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BARBARA KELLER and CLAUDIA KLUPPELBERG, Ziirich

Statistical Estimation of Large Claim Distributions

1 Introduction

The specification of the probability distribution for the size of a single claim is
traditionally one of the major modelling problems in non-life insurance. Here one
often has to face situations where very large claims occur with high probability as for
instance in connection with hurricanes, fire or earthquakes. Thus one is confronted
with heavy tailed distributions like Pareto, Lognormal, Loggamma or Weibull where
the fit of the tail is a major problem. A wealth of interesting cases can be found in
Hogg and Klugman [1984]. Another cause of interest in large claim distributions
stems from the reinsurer’s point of view. One of the main reinsurance problems is
the calculation of a risk adequate premium rate. For this reason one has to estimate
the far end of the right tail of a distribution where only very few data are available.
Obviously, the relevant information for the right tail of a distribution is only con-
tained in the upper extreme part of the sample; for this reason extreme value theory
provides a natural tool in order to estimate the far end of a distribution tail. Basi-
cally, there exist two different methods following this line of argument. The so-called
threshold method goes back to an idea of Pickands [1975] and has been developed
by Smith [1987] culminating in a paper by Davison and Smith [1990]. They propose
a nonparametric method to fit the excesses over a threshold value for distributions
in the maximum domain of attraction of an extreme value law. A parametric method
has been proposed by Kliippelberg and Villasenor [1990] who suggested so-called
asymptotic maximum likelthood estimators (AMLE). AMLE’s are based upon the &
upper order statistics, so we say AMLE of order & (AMLE(£)).

For a sample X;.. ..., X,, from a distribution function F' we denote by
Xl:n 2 3 B 2 Xn:n

its decreasing order statistics.

In the extended Pareto model the tail F' = 1 — F has the representation

Mitteilungen der Schweiz. Vereinigung der Versicherungsmathematiker, Heft 2/1991



204

where s is a slowly varying function; i.e.

s(xt)

=1 Yi>0.

lim
€Tr—00 S(I)

In this case the AMLE (1) for av is

logn

= 108; Xl:n

and the AMLE(K) for & > 2 is nothing else than Hill’s estimator

kx
. 1 S log X o
Qg = {_A—J . 110{.’,’)&_}‘;;1 - 10g XE':n} :
J:

In the extended Weibull model F has the representation
F(z) = exp{—s(x)z®}, > zp,a >0,
where s is a slowly varying function. Then the AMLE(1) for a is

log logn

By =
10g}£1:n

and the AMLE(k) for & > 21s

. log log n
kT log Vi x + loglogn
with
i K
Vik =7 ; Xin — X

Asymptotic properties of Hill’s estimator have been investigated in detail; for in-
stance Hdusler and Teugels [ 1985] proved the asymptotic normality of fv;l when
the number £ of upper order statistics tends to infinity appropriately with the sample
size n. An analogous result is derived in Kliippelberg [1991] for the AMLE(k) in

the extended Weibull model.

Unfortunately, the rate of convergence in both cases is rather slow; it obviously
depends on the slowly varying function s and is in general logarithmic. This is in
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fact disturbing for practical applications where the sample sizes may not be very
large. To investigate the small sample behaviour of the AMLE(k), £ > 1, a Monte
Carlo simulation was conducted in Kliippelberg and Villaseiior [1990], but only
distribution tails Fi(x) = 27, x > 1,and F(z) = exp{—a°}. > 0, were
considered.

The aim of this paper is to investigate in more detail the influence of the slowly
varying function s on the AMLE (k). For this reason one has to simulate the upper
k: order statistics of extended Pareto and extended Weibull distributions. Basically,
one meets two different kinds of problems. First of all we are mainly interested in
the A upper order statistics rather than the whole sample. Secondly, we are faced
with simulation methodology for heavy tailed distributions in cases where the usual
inversion method or a simple rejection method do not apply.

Our paper is organized as follows: In the next section we describe the simulation
method which deals with the two problems mentioned above. Here we would like
to thank Richard Smith for his helpful comments on these problems. In section 3
we present the simulation results showing the small sample properties of AMLE’s
for tail estimation. In section 4 we use our simulation results for an indication of the
influence of the slowly varying function s to different reinsurance treaties.

