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Barbara Keller and Claudia Klippelberg, Zurich

Statistical Estimation of Large Claim Distributions

1 Introduction

The specification of the probability distribution for the size of a single claim is

traditionally one of the major modelling problems in non-life insurance. Here one

often has to face situations where very large claims occur with high probability as for
instance in connection with hurricanes, fire or earthquakes. Thus one is confronted

with heavy tailed distributions like Paieto, Lognoi mal, Loggamma or Weihull where

the fit of the tail is a major problem. A wealth of interesting cases can be found in

Hogg and Kingman [1984]. Another cause of interest in large claim chstubutions

stems from the reinsurer's point of view. One of the main reinsurance problems is

the calculation of a risk adequate premium rate. For this reason one has to estimate
the far end of the right tail of a distribution where only very few data are available.

Obviously, the relevant information for the right tail of a distribution is only
contained in the upper extreme part of the sample; for this reason extreme value theory

provides a natural tool in order to estimate the far end of a distribution tail.
Basically, there exist two different methods following this line of argument. The so-called

threshold method goes back to an idea of Pit hands [1975] and has been developed

by Smith [1987] culminating in a paper by Davison and Smith [1990]. They propose
a nonparametnc method to fit the excesses over a threshold value tor distributions

in the maximum domain of attraction of an extreme value law. A parametiic method

has been proposed by Kluppelherg and Villasenoi [ 1990] who suggested so-called

asymptotic maximum likelihood estimators (AMLE). AMLE's are based upon the A1

upper order statistics, so we say AMLE of order A (AMLE(A))-
For a sample A'i. Xn from a distribution function F we denote by

Ai „ > • > Xn „

its decreasing order statistics.

In the extended Paieto model the tail F 1 — F has the representation

F(.r) s(x)x~". x>t0. a > 0,
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where .s is a slowly varying function; i.e.

In this case the AMLE (1) for a is

log n
Qt

logX1?l

and the AMLE(?,) for k > 2 is nothing else than Hill's estimator

In the extended Weibull model F has the representation

F(x) exp{— s(.r)j;Q}, x > xo,a > 0.

where s is a slowly varying function. Then the AMLE(l) for a is

log log n
Qi — I vlog Ai „

and the AMLE(/t) for A- > 2 is

log log »

Asymptotic properties of Hill's estimator have been investigated in detail; for
instance Häusler and Teugels [1985] proved the asymptotic normality of when

the number k of upper order statistics tends to infinity appropriately with the sample
size ii. An analogous result is derived m Kliippelberg [1991] for the AMLE(A') in

the extended Weibull model.

Unfortunately, the rate of convergence in both cases is rather slow; it obviously
depends on the slowly varying function s and is in general logarithmic. This is in

at log V„,A + log log«

with
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fact disturbing for practical applications where the sample sizes may not be very
large. To investigate the small sample behaviour of the AMLE(A'), k > 1, a Monte

Carlo simulation was conducted in Kluppelberg and Villasehor [1990], but only
distribution tails F(\) x~a, x > 1, and F(x) exp{-jiQ}, x > 0, were
considered.

The aim of this paper is to investigate in more detail the influence of the slowly

varying function s on the AMLE (A For this reason one has to simulate the upper
A order statistics of extended Pareto and extended Weibull distributions. Basically,
one meets two different kinds of problems. First of all we are mainly interested in

the A upper order statistics rather than the whole sample. Secondly, we are faced

with simulation methodology for heavy tailed distributions in cases where the usual

inversion method or a simple rejection method do not apply.

Our paper is organized as follows: In the next section we describe the simulation
method which deals with the two problems mentioned above. Here we would like
to thank Richard Smith for his helpful comments on these problems. In section 3

we present the simulation results showing the small sample properties of AMLE's
for tail estimation. In section 4 we use our simulation results for an indication of the

influence of the slowly varying function s to different reinsurance treaties.

