +w- (R —:'f)++(1vu')-(r‘f—B’,Ah > P 4 min{w, 1A'itﬁ}-|R‘4—r'_f| (3.11)
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Ist w = 1, so partizipiert man an dem Aufwirtstrend des Aktienindexes durch die
Call-Option. Ist dagegen w = (), so partizipiert man an dem Abwirtstrend durch die
Put-Option, und ist w = -
Rendite des Aktienindexes.

| =

, so profitiert man von den starken Schwankungen der

Im Fall r4 = r¢, w = 1 und unter den obigen Modellvoraussetzungen ist die
aktuarielle mit der finanzokonomischen Methode gleichwertig. Es ist /" eindeutig
durch dieselbe Formel bestimmt, und die realisierten stochastischen Renditen sind
gleich.

4. Absicherung der Portfolio Rendite, falls eine risikofreie Anlage
verfiigbar ist

Die in der Praxis am hiufigsten angewendete Methode, um den Kapitalertrag eines
gemischten Portfolios von Anlagen unter Berticksichtigung des Risikos zu maximie-
ren, ist der Ansatz von Markowitz [1952/59]. Mit dieser Methode werden effiziente
Portfolios im folgenden Sinn ermittelt: fiir eine vorgegebene Rendite wird das Port-
folio mit der kleinsten Varianz der Rendite gewihlt und fiir eine vorgegebene Varianz
der Rendite wird das Portfolio mit der héchsten erwarteten Rendite gewdhlt. Unter
allen moglichen derart bestimmten Portfolios, den sogenannten Grenzportfolios, in
der Erwartungswert/Varianz-Ebene, gibt es ein eindeutig bestimmtes Portfolio mit
minimaler Varianz der Rendite, namlich das Minimum-Varianz-Portfolio. Grenz-
portfolios, deren erwartete Rendite streng grosser ist als das Minimum-Varianz-
Portfolio heissen effiziente Portfolios. Zweckmissige Einfiihrungen zur Portfolio-
Analyse von Markowitz findet man in den Lehrbiichern Ingersoll [1987] oder Huang
und Litzenberger [1988]. Unsere Darstellung folgt den letztgenannten Autoren.

Es stellt sich wie in Abschnitt 3 die Frage, unter welchen Bedingungen ein vorgege-
benes Niveau der Passiven erreicht werden kann. Mit anderen Worten:

(a)  welche Portfoliogewichte sind im Rahmen der Markowitz Portfolio Analyse
geeignet, um eine Minimalrendite zu erzielen?
(b)  wie kann eine Portfolio-Rendite abgesichert werden?

Diese Fragen werden hier unter Beriicksichtigung des Absicherungsmodells aus
Abschnitt 1 untersucht. Es entstehen neuartige risikoangepasste effiziente Portfolios
oder abgesicherte effiziente Portfolios, deren Eigenschaften weitere Forschungen
anregen durften.
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Folgende Notationen werden durchwegs beniitzt:

Iy der risikofreie Aufzinsungsfaktor,

it der Aufzinsungsfaktor zur Minimalrendite, die
garantiert werden soll,

R=(Rys..... Ry) der Vektor der zufilligen Aufzinsungsfaktoren
zu N verschiedenen risikobehafteten Anlagen,

=L STETET TN der Vektor der erwarteten Aufzinsungsfaktoren
der IV Anlagen,

w=(wy,..., W) der Vektor der Portfoliogewichte der
risikobehafteten Anlagen

T=ql..:, 1) der Einheitsvektor,

i = gT - R die Zufallsvariable des akkumulierten
Renditeprozesses des Portfolios,

r = E|R) der erwartete Aufzinsungsfaktor des Portfolios,

V = (o) die Varianz/Kovarianzmatrix der

oij = Cov[R;, R;],  Renditen der

5§ = L5000, N risikobehafteten Anlagen.

Es wird angenommen, dass Portfoliogewichte negativ sein kdnnen, dass also ein
unbegrenzter Verkauf erlaubt ist. Weiter wird vorausgesetzt, dass r; # r; fiiri # j
ist, d.h. dass verschiedene Anlagen verschiedene erwartete Aufzinsungsfaktoren
haben. Ausserdem sollen die zufilligen Aufzinsungsfaktoren Rf,..., Ry linear
unabhingig sein mit einer positiv definiten Varianz/Kovarianzmatrix V' . Ist keine
risikofreie Anlage vorhanden (Abschnitt 5), so wird zusiitzlich die Budgetgleichung
w!’ -1 = 1 angenommen. Ist eine risikofreie Anlage verfiigbar, so kann auf eine
Budgetgleichung aus folgendem Grund verzichtet werden. Die residuale Grosse 1 —
w1 stellt, falls positiv, den investierten Anteil in der risikofreien Anlage, oder, falls
negativ, den risikofreien Anteil, der bendtigt wird, um die risikobehaftete Anlage
zu finanzieren, dar. Kompliziertere Fille mit Restriktionen der Portfoliogewichte
werden numerisch mit Methoden der Operations Research gelost. Von Interesse sind
z.B.

Verkiufe sind ausgeschlossen,

Restriktionen auf die moglichen Gewichte, z.B. iiber die
maximalen Anteile von Anlagekategorien, usw.