2 The simulation method

To investigate properties of the AMLE’s by Monte Carlo simulation one must keep in
mind that for these estimators one only needs the upper k order statistics, and these
upper order statistics should come from the far end of the tail. Hence it would be
inefficient to generate first a whole sample and sort it only to use finally the upper few
percent of the sample. Methods for the generation of an ordered sample have been
considered by several authors, see e.g. Gerontides and Smith [1982] and references
therein.

However, it would be convenient to simulate directly only the few upper order
statistics needed for the AMLE’s. This can be done as follows: We fix a high
threshold 7 such that F'(x7) is for instance approximately 0.90, 0.95 or 0.99
ensuring that the generated random numbers come from the last 10, 5 or 1 percent of
our distribution. Assume for the moment we want to generate a sample (X,..., X,,)
from F'; then the event X; > xp would be a success with probability P(X; >
r7) = F(xr) and the event X; < 27 would be a failure with probability
P(X; < ap) = F(xr). Thus the number K of successes is a binomial variable with
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parameters n and p= F'(x1). Now let n be fixed and i > 0, then for / variables, say
Xq,..., X, we have

P[X1 e vty L o | AU Xp <zT+ '.U]

=PX| <ar+y,.... Xp <zr+ylXi <zr..... X <27
2 P[X] S o 1 R ,X;\. S I'T]
+PX:i<zr+y,.., Xp <zr+ylX1>2z7,..., X} > 7]
P[Xl - 1 (LA X; > IT}
=1- P{X] S 2 iy P X},z S .’1,'*[‘]
PlXy € (xr 27 +y], .-, Xk € (z7, 27 + ¥
P[,Xl > Ty, Xgp > ;'I,'T]
P{X1>CL'T ..... X >£lT]
Furthermore,
n k n—=k
PXy>ap,..., Xy > x7] = . )P (1-p)
and
PXi€(er+y),. .- Xk € (zr +y)] = (F(.‘TT +y) - F(-f'r))k
P[Xl 2 Lt o g X,t,, > .’1.7T] 1~ F(,L'T) .
where

Figr +y) = Flzr)

Fr(y) = 1— F(xr)

defines a distribution function on (0, o).
Thus we shall simulate random variables > =7 as follows:

° Fix a high threshold 7 and generate a random variable & from a binomial
distribution with parameters n and p=F'(xr).
° Generate & independent random variables with distribution Fr.

This method has also the advantage that for x7 large enough the density fr of F7pis
monotone or even convex on (0, o) although the original density of /' can exhibit
fluctuations caused by the slowly varying function s. This is due to the fact that
we only consider so-called normalized slowly varying functions s and in this case
the function s(x)x¢ is asymptotically monotone for each o # 0. Considering only
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normalized slowly varying function is not a serious restriction, since any slowly
varying function is asymptotic to a normalized one (see Bingham, Goldie, Teugels
[1987]).

A common method to simulate arbitrary densities is the so-called rejection method
(see e.g. Morgan [1984], p. 98ff). Unfortunately, no appropriate enveloppe exists
in case of our examples. All we know is that for large x1 our densities fr(y) are
positive and monotone for all y > (). So we decided to use a combination of inversion
and rejection determining the inversion intervals by a Newton-Raphson iteration as
proposed by Devroye [1984].

In a first step we divide the interval [0, oc) into subintervals xy < xy < ....defining

Fr(x,)
Iny1 — Tn + ;
v fr(an)

Note that the sequence {z, },en, 1s the sequence iterated by the Newton-Raphson
method to solve iteratively the equation Fr(x) = 1. Since Fr has unbounded
support and fr is positive on (0, oc), the sequence {x, },ern,. increases to oo as
n — oc. Thus for any u € (0, 1), the solution of F'(r) = u certainly belongs to one
of the intervals [.1',,..1”,14_1) forn € Ny.