2 The simulation method

To investigate properties of the AMLE's by Monte Carlo simulation one must keep in
mind that for these estimators one only needs the upper k order statistics, and these

upper order statistics should come from the far end of the tail. Hence it would be

inefficient to generate first a whole sample and sort it only to use finally the upper few

percent of the sample. Methods for the generation of an ordered sample have been

considered by several authors, see e.g. Gerontules and Smith [ 1982J and references

therein.

However, it would be convenient to simulate directly only the few upper order

statistics needed for the AMLE's. This can be done as follows: We fix a high
threshold xt such that F(xt) is for instance approximately 0.90, 0.95 or 0.99

ensuring that the generated random numbers come from the last 10, 5 or 1 percent of
our distribution. Assume for the moment we want to generate a sample (Xi Xn)
from F; then the event X, > xr would be a success with probability P{X, >
xt) F{xt) and the event X, < xt would be a failure with probability
P( X, < xt) F{xt)-Thus the number K of successes is a binomial variable with
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parameters n and p= F(xt)• Now let n be fixed and y > 0, then for k variables, say

26; 26; we have

P[Xi < j'x + y 26;. < xt + y]

P[Xl < xt + 26; < xt + y|26L < xT- -Xk < xt\
P[26j < a^'T 26; < xx]

+ -P[26; < xj 26; < xt + /y|26i > xt 26; > xp]

P[26i > xT 26; > XT]

1 P{X\ < xT, 26; < x7 ]

P[26i s (xt,xt + jy]i — 26; £ (xt-xt + y}\

P[Xi > XT, 26; > XT]

P[X\ > xt 26; > XT]-

Furthermore,

defines a distribution function on (0. oo).
Thus we shall simulate random variables > xt as follows:

• Fix a high threshold xt and generate a random variable k from a binomial
distribution with parameters n and p-F(xt)-

• Generate k independent random variables with distribution Ft-

This method has also the advantage that for xt large enough the density /V of Ft is

monotone or even convex on (0, oo) although the original density of F can exhibit
fluctuations caused by the slowly varying function s. This is due to the fact that

we only consider so-called normalized slowly varying functions s and in this case

the function .s(x)xe is asymptotically monotone for each j / 0. Considering only

and

P[26i £ (.;'x + y) 26; £ (xt + j/)]
P[26r > xt - • • ,26; > XT]

where
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normalized slowly varying function is not a serious restriction, since any slowly

varying function is asymptotic to a normalized one (see Bingham, Goldie, Teugels

11987]).

A common method to simulate arbitrary densities is the so-called rejection method

(see e.g. Morgan [1984], p. 98ff). Unfortunately, no appropriate enveloppe exists

in case of our examples. All we know is that for large .tj- our densities friy) are

positive and monotone for all y > 0. So we decided to use a combination of inversion
and rejection determining the inversion intervals by a Newton-Raphson iteration as

proposed by Devroye [1984],
In a first step we divide the interval [0. oc) into subintervals x0 < .ri < defining

Xn+1 + TT^T. » G No, x0 0
fT(Xn)

Note that the sequence {x„}„eN0 is the sequence iterated by the Newton-Raphson
method to solve iteratively the equation Ft(x) 1. Since Ft has unbounded

support and fr is positive on (0. oo), the sequence {.T„}neNo> increases to oc as

n —> oc. Thus for any u (0.1), the solution of F(x) u certainly belongs to one

of the intervals [,r„. ,rn+i) for n G No-

In a second step, the random numbers with density /V are generated by a rejection
method. Suppose the uniform random number a is such that the solution F(x) u

falls into the interval [x„,j„ + 1) for some n 6 Nq. The corresponding random

number x is then generated by a rejection method on the interval [.r„, .r„ + i) where
the enveloppe e„(x) is chosen to be a rectangle on [.rn,.xn+i), where en(x)
/r(-Ui) for all x e [xn,x„+1).
Thus our simulation method is a rejection method where the enveloppe e(x) is a step

OO

function with representation e(.r) X] )(x).
;i=0

3 The simulation result

In order to study the influence of the slowly varying function s on the AMLE's we
let ,s depend on a second parameter ß and considered for the same o-value different
/i-values.
As extended Pareto distribution we chose

F(x) (log-rXx-0. .r > x0. a > 0. ß £ R.