(A eine N x N-Matrix, b ein NV-Vektor)

I
IA IV
[ ()



230

Um eine vorgegebene minimale akkumulierte Rendite r,;, eines Portfolios zu
erreichen, geniigt es laut Gleichung (1.13) eine Anlage mit erwarteter Rendite

r = b+ Tmin (4.1)
zu finden. Mit dieser Bedingung folgt, dass » Losung der impliziten Gleichung
T — Tmin = E[(R - 7‘)—6—] (4.2)

ist. Diese hinreichende Bedingung setzt voraus, dass gewisse stochastische Eigen-
schaften des Renditeprozesses bekannt sind oder prognostiziert werden konnen. Ist
zum Beispiel die Standardabweichung o = \/Var|[?] bekannt, so gilt nach Benk-
tander [1977] die Approximation
F— Tain & —— 2 0.40 . (4.3)
T )
Diese Formel ist exakt fiir normalverteilte Renditen und liefert eine vorsichtige
Schiitzung fiir viele Verteilungen, insbesondere auch fir unendlich teilbare Vertei-
lungen. Nach Bowers [1969] gilt folgende beste obere Schranke, die fiir eine Zwei-
punkteverteilung angenommen wird:

E[(R-7).] < 50, (4.4)

b | =

Dies fiihrt zu der verteilungsireien besten Abschitzung
1 :
7 < Tmin + S(T . (4.5)

Die praktische Anwendung der Formel (4.2) bereitet Schwierigkeiten, da der sto-
chastische Renditeprozess und insbesondere die erwartete Rendite einer Anlage
nur mit Miihe, wenn iiberhaupt, prognostiziert werden kann. Trotz Bedenken be-
treffend die Schitzbarkeit einer erwarteten Rendite werden diese Ergebnisse im
Rahmen der Erwartungswert/Varianz Portfolio Analyse von Markowitz angewen-
det. Zur Unterstiitzung dieses Anliegens beachte man, dass letztlich Relevanz nicht
in den Voraussetzungen, sondern in den Implikationen liegt. Hierzu das Zitat von
Sharpe [1985], Kap. 8, S. 194: “As always, the issue is not the relevance of the as-
sumptions, but the validity of the implications.” Dariiberhinaus wird die Portfolio-
Analyse durch die Nutzentheorie untermauert. Beschrinkt man sich auf multinor-
mal verteilte Anlagerenditen, oder werden spezielle Nutzenfunktionen verwendet
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(HARA-Klasse: Nutzenfunktionen mit der sogenannten hyperbolischen absoluten
Risikoaversion), so wird die Giiltigkeit von Erwartungswert/Varianz-Analyse an-
hand des Prinzips der Maximierung des erwarteten Nutzens begriindet.

Die Integration der Bedingung (4.1) in der modernen Portfoliotheorie fiihrt somit zu
folgendem approximativen Ansatz:

r=tmn+c-o. c>0. (4.6)

Dabei ergibt die Wahl ¢ = % die “verteilungsfreie beste” Sicherheit und ¢ = 1//27
entspricht einer “realistischen™ Einschitzung des Anlagerisikos. Im Rahmen der
Portfolio-Analyse nach Markowit:z ist folgendes abgeiinderte Optimierungsproblem
zu losen:

1 M
min{;iTVgg} (4.7)

unter der Nebenbedingung

ET £ 4 l"f) +7f = Tmin + CV ETL;Q

Im urspriinglichen Ansatz von Markowitz wird lediglich der Fall ¢ = 0 behandelt.
Die abgeinderte Fassung des Optimierungsproblems modelliert das Bediirfnis, ein
“realistisches™ Ziel an Stelle eines absoluten Ziels fiir die Rendite zu verlangen. Als
Spezialfall diskutieren wir zuniichst den Fall N = 1 einer einzigen unsicheren An-

lage mit Portfoliogewicht w,,. erwarteter Aufzinsung r,, und Standardabweichung
der Rendite 7, . Die Nebenbedingung lautet

Wy Ty + (]- - u’u)r,f = Tmin T Sgn(“"u)“’u('gu (48)

und liefert die Losung

0. falls f = Tmin »
o sen(wy)|wy|, |w,| beliebig, falls Ty = Toy — SEN{ Wy JCOy 1.9)
Wu = T — Tmin ( ’
sonst .

Tf — Tmin + Sgn(“"u )('(Tu

Das Minimum-Varianz-abgesicherte Portfolio entspricht der risikolosen Anlagestra-
tegie, die das verfligbare Kapital mit dem Satz r akkumuliert. Bei vorgegebenem
min €rhidlt man im allgemeinen einen eindeutig bestimmten Anteil w, mit Portfo-
liovarianz o° = (uruau)2 . Wir nennen w,, den optimalen risikoangepassten oder
abgesicherten Anteil. Das Klassische Modell von Markowitz ohne Absicherung der
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geforderten Minimalrendite r,,;,, wird als Spezialfall ¢ = 0 des obigen Optimie-
rungsproblems angesehen. Fiir N = 1 erhiilt man den optimalen deterministischen
Anteil

0, falls 7 f = rmin
beliebig, falls r¢p = r, , .
wi =4 f= (4.10)
u Iy T'min
S sonst.
Ty — Ty

Es ist interessant, die “‘Performance” oder Risiko/Ertrag-Leistung der deterministi-
schen Losung mit unseren abgesicherten Portfolios zu vergleichen. Fiir die Diskus-
sion setzen wir voraus, dass 0 < w, < urg‘,’, was in folgenden Fillen erfiillt ist:

(1) Tmin < Tfy, Ty < Ty <Typ+COy
(i1) Tmin > Tfy Ty > T¥ +co, > Te.

Es sei noch R, die Zufallsvariable der Autzinsung fir die unsichere Anlage. Die
Aufzinsung im deterministischen Fall ist dann

1 dy, !
R = (1 —wy)ry +w, R,
mit Erwartungswert und Varianz

E[R% = Tmin, Var[RY = (wla,)’.