In a second step, the random numbers with density fp are generated by a rejection
method. Suppose the uniform random number  is such that the solution F'(x) = u
falls into the interval [z, x,1) for some n € Ny. The corresponding random
number x is then generated by a rejection method on the interval [.1,'” ,Tny1) Where
the enveloppe e, (x) is chosen to be a rectangle on [x,,, 7, 1), where e, (x) =
frlag) forall 2 € (B, Trni1)

Thus our simulation method is a rejection method where the enveloppe () is a step

n e NU, Tg = 0.

o0
function with representation e(x) = 3 fr(wn) e, o, )(7).
n=0

3 The simulation result

In order to study the influence of the slowly varying function s on the AMLE’s we
let s depend on a second parameter (3 and considered for the same «-value different
(F-values.

As extended Pareto distribution we chose
F(z) = (logz)’z™®, z>z0,a>0, FER.

For the range of o we took o« = 1.5(0.5)4.0 and for 3 we considered the values
3 =-2.0(0.5)2.0.
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As extended Weibull distribution we simulated
F(:z:) =zPe™® , x>uxp, € (0,1], s e R,

including the extended exponential distribution as a limit for heavy tailed distribu-
tions. As «-values in our study we took o = 0.1(0.3)1.0 and for 3 again the range
G = —2.0(0.5)2.0.

\ Figure 1 F(z) = (logz) 'z 2

0.7

\ Figure 2: F(x) = z%e "
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To give an idea of how the slowly varying functions affect a pure Pareto or Weibull
distribution we give examples of the densities in Figure 1 and 2. In both figures,
a plain line denotes (3 = 0 (i.e. a pure Pareto or, respectively, Weibull density), a
dashed dotted line is plotted in case 3 = 0.5 an a dashed line marks 3 = —0.5.
Whereas in a neighborhood of the left endpoint of the distribution the value of 3 even
changes the shape of the distribution, its influence vanishes going to the right tail.
Nevertheless, depending on the size n of the sample and especially on the number
of observations falling into the last 10, 5 or 1 percent of the distribution the value of
/7 also can have a certain effect on the AMLE’s for ov. We shall discuss this point in
more details later.

As sample sizes we have considered 1000, 2000, 5000 and 10000. Obviously, the
AMLE’s are better for larger samples since the influence of 3 decreases the farther
to the right the upper order statistics move. In this paper, however, we want to
stress their small sample properties and hence we present here only the results for a
sample size n = 1000. Remember that from this size n of the complete sample we
only consider the upper few extremes to estimate the parameter «. For purpose of
illustration we have limited ourselves in this paper in the Pareto case to o« = 2 and
« = 4 and in the Weibull case to & = 0.4 and a = 0.7. In both cases we considered
(3 = +0.5 (the case 3 = 0 can be found in Kliippelberg and Villasenior [1990)). For
more detailed results of our simulation study we refer to Keller [1991].

As explained in section 2 we chose a threshold x7 such that all random variables
determining the AMLE come from the far end of the distribution tail. It turned out
that for a sample size of n = 1000 at least 5 percent of the distribution should
be considered. Thus we chose for zp two different values, namely x7 such that
F(xr) = 0.9and F(x7) = 0.95. Then the number A is the realization of a binomial
random variable which caused the specific values for k. In the following tables we
give the simulated values of &v;.. Note that for each combination of v and [ we have
simulated 50 runs and we also have calculated the sample variance (SV') and the
sample mean square error (SMSE).



Table 1: Extended Pareto distribution

F(z) = (logz)’z™®, a=4

A = =0.5 p=+0.5
& SV SMSE & SV SMSE
Fxyp) = 0.9 k=70 | 4.83868 | 0.38731 | 093151 | k=45 | 3.74773 | 0.24786 | 0.34633
Frop) =095 | k=38 | 4.70853 | 0.47951 | 0.84582 | k=25 | 3.96149 | 0.57748 | 0.57344

F(z) = (logz)?z™%, a=2

B=-05 B =405
& SV SMSE & A% SMSE
Fizr) 2 0.9 k=62 | 247625 | 0.08420 | 0.26579 | k=79 | 1.83236 | 0.03806 | 0.07850
0.17989