For the range of a we took a 1.5(0.5)4.0 and for ß we considered the values

ß -2.0(0.5)2.0.
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As extended Weibull distribution we simulated

F(x) .rße~l'\ x > xq, a £ (0,1]. ß £ R.

including the extended exponential distribution as a limit for heavy tailed distributions.

As rv-values in our study we took a 0.1(0 3)1.0 and for ß again the range
ß -2.0(0.5)2.0.
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To give an idea of how the slowly varying functions affect a pure Pareto or Weibull
distribution we give examples of the densities in Figure 1 and 2. In both figures,

a plain line denotes ß 0 (i.e. a pure Pareto or, respectively, Weibull density), a

dashed dotted line is plotted in case ß 0.5 an a dashed line marks ß —0.5.

Whereas in a neighborhood of the left endpoint of the distribution the value of ß even

changes the shape of the distribution, its influence vanishes going to the right tail.
Nevertheless, depending on the size n of the sample and especially on the number

of observations falling into the last 10, 5 or 1 percent of the distribution the value of
ß also can have a certain effect on the AMLE's for a. We shall discuss this point in

more details later.

As sample sizes we have considered 1000, 2000, 5000 and 10000. Obviously, the

AMLE's are better for larger samples since the influence of ß decreases the farther

to the right the upper order statistics move. In this paper, however, we want to

stress their small sample properties and hence we present here only the results for a

sample size n — 1000. Remember that from this size n of the complete sample we

only consider the upper few extremes to estimate the parameter a. For purpose of
illustration we have limited ourselves in this paper in the Pareto case to rv 2 and

a 4 and in the Weibull case to a 0.4 and a 0.7. In both cases we considered

ß ±0.5 (the case ß 0 can be found in Kliippelberg and Villasenoi [1990]). For

more detailed results of our simulation study we reter to Keller [1991 ].

As explained in section 2 we chose a threshold xj such that all random variables

determining the AMLE come from the far end of the distribution tail. It turned out
that for a sample size of n 1000 at least 5 percent of the distribution should

be considered. Thus we chose for xt two different values, namely xt such that

F(xt) 0.9 and F(xt) 0.95. Then the number k is the realization of a binomial
random variable which caused the specific values for k. In the following tables we

give the simulated values of Note that for each combination of a and ß we have

simulated 50 runs and we also have calculated the sample variance (SV) and the

sample mean square error (SMSE).



Table 1: Extended Pareto distribution

F(x) (logx)^x n. « 4

ß -0.5 ß= +0.5

ä SV SMSE & SV SMSE

F{ Xq « 0 9 II o 4 83868 0 38731 0 93151 H 3.74773 0 24786 0.34633

F(xT) ks 0 95 k 38 4 70853 0 47951 0 84582 k 25 3 96149 0 57748 0 57344

F(x) (logxj^x a, a 2

ß -0.5 ß +0.5

ä SV SMSE ä SV SMSE

XT) ^ 0 9 k 62 2 47625 0 08420 0 26579 k 79 1 83236 0 03806 0 07850

F{xj « 0 95 k 30 2.4599t 0 19067 0 35643 k 21 2 00963 0 18435 017989



Table 2: Extended Weibull distribution

F(x) x'3e x a 0 4

ß -0 5 ß +()5

« SV SMSE & SV SMSE

F(Xt) ~ 0 9 A 113 0 53337 0 00069 0 01592 k 111 0 34936 0 00011 0 00345

F(xt) « 0 95 k 42 0 49230 0 00119 0 00801 A 32 0 33619 0 00020 0 00523

F(x) x^e x a 0 7

ß -0 5 ß 0 5

ä SV SMSE & SV SMSE

F^XT) «09 A 91 0 80246 0 00251 0 00982 k 56 0 64046 0 00096 0 00612

F{XT) « 0 95 Ii to -T 0 76395 0 00496 0 00764 ?r II CO Gi 0 63214 0 00129 0 00771
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We conclude this section with a brief discussion of our simulation results:

• Whereas for an undisturbed Pareto and Weibull distribution «i was surpris¬

ingly good (see Klitppelbeig and Villasenot [1990]), in the extended case it

may not be appropriate even for larger samples.

• The quality of a^,k > 2, depends rather on the proportion of a and ß than on

their absolute values: the smaller a is with respect to \ß\, the worse is the effect

of ß on the estimate of rv, an effect which can be smoothened in choosing a

higher threshold xt-
• On the other hand, if a is rather dominant, as e.g. for a 0.7 in the Weibull

case, then a is not seriously affected by the function .s, in our case by the value

of ß.

• A negative ß may have a worse effect on ar than a positive ß.

• The sample variance SV is in general larger for a higher threshold. This is

caused by the fact that the number k is smaller.

• In general, the estimate of a can be improved by choosing a higher threshold

xt- But then the probability of obtaining random numbers > xt becomes

very small, so the sample size n would have to be increased.

4 An application to reinsurance

A general reinsurance treaty can be represented as a function of the order statistics

of the sample of claimsizes; for more details see Klemer [1985] and the references

therein. We restrict ourselves here to three examples:

• the largest claims reinsurance

h

LCR J2xm, ke{l,...,n}.
i=i

where the k largest claims are covered,

• the excess of loss with priority P,

n

XLR J^(Xin-P) +

I—I

where the excess over a fixed threshold P is covered.
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• the ECOMOR

k

ECOMOR Y2(Xi 77 - Xkn). ie{l
i=i

where the excess over the A-largest claim is covered

We use the simulated upper order statistics to demonstrate how minor changes of the

tail of the claimsize distribution can affect substantially the reinsurance sums of the

different treaties Again we consider extended Pareto and extended Weibull claims.

As priority P in the XLR treaty we took the threshold value xt• Since A is a

binomial random number, depending on the threshold value xt, for each simulation

run we obtain a different k. To make our simulations results comparable, in the

following table 3 we give the simulated values of the normalized sums LCR'
{LCR, XLR' {XLR and ECOMOR' {ECOMOR (note that for XLR
we took k as the number of positive summands). The first line in the table refers to

a threshold value of a j =09 and the second to xt — 0 95 respectively. Again
for each value we have simulated 50 runs and we also have calculated the sample

variance which is given in brackets.
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Table 3 Reinsurance treaties

F(x) (\ogx),ix n, a 4

ß —0 5 ß 0 ß +0 5

LCR' 2 60887 (0 01092)

3 28768 (0 03600)

2 54804 (0 00798)

3 28216 (0 04326)

2 98632 (0 02064)

3 27456 (0 07521)

XLR' 0 57225 (0 01092)

0 74408 (0 03600)

0 63282 (0 00798)

0 81562 (0 04326)

0 84563 (0 02064)

0 91578 (0 07521)

ECOMOR' 0 56525 (0 01078)

0 72893 (0 03540)

0 62685 (0 00800)

0 78329 (0 04084)

0 83425 (0 01996)
0 88720 (0 07726)

F(x) (log x)''x~" a 2

lOo[II ß 0 ß +0 5

LCR' 6 41125 (0 51304)

9 56956 (2 68687)

8 13463 (0 57903)

11 92534 (4 35227)

9 95120 (1 84292)

17 59069 (38 72920)

XLR' 2 81069 (0 51304)

4 33282 (2 68687)

3 99429 (0 57903)

5 52946 (4 35227)