L

Die Aufzinsung im abgesicherten Portfolio lautet
Rab - (J- — Wy )ff + Wy R-u‘
mit Erwartungswert und Varianz

E[R”’b] = Puitn + ClWyTy) > E'[Rd] 3
Var[R*] = (w,0,)? < Var[RY].

Es ist bemerkenswert, dass das risikoangepasste Portfolio, neben abgesicherter Mi-
nimalrendite, einen hoheren erwarteten Ertrag bei kleinerer Varianz als das determi-
nistische Portfolio liefert. Ein dhnliches Phinomen wird mit Hilfe von Simulationen
durch Macdonald [1991] festgestellt (siehe auch die suggestive Formel [4.12] in
Hiirlimann [1991a)).
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Beispiel 1: Absicherung der technischen Riickstellungen einer Versicherungsge-
sellschaft

Bekanntlich werden die technischen Riickstellungen, als Guthaben der Versiche-
rungsnehmer, mit einem technischen Aufzinsungstaktor " verzinst, der gewdhnlich
unter dem risikofreien r¢ liegt. Wir nehmen an, dass die Versicherungsgesellschaft
einen Teil des Kapitals in einer unsicheren Anlage investiert, zum Beispiel in Ak-
tien an der Borse. Wird die Verzinsung ri, = " abgesichert, so ergibt sich, in
Abhingigkeit der Standardabweichung der Aktienrendite, ein eindeutig bestimmter
optimal risikoangepasster Aktienanteil. Die folgende Tabelle illustriert an numeri-
schen Beispielen die unterschiedlichen Anteile in einer deterministischen und einer
stochastischen Okonomie. In gewissen Fillen explodiert der bendtigte optimale sto-
chastische Anteil, was auf ein chaotisches Verhalten hinweisen konnte.

Nun wenden wir uns dem aflgemeinen Fall N > 2 des Optimierungsproblems (4.7)
zu. Die Lagrange-Funktion

I s -
L=-w"Vuw+ Mry = i + w? (r - Ire) —evuwTVuw) (4.11)

R)

fiihrt zu den folgenden hinreichenden und notwendigen Bedingungen fiir ein globa-
les Extremum:

OL w

O —vw+ | —1rp) —(-V;] — 0. 112)
D / el 2 (

dL

0\ — 7f — Tmitn ET (’_ - l]f) —Cy KTVM =0. (413)

Multipliziert man (4.12) skalar mit w? unter Beriicksichtigung von (4.13), so folgt

wIVw = Arf — Tmin) > 0. (4.14)

Zur Abkiirzung setze man d = /|7y — Tminl, €4 = SgN(rF — Tmin), €x = sgn(A).
Dann gilt

VwTVw = /A -d, ex=c¢eq4. (4.15)
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Tabelle 1: Optimaler Anteil einer unsicheren Kapitalanlage

Werte der Parameter

optimaler Anteil

deterministisch stochastisch
vy P ro oy =0 - \/12__ . %
1.05 1.04 1.03 0.01 0.5 0.417 0.4
0.02 0.5 0.357 0.333
1.04 0.01 1 0.715 0.667
0.02 1 0.556 0.5
1.05 1.06 1.06 0.01 1 1.664 2
0.02 1 4.948 1.153 - 10"
1.07 0.01 0.5 0.625 0.667
0.02 0.5 0.832 1
1.06 1.04 1.03 0.01 0.667 0.589 0.571
0.02 0.667 0.527 0.5
1.05 0.01 2 1.43 1.333
0.02 2 1.112 L
1.06 1.05 1.04 0.01 0.5 0.417 0.4
0.02 0.5 0.357 0.333
1.05 0.01 1 0.715 0.667
0.02 1 0.556 0.5
1.06 1.07 1.07 0.01 1 1.664 2
0.02 1 1.948 1.153 - 101°
1.08 0.01 0.5 0.625 0.667
0.02 0.5 0.832 1
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Durch Einsetzen in die obigen Bedingungen erhilt man das nicht-lineare Glei-

chungssystem
Vw(d —excy/|A]) + Ad(r — 1ry) = 0,
d(zqd — cv/|\)) + 0" (r — 1ry) = 0.

Die Auflosung der ersten Gleichung nach w ergibt

Ad
w

= V7l —1ry).
o E,\(’\m—d S

Eingesetzt in der zweiten Gleichung folgt eine Bedingung fiir A:

(eqd — c\/|A (r —1ry) V'I(T—h'l,-):().

. E)\(’\/V
Zur Abkiirzung setzt man
H=(@-1)"V i r—1rf) >0
und sieht, dass

AH

gqd — e/ |A| = —— .
d —excy/|A|

oder

(d — eqc/|A))? = |A|H.

Die Losung dieser quadratischen Gleichung fiir /|| liefert die Bedingung

VIN(gac+eVH) =d, =21,

wonach folgt
2

M=)

Andererseits lautet die Portfoliovarianz

= %1

2
2 Tf — Tmin -
" = ETV'E = )\(7.1' - Tmin) = ( 4

Edc—}-E\/ﬁ

(4.18)

(4.19)

(4.20)

(4.21)
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Dieser Ausdruck ist minimal fiire = 1, fallse; = 1, und fiire = —1,fallssy; = —1.
In beiden Fillen gilt

9 ry— rmiu) p
o- = (——+x-) . (4.22)
( g4 wH
Mit (4.18) und (4.20) folgt fiir die Portfoliogewichte
cdy/|A —eqd® |
W= -V i as
w & (r—1ry)
Aber man hat egd® = ry — rpin und dy/|A| = /A(rf — rmin) = 0. Somit

lauten die optimalen Portfoliogewichte fiir ein risikoangepasstes Portfolio oder
abgesichertes Portfolio:

I'min + CO — ry

H

i = V’_l(g—l°r'f). (4.23)

wobeli nach (4.22) gilt

Fmin — T'f
o= CHVH (4.24)
[ "m0 falls P < 7

e+ VH

Dieses Resultat ist ein risikoangepasstes Analogon der Markowitz-Portfolio-Analyse
mit einer risikofreien Kapitalanlage (siehe Huang und Litzenberger [1988], Ab-
schnitt 3.18, S. 76 —80). Wie in der klassischen Analyse bilden die Grenzportfolios
in der (o, 7min )-Ebene zwei Halbgeraden mit Steigungen ¢ + vHund —(c+ VH),
die vom Punkt (0,7 ;) ausgehen. Ein Vergleich mit der klassischen Losung ist auf-
schlussreich. Fiir jedes ¢ > 0 definiert die Losung des erweiterten Markowitz-
Optimierungsproblems ein Portfolio mit Aufzinsungsfaktor R, der eindeutig be-
stimmt ist durch (4.23) und (4.24). Fiir die Erwartungswerte und Varianzen gelten
die Ungleichungen

falls Tin = Tfs

E[R(] = Tmin + €0 2 Tmin = E[R()] ) (4.25)

W 2 : e . N2
Var[R.] = (%) < % — Var[Ro).

In Verallgemeinerung zum Fall N = 1 liefern die risikoangepassten Portfolios, im
Rahmen von Erwartungswert/Varianz-Analyse, die hoheren erwarteten Renditen bei
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kleinerer Varianz. Noch iiberraschender ist folgende Beobachtung. Mit wachsendem
c steigt der erwartete Ertrag mit fallender Varianz, d.h. fiir ¢ > ¢ gilt

E[R. > E[Ry], Var[R.] < Var[R.]. (4.26)
Im Grenzfall R, = lim R, erhilt man
E[Roo] = Pain T |Tf == Tmin|~ Var[ROO] =0. (427)

Mit Hilfe der Ungleichung von Tschebyschev zeigt man, dass die Zufallsvariablen
R, fiir ¢ — oo gegen den Erwartungswert E|R.,| stochastisch konvergieren. Dies
bedeutet, dass zu jedem ,6 > O ein N = N(e, ) existiert mit der Eigenschaft

Pr(\Rn — Pinin — |T§ — rmin|| >e)< 6, firalle n > N.

Damit ist eine absolute Grenze fiir den Ertrag eines abgesicherten Portfolios mit
¢ > 0 aufgezeigt. In der Praxis ist diese Grenze natiirlich nicht erreichbar, da die
Portfoliogewichte w Restriktionen iiber das maximal investierte Kapital unterwor-
fen sind. Als illustratives Beispiel dient der explodierende stochastische Anteil in
Tabelle 1. In praktischen Anwendungen dieser Ergebnisse ist ein nicht-lineares Op-
timierungsproblem mit linearen Ungleichungen und einer nicht-linearen Gleichung
zu losen. Solche Probleme werden mit Hilfe von Operations Research Methoden
numerisch gelost. Es bleibt zu priifen, wie gut das realistisch abgesicherte Portfolio
¢ = 1/v/27 und das verteilungsfreie beste abgesicherte Portfolio ¢ = % wirklich
abschneiden, falls man den Absicherungsprozess beriicksichtigt. Nach Abschnitt 1

und nach Konstruktion gilt fiir die Aufzinsung eines abgesicherten Portfolios mit
beliebigem ¢ > 0 die Zerlegung

R.=R°+R¢,
R® = rmin + (Re — E[R.))+ .
R =c-0— (E[R] - Re)+. (4.28)

Dabei stellt R den Absicherungsprozess dar, der um so sicherer ist, je grosser ¢
gewihlt wird. Im klassischen Modell ist ¢ = 0 und die Minimalrendite 7,,;, ist
iilberhaupt nicht abgesichert, da in diesem Fall R? < (. Die Wahl ¢ = % stellt den
verteilungsfreien besten Absicherungsprozess dar, in dem Sinne, dass er im Erwar-
tungswert die allfilligen Renditeverluste auf jeden Fall aufzufangen vermag. Auf-
grund der friiheren Diskussion ergibt ¢ = 1/1/27 einen realistischen Absicherungs-
prozess. Die Variable RS stellt den effektiven oder realisierten Aufzinsungsprozess
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dar. Nach Benktander [1977] ist die erwartete effektive Aufzinsung approximativ ge-
geben durch

E[Ri] = Tmin + E[(Rc - E[Rc])+] (4.29)
- \/%‘rf - Tmin|

c—i—\/ﬁ ’

wobei ¢ = 1/+v/27 fiir das realistisch und ¢ = é fiir das verteilungsfreie beste abge-
sicherte Portfolio einzusetzen ist. Die zugehorige Schwankung wird unter Annahme
einer Normalverteilung gemessen durch

1 — T'min 2
‘wmm:vmw@—gmmg:i(%:&?). (4.30)

Beispiel 2. Das Beispiel 1 wird unter Hinzufiigung einer weiteren unsicheren An-
lage fortgesetzt. In diesem Fall ist N = 2 und es bezeichne p der Korrelationsko-
effizient zwischen den risikobehafteten Anlagen | und 2. Dann gilt 015 = 09 =
oo102 . Die bendtigten Berechnungen konnen mit einem Taschenrechner durch-
gefiihrt werden. Die Formel (4.19) lautet in diesem Spezialfall:

1 r —r ro —re\2 To —Tf\2
i (1 f—gi—i)+(2 ”). (4.31)
1— p? o1 o) 02

In Abhingigkeit vom Parameter ¢ werden die optimalen risikoangepassten Anteile
laut (4.23) ermittelt:

T‘]_*T‘f _Q!‘Q*T‘f

e} —F 2 7y 0
=g = P g | o (4.32)

1_Q2 rg—rf N I[*ff

3
o5 g1 02
wobel
T — Tmi

ple) = T+ € - It min | (4.33)

c+\/ﬁ

der Erwartungswert des akkumulierten Renditeprozesses ist.
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Tabelle 2: Optimale Portfolios: Absicherung vs. Markowitz

Fall Parameterwahl
T Tmin US| T2 a1 g2 o
a) 1.05 1.04 1.03 1.06 0.01 0.02 —0.5
b) 1.055 1.06 1.06 1.07 0.01 0.02 =09
c) 1.06 1.08 1.07 1.08 0.08 0.15 0.9
d) 1.07 1.075 1.075 1.08 0.01 0.02 0.5
e) 1.08 1.05 1.06 1.08 0.01 0.02 — 0.5
optimale risikoangepasste Anteile
c=0 c=1/2n c= %
w1y wo wq w? w1 wo
a) 0.538 0.077 0.452 0.065 0.434 0.062
b) 0.395 0.202 0.444 0.227 0.455 0.232
c) 0.367 0.816 0.642 1.428 0.657 1.460
d) 0.500 0.250 0.704 0.352 0.732 0.366
e) 1.500 0.094 1.279 0.080 1.233 0.077
Renditeprozesse im Vergleich
c=0 c=1/V2r g= %
I o p o % o
a) 1.0400 0.00480 1.0416 0.00403 1.0419 0.00387
b) 1.0600 0.00179 1.0606 0.00156 1.0608 0.00152
c) 1.0800 0.14945 1.0950 0.03754 1.0958 0.03155
d) 1.0750 0.00866 1.0770 0.00512 1.0773 0.00464
e) 1.0500 0.01299 1.0544 0.01107 1.0553 0.01068
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ok Absicherung, falls eine risikofreie Anlage nicht verfiigbar ist

Maochte man in einer unsicheren dkonomischen Umgebung mit V' > 2 risikobe-
hafteten Anlagen ohne risikofreie Investitionsmoglichkeit die Minimalrendite 7,
eines Portfolios absichern, so ist analog zu Abschnitt 4 das folgende Optimierungs-
problem zu l6sen:

1
min{inVw} (5.1)

unter den Nebenbedingungen
w! T =rpin e VuwTVw, w’ - 1=1.

Die Lagrange-Funktion
1
L=cw' Vi + Armin + cvwVu —w" 1) +5(1 - w'1) (5.2)

fiihrt auf das folgende Gleichungssystem

oL Vuw B )

@:Vﬂ—/\(f—(l"—‘—m)_'}’l—g- (5.3)
%:Tmin+0-vaVw—wT'£:()a (54)
_‘g_izl_wT.l:o_ (5.5)

Multipliziert man (5.3) skalar mit w” und beriicksichtigt dabei die Nebenbedingun-
gen (5.4) und (5.5), so erhiilt man

wiVw = Arpin +7 > 0. (5.6)
Das Einsetzen in (5.3) und die Auflosung nach w ergibt

w = (1+Ae/v/Armin +7) 71 AV ) +4(V 1) (5.7)

Setzt man diesen Ausdruck in den Nebenbedingungen ein, so folgt das nicht-lineare
Gleichungssystem fiir A und ~:

A
)\([TV_IE) + ’Y(lTV_lf) = (1 = ﬁ)(?‘min i~ A /\Tmin + ’}/) i (58)

MeTVI) +9(TV ) = (14 L) . (5.9)

V /\Tmin e ¥
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Mit den Abkiirzungen

A=1T"v Yy =7Tv"11, B=¢Tv-ly, Cc=1TVv11, (5.10)

erhilt man weiter

Ac 3
BA+ Ay = (1+ W—T’;)T‘mm—FC- V Armin + 77 + Ac”. (511)

Ac
\V} APmin + Y .

Die Elimination des Ausdrucks 1 + Ac/\/Armin + v liefert die quadratischen Glei-
chungen

AN+Cy=1+ (5.12)

[aA + bﬂz = CQ(ATmin +7), (5.13)
[ad + bY][AX + Cy — 1] = ), (5.14)

wobei zur Abkiirzung gesetzt wird

a=B—Arpin— %, b=A—-Cryn. (5.15)
Die Losung dieses Systems geht iiber die lineare Transformation

r=a\+by, y=AN+Cy-1 (5.16)

Aufgeldst nach A und v erhilt man:

b+by—Cx Ax —ay —a
A= —m—————— =— ;
a ) £ (5.17)
wobei D = Ab — Ca. Damit hat man das #quivalente System
D z2—D rgm-zy=A-c*-z—a-c®-(y+1), (5.18)
D.zy=—-C-c* z+b-c (y+1). (5.19)

Die Elimination des Terms in (y + 1) liefert die lineare Bedingung

b-x4(a—b-rmin) -y =, (5.20)
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wobei angenommen wird, dass  # 0 und D # 0. Dann eliminiert man den Term
mit zy und erhélt unter Berticksichtigung von (5.20) die quadratische Gleichung

D-z2-2-b--z+c* [2+a—b-Tmu] =0.

Damit wurde gezeigt, wie man das Optimierungsproblem zur Konstruktion eines
abgesicherten Portfolios von nur risikobehafteten Anlagen losen kann.