Fiaxr) = 0.95 k=30 2.45991 0.19067 0.35643 k=21 2.00963 0.18435

01¢



Table 2: Extended Weibull distribution

F(z)=2"e*", a=04

8 =-05 3= +0.5

& SV SMSE & SV SMSE

Fozr) = 0.9 k=113 0.53337 0.00069 0.01592 k=111 0.34936 0.00011 0.00345

Frzr) ~ 0.95 k =42 0.49236 0.00119 0.00801 k=32 0.33619 0.00020 0.00523

I
i
-J

F(zx) = Jrﬁe_‘””, a

B8 =-0.5 8 =0.>5

& SV SMSE o SV SMSE

Fer) ~ 0.9 k=091 0.80246 0.00251 0.00982 k =56 0.64046 0.00096 0.00612

Ferr) = 0.95 k=27 0.76395 0.00496 0.00764 k=36 0.63214 0.00129 0.00771

11¢
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We conclude this section with a brief discussion of our simulation results:

Whereas for an undisturbed Pareto and Weibull distribution &y was surpris-
ingly good (see Kliippelberg and Villaserior [1990]), in the extended case it
may not be appropriate even for larger samples.

The quality of &, k > 2, depends rather on the proportion of «v and /3 than on
their absolute values: the smaller « is with respect to | 3|, the worse is the effect
of (3 on the estimate of «v, an effect which can be smoothened in choosing a
higher threshold z7.

On the other hand, if « is rather dominant, as e.g. for &« = 0.7 in the Weibull
case, then v is not seriously affected by the function s, in our case by the value
of (3.

A negative (3 may have a worse effect on & than a positive /3.

The sample variance SV is in general larger for a higher threshold. This is
caused by the fact that the number k is smaller.

In general, the estimate of o can be improved by choosing a higher threshold
x7. But then the probability of obtaining random numbers > x 1 becomes
very small, so the sample size n would have to be increased.

An application to reinsurance

A general reinsurance treaty can be represented as a function of the order statistics
of the sample of claimsizes; for more details see Kremer [1985] and the references
therein. We restrict ourselves here to three examples:

the largest claims reinsurance
k
LCR = Xin, ke{l,....n},

=1

where the £ largest claims are covered,
the excess of loss with priority P,

XLR=) (Xin—P)*
i=1

where the excess over a fixed threshold P is covered,
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o the ECOMOR

A.
ECOMOR =) (Xim — Xpm), ke{l,...,n}

=1
where the excess over the A-largest claim is covered.

We use the simulated upper order statistics to demonstrate how minor changes of the
tail of the claimsize distribution can affect substantially the reinsurance sums of the
different treaties. Again we consider extended Pareto and extended Weibull claims.
As priority P in the X LR treaty we took the threshold value zp. Since k is a
binomial random number, depending on the threshold value x7, for each simulation
run we obtain a different k. To make our simulations results comparable, in the
following table 3 we give the simulated values of the normalized sums LO'R' =
tLCR, XLR = $XLR and ECOMOR' = { ECOMOR (note that for X LR
we took A as the number of positive summands). The first line in the table refers to
a threshold value of 7 = 0.9 and the second to xp = 0.95 respectively. Again
for each value we have simulated 50 runs and we also have calculated the sample
variance which is given in brackets.
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Table 3: Reinsurance treaties

F(z) = (logz)?z~®, a=4

B=-05 B=0 B=+0.5
LOR' 2.60887 (0.01092) 2.54804 (0.00798) 2.98632 (0.02064)
3.28768  (0.03600) 3.28216  (0.04326) 3.27456 (0.07521)
XLR 0.57225  (0.01092) 0.63282  (0.00798) 0.84563 (0.02064)
0.74408  (0.03600) 0.81562  (0.04326) 0.91578 (() 07521)
ECOMOR' 0.56525  (0.01078) 0.62685  (0.00800) 0.83425 (0.01996)
0.72893  (0.03540) 0.78329  (0.04084) 0.88720 (0.07726)