5 48002 (1 84292)

9 72377 (38 72920)

ECOMOR' 2 78566 (0 50882)

4 29479 (2 66879)

3 95658 (0 57497)

5 37459 (4 27340)

5 42160 (1 86342)

9 54652 (38 72069)

F(x) xfie a 07

ß -0 5 6 0 ß +0 5

LCR' 4 36832 (0 03420)

6 36357 (0 08872)

6 26720 (0 07316)

8 90124 (0 29695)

10 60423 (0 21219)

11 29170 (0 29102)

XLR' 1 67259 (0 03420)

2 05822 (0 08872)

2 45763 (0 07316)
2 67477 (0 29695)

3 37025 (0 21219)

3 42321 (0 29102)

ECOMOR' 1 65454 (0 03321)

2 01071 (0 08988)

2 42113 (0 06892)

2 59020 (0 26120)

3 32042 (0 21841)

3 35104 (0 27059)

F( r) x^e a 04

/3 —0 5 0 0 ß +0 5

LCR' 9 41175 (0 70861)

16 25182 (4 65231)

36 95900 (12 80458)

28 34684 (16 16001)

75 13442 (41 49711)

122 95194 (100 50392)

XLR' 5 80624 (0 70861)

9 11398 (4 65231)

21 12145 (12 80458)
21 39967 (16 46001)

41 73969 (41 49711)

52 24463 (100 50392)

ECOMOR' 5 78060 (0 71422)

9 02422 (4 60467)

20 71072 (12 99890)
21 10413 (15 98780)

41 32434 (41 66830)

51 37023 (99 54538)
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Summary

Heavy tailed distribution functions F are commonly used to model large claims in non-life insurance A
statistical method to estimate the tar end of distribution, i e. F(x) for x > xp, x p large, is given by the

so-called asymptotic maximum likelihood estimators. We investigate their properties for small samples

in an Monte Carlo simulation In paiticular, we study then robustness with respect to minor extensions ot

the model Moreover, we introduce a combined inversion-rejection method to simulate random numbers

only from the far end ot a distribution which seems to be ideal tor longtailed distributions. Finally, we

apply our simulation results to certain reinsurance problems.

Zusammenfassung

Langschwanzige Verteilungen F dienen üblicherweise dei Modellierung von grossen Schaden in der

Sachversicherung. Eine statistische Methode, um das obere Ende F(x), x > xt, £t gross, zu schätzen,

sind die sogenannten Asymptotischen Maximum Likehhood-Schatzer. Wir untersuchen ihre
Eigenschaften für kleine Stichproben mittels einer Simulationsstudie Insbesondere studieren wir ihre Robustheit

gegenüber geringfügigen Modellerweiterungen Wir stellen ausserdem eine kombinierte Inversions-

Verwerfungsmethode vor, die speziell Zufallsvariablen nur aus dem oberen Ende einer Verteilung simuliert

und fur langschwanzige Verteilungen besonders geeignet erscheint. Schliesslich wenden wir unsere

Simulationsergebnisse auf verschiedene Vertiagsformen in dei Ruckversicherung an

Resume

La construction de modeles pour les sinistres de montant tres eleve dans l'assurance non-vie fait appel
ä des tamilles de fonctions de repartition F(x) qui donnent un poids important aux grandes valeurs

de x. Une methode statistique permettant d'estimer la partie supeneure de F(x), x > xj-, xj-
grand, est caracterisee par les estimations asymptotiques de vraisemblance maximale. Nous analysons
les proprietes de telles estimations pour de petits echantillons ä l'aide de simulations. En particuher,

nous etudions leur lobustesse dans le cas d'extensions minunes du modele. De plus, nous mtroduisons

une procedure combinant les methodes d' inversion et de rejet pour simuler des nombres aleatoires se

rapportant uniquement ä la partie superieuie de la distribution Les resultats des simulations sont appliques
a ddferents problemes de reassurance.
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