Der aufgezeigte mathematische Weg in den Abschnitten 4 und 5 hinterldsst dem
Theoretiker und Praktiker manche Details und Schwierigkeiten, die vorerst liber-
wunden werden miissen. Als Anregung sollen folgende Punkte hervorgehoben wer-
den:

(a)  Fiir die Anwendungen wird ¢ = 1//27 oder ¢ = % suggeriert. Fithren diese
Werte zu irgendwelchen pathologischen Beispielen? Angenommen ¢ vari-
iert auf der positiven reellen Achse. Konvergieren dann die entsprechenden
zufilligen Renditen stochastisch gegen einen Grenzwert wie in Abschnitt 4?

(b)  Trotz Absicherung und Optimierung bleiben betrichtliche Restrisiken iibrig.
Laut Abschnitt 1 wird die Rendite eines optimal abgesicherten Portfolios in
zwei Komponenten zerlegt: die effektive oder realisierte Rendite und die Ren-
dite des Absicherungsprozesses. Beide Komponenten sind Schwankungen un-
terworfen und definieren deshalb Restrisiken, die durch die entsprechenden
Varianzen gemessen werden. Eine ndhere Analyse der Zusammensetzung die-
ser Risiken ist erwiinscht. In Abschnitt 4 gibt Gleichung (4.25) Auskunft iiber
das Gesamtrisiko und (4.30) beschreibt die Risikokomponente der effektiven
Rendite in einem Spezialfall.

(¢)  Weiterfithrende Restriktionen iiber die Portfoliogewichte, die eine zusitzli-
che Diversifikation erzwingen, erfordern, wie in Abschnitt 4, den Einsatz von
Methoden der Operations Research.

6. Absicherung und Gleichgewichtsmodelle fiir Aktiven

Seit der Einfiihrung des CAPM (= capital asset pricing model) durch Sharpe und
Lintner [1963/65] hat sich die moderne Portfoliotheorie als unerlidssliches Werk-
zeug der Finanzokonomie erwiesen. Das urspriinglich iiberaus einfache Modell fin-
det trotz berechtigten Médngeln Anwendung in der tiaglichen Finanzpraxis (verglei-
che z.B. Harrington [1987]). Im theoretischen Sinn hat das Modell bedeutende
Weiterentwicklungen und Verallgemeinerungen erfahren (vergleiche z.B. Ingersoll
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[1987]). Ohne auf die neuesten Entwicklungen einzugehen, wird gezeigt, welchen
Einfluss die Absicherung auf Gleichgewichtsmodelle ausiibt. Es sind verschiedene
alternative Modelle denkbar, die vom Anwendungsziel abhiingen. Wir begniigen uns
mit der Behandlung eines einzigen Modells.

Unsere Analyse beschrinkt sich auf das klassische CAPM. Vorhanden ist eine risi-
kofreie Anlage, deren zufilliger Aufzinsungsfaktor Ry den Erwartungswert ¢ be-
sitzt. Weiter gibt es N verschiedene risikobehaftete Anlagemoglichkeiten mit ak-
kumulierten zufilligen Renditen R; mit Erwartungswerten r;, ¢ = 1,...,N. Die
akkumulierte Rendite des Finanzmarktes sei beschrieben durch die Zufallsvariable
Ry mit Erwartungswert 7, . Es sollen minimale akkumulierte Renditen ™" < 7,
1=1,...,N,und rf\‘}i“ < r)s abgesichert werden. Die Ansichten oder Erwartungen
tiber den moglichen zukiinftigen Verlauf dieser Minimalrenditen sind im allgemei-
nen verschieden. Wir nehmen an, dass die Ansichten der Anleger iiber die akkumu-
lierten minimalen Renditen durch Zufallsvariablen R?““, t=1,...,N,und Rﬁ{}i"
beschrieben sind. Im CAPM von Sharpe/Lintner setzt man voraus, dass erste und
zweite Momente dieser Zufallsvariablen fiir alle Investoren gleich sind. Dariiber
hinaus wird vorausgesetzt, dass jeder Investor ein effizientes Portfolio auswihlt.
Eine detaillierte Beschreibung und Diskussion der bendtigten Modellannahmen fin-
detman in Harrington [1987], Kap. 2. Das CAPM liefert folgende lineare Beziehung

T:uin —rf = (T'K}in - T,f)[j‘)illifl’ 1= 1’ ce N R (61)
) Cov R{}]in‘Rn}ill
A = L5 mmM ] der Beta-Faktor .
Var[RoP|

Wir betrachten nun das gesamte Marktangebot, das durch das Marktportfolio be-
schrieben wird. Es sei Wy das in der risikofreien Anlage investierte Kapital und W;
das in der risikobehafteten Anlage i investierte Kapital,z = 1,. .., N . Das gesamte
investierte Kapital ist somit W = W + % W, . Das Marktportfolio, das alle An-
lagen im Verhiltnis zu ihren Marktwerten hilt, wird durch folgenden Vektor von
Portfoliogewichten beschrieben:

M v M

w = (wy L wy .., Wy ) - (6.2)
; Wy ) W;
u;l"}] = _I_Ir_{‘ 'u!;“l = Mr . 1= 1 vy N .