F(x) = (logz)%z~%, a=2

B8 =-05 B =0 B =+40.5
LOR 6.41125 (0.51304) 8.13463  (0.57903) 9.95120 (1.84292)
9.56956  (2.68687) | 11.92534  (4.35227) 17.59069  (38.72920)
XLR' 2.81069  (0.51304) 3.99429  (0.57903) 5.48002 (1.84292)
4.33282  (2.68687) 5.52946  (4.35227) 9.72377  (38.72920)
ECOMOR' | 278566 (0.50882) | 3.95658  (0.57497) | 5.42160  (1.86342)
4.29479  (2.66879) 5.37459  (4.27340) 9.54652  (38.72069)

F(x) =ale=", a=0.7

g =—-0.5 6=0 B =40.5
LCR 4.36832  (0.03420) 6.26720  (0.07316) 10.60423 (0.21219)
6.36357  (0.08872) 8.90124  (0.29695) 11.29170 (0.29102)
XLR 1.67259  (0.03420) 2.45763  (0.07316) 3.37025 (0.21219)
2.05822 (0.08872) 2.67477  (0.29695) 3.42321 (0.29102)
BCOMOR | 165454 (0.03321) | 242113  (0.06892) | 3.32042  (0.21841)
2.01071  (0.08988) 2.59020 (0.26120) 3.35104 (0.27059)

F(z) = wle— a =04

B=-0.5 8=0 8 =+0.5
LOR' 9.41175 (0.70861) | 36.95900 (12.80458) 75.13442 (41.49711)
16.25182  (4.65231) | 28.34684  (16.46001) | 122.95194 (100.50392)
XLE 5.80624 (0.70861) | 21.12145 (12.80458) | 41.73969  (41.49711)
9.11398 (4.65231) | 21.39967 (16.46001) 52.24463  (100.50392)
ECOMOR' 5.78060  (0.71422) | 20.71072  (12.99890) 41.32434  (41.66830)
9.02422  (4.60467) | 21.10413 (15.98780) 51.37023  (99.54538)
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Summary

Heavy tailed distribution functions " are commonly used to model large claims in non-life insurance. A
statistical method to estimate the far end of distribution, i.e. F'(x) for x > xp, rp large, is given by the
so-called asymptotic maximum likelihood estimators. We investigate their properties for small samples
in an Monte Carlo simulation. In particular, we study their robustness with respect to minor extensions of
the model. Moreover, we introduce a combined inversion-rejection method to simulate random numbers
only from the far end of a distribution which seems to be ideal for longtailed distributions. Finally, we
apply our simulation results to certain reinsurance problems.

Zusammenfassung

Langschwinzige Verteilungen F' dienen tblicherweise der Modellierung von grossen Schiiden in der
Sachversicherung. Eine statistische Methode, um das obere Ende F'(x), © > xp, xp gross, zu schiitzen,
sind die sogenannten Asymptotischen Maximum Likelihood-Schiitzer. Wir untersuchen ihre Eigen-
schaften fiir kleine Stichproben mittels einer Simulationsstudie. Insbesondere studieren wir ithre Robust-
heit gegeniiber geringfiigigen Modellerweiterungen. Wir stellen ausserdem eine kombinierte Inversions-
Verwerfungsmethode vor, die speziell Zufallsvariablen nur aus dem oberen Ende einer Verteilung simu-
liert und fiir langschwiinzige Verteilungen besonders geeignet erscheint. Schliesslich wenden wir unsere
Simulationsergebnisse auf verschiedene Vertragsformen in der Riickversicherung an.

Résumé

La construction de modeles pour les sinistres de montant trés élevé dans I'assurance non-vie fait appel
a des familles de fonctions de répartition F'(x) qui donnent un poids important aux grandes valeurs
de z. Une méthode statistique permettant d’estimer la partie supérieure de F'(z), * > xp, o
grand, est caractérisée par les estimations asymptotiques de vraisemblance maximale. Nous analysons
les propriétés de telles estimations pour de petits échantillons a 1'aide de simulations. En particulier,
nous étudions leur robustesse dans le cas d’extensions minimes du modele. De plus, nous introduisons
une procédure combinant les méthodes d’inversion et de rejet pour simuler des nombres aléatoires se
rapportant uniquement a la partie supérieure de la distribution. Les résultats des simulations sont appliqués
a différents problemes de réassurance.
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