Wir treffen noch folgende

Annahme: (6.3)

Marktangebot fiir die risikofreie Anlage verschwindet, d.h. wj}[ == .
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Dann gelten folgende Budgetgleichungen

E ijzl,

riEn - E wMpmin (6.4)

E : M
T™ = wi T

Um die Minimalrendite 7} abzusichern, ist nach Abschnitt 1 eine “Risikoprimie”
bar im Absicherungsprozess zu reservieren. Dies wird durch einen hoheren Erwar-
tungswert der Marktrendite belohnt, und zwar laut Gleichung (1.13):

rar =50 + B[(Rar — 0 — bag)y ] (6.5)
Wie in den Abschnitten 3 und 4 setzt man zur Vereinfachung
by =7 — o™ = E[(Ryr — )4 ] - (6.6)

Wie hoch sollen nun die “Risikoprimien” b; = r; — ™" zur Absicherung der Mini-

malrenditen der einzelnen Anlagen sein? Durch Subtraktion der Budgetgleichungen
fir rpy und " folgt die Beziehung

by = ) wilbi. (6.7)
Um diese Gleichung zu erfiillen,setzt man unter Beriicksichtigung der Annahme
(6.3) nun am einfachsten b; = bys, ¢ = 1, ..., N . Dies bedeutet, dass der Preis fiir

eine abgesicherte Minimalrendite unabhéngig von der gewihlten risikobehafteten
Anlage ist. Damit gelten insgesamt die Beziehungen

rart =ru — E[(Ry —ma)+] (6.8)
T‘?IiIl:Tf—E[(R_M—TM)Jr], i=1ly... N,
Setzt man diese Beziehungen im CAPM (6.1) ein, so erhilt man nach Umformung
das folgende “risikoangepasste” CAPM:

ri=(1=8"")(rs+E[(Ry —7:m)+]+ 8™ Ry, i=1,...,N.(6.9)

Die Form dieser Gleichung erinnert an die Version des CAPM von Black [1972]. In
der Literatur ist keine Erklidrung fiir jenes Modell bekannt (vergleiche Harrington
[1987], S. 38, und S. 61). Diese Gleichung suggeriert folgende Identifikation:
E[Rj] = (1 — B™™)E|R,) + ™" - E[Ry], i=1,...,N, (6.10)
R, = Rf + (RM s T]V[)+ .
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Dabei spielt die Variable K. die Rolle der sogenannten “Null-Beta-akkumulierte
Anlagerendite™ in der Blackschen Version des CAPM, ohne mit dieser notwendiger-
weise identisch zu sein. Um Widerspriiche und Missverstindnisse zu vermeiden, ist
es wichtig folgenden Modellunterschied hervorzuheben. Das klassische CAPM (6.1)
istein “Erwartungsmodell”, das die Ansichten der Anleger iiber das Marktgeschehen
modelliert (auch wenn die Renditen nicht als minimal interpretiert werden). Das Mo-
dell (6.9) ist ein gemischtes Modell, das reale Elemente mit Ansichten verbindet. Die
realen Elemente sind die akkumulierten Renditen R;, I?7, 12 ¢, und die Erwartungen
7;, ar, 7'y . Das Ansichtselement ist der Beta-Faktor ﬂ}”"“ . Diese Unterscheidung
ist fiir korrekte statistische Tests und praktische Anwendungen dieser Modelle dus-
serst fundamental (vergleiche z.B. Harrington [1987], S. 27, S. 56, und S. 75). Aus
diesem Grund ist (6.9) als theoretische Konstruktion anzusehen. Wie im klassischen
CAPM wird man in der Praxis annehmen, dass Cov[R™", RY"] = Cov[R;, R,
d.h. auch s = 3, = Cov[R;. Rar]/ Var[Ry;] . Diese Bedingung ist zum Beispiel
dann erfiillt, falls man die Renditeerwartungen der Anleger mit den realen Renditen
wie folgt verkniipft:

Annahme : R}“i“ =R, —-b;=R;, —by, 1=1,...,N, (6.11)

min
ao= B —bar

Weitere praktische Erfahrungen iiber die Identifikation und die Messung der benotig-
ten Variablen findet man in Harrington [1987].

In diesem Zusammenhang ist es interessant, das Modell (6.9) weiter zu vereinfachen.
Nimmt man an, wie in Abschnitt 4, dass die “spezielle” Stop-Loss-Primie in (6.9)
proportional zur Standardabweichung angesetzt werden kann, also

E[(Rvy —rm)+]=c-om, ¢20, (6.12)

so folgt die Beziehung
ri=rf+c-on+{(ry —ry—c- U.U)D);“m y, t=1,...,N. (6.13)

Der Spezialfall ¢ = 1/y/27 ergibt eine “realistische” lineare Marktlinie in der
(5 r;)-Ebene. Insbesondere sind die Formeln fiir multinormalverteilte Renditen
exakt. Im Falle ¢ = O und "™ = 3; erhilt man das klassische CAPM als Spezialfall
zurtick.

In verschiedenen empirischen Untersuchungen seit Bestehen von CAPM sind sub-
stantielle Abweichungen der linearen Marktlinie von beobachteten Marktlinien aut-
gezeigt worden (wohlbekannt ist z.B. die Studie Black, Jensen und Scholes [1972]).
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Tabelle 3: CAPM vs. risikoangepasstes CAPM

Titel Beta-Faktor Prognose des erwarteten Gewinns r; — r¢
CAPM risikoangepasstes CAPM
1 1.05 0.10500 0.10263
2 1.05 0.10500 0.10263
3 0.96 0.09600 0.09790
4 1.04 0.10400 0.10210
5 1.00 0.10000 0.10000
6 1.18 0.11800 0.10945
7 0.95 0.09500 0.09737
8 1.16 0.11600 0.10840
9 1.27 0.12700 0.11418
10 0.89 0.08900 0.09422
11 1.25 0.12500 0.11313
12 1.17 0.11700 0.10893
13 1.00 0.10000 0.10000
14 1.02 0.10200 0.10105
15 0.61 0.06100 0.07952
16 0.86 0.08600 0.09265
17 0.90 0.09000 0.09475
18 0.96 0.09600 0.09790
19 0.82 0.08200 0.09055
20 1.21 0.12100 0.11103
21 1.15 0.11500 0.10788
22 1,52 0.15200 0.12731
23 0.39 0.03900 0.06797
24 1.05 0.10500 0.10263
25 0.64 0.06400 0.08109
26 1.18 0.11800 0.10945
27 1.30 0.13000 0.11575
28 1.19 0.11900 0.10998
29 1.44 0.14400 0.12311
30 1.49 0.14900 0.12573
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Ob der Ansatz dieser Arbeit hilft, dieses Phinomen zu erklaren? Die Strukturen (6.9)
und (6.13) liegen im Trend der vorgeschlagenen Modellerweiterungen. Nach Har-
rington [1987], Kap. 2, insbesondere S. 47, besitzen jene Modelle eines der folgen-
den Merkmale:

L, Die Ordinate in der (/3;.7;)-Ebene ist grosser als die risikofreie Aufzinsung
r¢ und die Steigung der Marktlinie ist kleiner als 7y, — ry .
P Es ist eine Vielfachheit an Marktlinien vorhanden.

Diese Modelle (6.9) und (6.13) erfiillen offensichtlich das erste Merkmal und sollten
aus diesem Grund niher an der empirischen Marktlinie liegen.

Beispiel 3. Der praktische Nutzen des Modells (6.13) kann anhand jeder Tabelle
von berechneten Beta-Faktoren und Volatilititen fiir Aktienindices in Finanzzeit-
schriften tiberpriift werden. Zur Illustration dient der interessante Artikel “Volati-
litdt — das unbekannte Wesen”, erschienen in “Das Wertpapier”, Heft 14, Juni 1989.
Die Tabelle 3 enthilt eine mogliche Renditeprognose aufgrund der Kennzahlen der
N = 30 DAX-Werte, die durch die Frankfurter Borse Tag fiir Tag errechnet wer-
den. Die Annahme r;y = 1.05, 3y = 1.15 dient lediglich der [llustration und kann
in diesem Beispiel nicht begriindet werden. Wir setzen ¢ = 0 bzw. ¢ = 1//27 in
(6.12) und berechnen die Standardabweichung der Marktrendite aus der historischen
Volatilitit vy, = /Var[lu(Ry,)] = 0.113 mit Hilfe der Transformationsformel

oum =/ Var[Ry]| =y - y/exp(vi,) — 1, (6.14)

die zum Beispiel durch Annahme einer log-normalen Verteilung und das Nicht-
Arbitrage Argument begriindet wird. Die charakteristischen Werte der Marktlinie
lauten im Vergleich:

CAPM risikoangepasstes CAPM

Ordinate 1.05 1.09508

Steigung 0.1 0.05492

Die Titel Nr. 22 bzw. 23 mit dem grossten bzw. kleinsten Beta-Faktor lassen in beiden
Modellen den hochsten bzw. kleinsten Gewinn erwarten. Die absolute Differenz in



248

der (prognostizierten) erwarteten Performance ist jedoch nicht vernachlissigbar und

betrigt 2.5% bzw. 2.9%.

Werner Hiirlimann
Allgemeine Mathematik
Winterthur-Leben
Romerstrasse 17

8401 Winterthur
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Zusammenfassung

Ein Absicherungsmodell fiir Anlagerisiken wird mit Hilfe aktuarieller Techniken hergeleitet. Es zerlegt
den Anlageprozess in einen Absicherungsprozess und einen Prozess. der eine realisierte Rendite definiert.
Im Rahmen der Optionspreistheorie wird gezeigt, wie der “faire” Preis der Absicherung zu bestimmen ist.
Weiter wird eine aktuarielle und eine finanzokonomische Methode vorgestellt, um den geeigneten Zins-
fuss zur Diskontierung der Passiven zu ermitteln. Anschliessend wird eine Integration des Absicherungs-
modells in die Portfoliotheorie von Markowitz vorgestellt. Insbesondere werden abgesicherte Portfolios
konstruiert, die eine hohere erwartete Rendite bei kleinerer Varianz als die herkommlichen klassischen
eftfizienten Portfolios aufweisen. Schliesslich wird noch ein “risikoangepasstes™ CAPM konstruiert. das
cine lineare Marktlinie besitzt, die an dic Blacksche Version des CAPM erinnert.

Résumé

Un modele de couverture des risques de placement est défini a 'aide de techniques actuarielles. 1
décompose le processus de placement en un processus de couverture et un processus qui définit une
notion de rendement réalisé. Dans le cadre de la théorie du prix des options on montre comment on
peut déterminer le prix “correct” pour une couverture sans “arbitrage™. De plus nous présentons deux
méthodes. I'une actuarielle et 'autre économique financiere, pour évaluer le taux d’escompte appropié
pour les passifs. Ensuite nous intégrons le modeéle de couverture dans la théorie des portefeuilles de
Markowitz. En particulier des portefeuilles protégés contre le risque sont construits et présentent un
rendement espéré plus élevé pour un écart-type réduit par rapport aux portefeuilles efficients classiques.
Finalement nous construisons un CAPM “ajusté pour le risque” possédant une ligne de marché linéaire.
qui rappelle la version de Black du CAPM.

Summary

A model to cover investment risks is derived using actuarial techniques. It decomposes the investment
process into a covering process and a process which defines a notion of realized yield. In the context of
option pricing theory it is shown how to determine the “lair™ price for covering. Further, an actuarial and
a financial cconomic method to evaluate the appropriate rate for discounting liabilities is presented. Then
the covering model is integrated into Markowitz portfolio theory. In particular, covered portfolios are
constructed which show a higher expected yield for a lower variance than classical efficient portfolios.
Finally, a “risk adjusted™ CAPM is constructed with a linecar market line which recalls the Black CAPM.
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