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Karin Hiss, Basel

Lineare Filtration und Kredibilitätstheorie

Einleitung

Der vorliegende Artikel ist eine Zusammenfassung einer Diplomarbeit an
der Universität Basel (1990). Er verfolgt, wie der Titel bereits zum Ausdruck
bringt, zwei Ziele:

eine kurze Darstellung der linearen Filtrationstheorie mit dem Hauptresultat,

dem Theorem von Kaiman;
die Anwendung der Filtrationsresultate auf Versicherungsmodelle zur
Ermittlung des Kredibilitätsschätzers.

Im Gegensatz zur Originalarbeit ist hier der erste Teil knapp gehalten. Für eine
ausführliche Behandlung der linearen Filtrationstheorie sei auf die Literatur
verwiesen, insbesondere auf Davis [3] und Hiss [6], Das Schwergewicht des

Artikels liegt auf dem zweiten Teil, wo ein allgemeines Kredibilitätsmodell
mit stetigem Zeitparameter formuliert und der Kredibilitätsschätzer mit dem
Kaiman-Filter berechnet wird. Die klassischen Modelle von Bühlmann (1967)
und von Bühlmann/Straub (1970) und das lineare Regressionsmodell von
Hachemeister (1975) werden auf den stetigen Fall übertragen und stellen so

Spezialfälle des allgemeinen Modells dar. Ferner werden noch zwei neue
Modelle vorgestellt.

1 Lineare Filtration

1.1 Grundlagen

Alle im folgenden betrachteten Zufallsvariablen sind auf einem festen

Wahrscheinlichkeitsraum (Q, J*,P) definiert. Sei ^fAlie Menge der quadratisch
integrierbaren Zufallsvariablen und ..V := {V e Jf\P(X 0) 1}. Auf dem

Quotientenraum Jf := jJf können wir ein Skalarprodukt definieren durch
(X, Y) := EQf • T]. Damit wird zu einem Hilbertraum, den wir auch mit
Li(Q, Jü P) bezeichnen.
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Ist {x, (xj, x"), t > 0} c jf ein n-dimensionaler stochastischer Prozess,

so betrachten wir folgende Unterräume von %:

Jf* : <y{xltl, x"n|0 < tk < t,k 1, nj

^ akxktk\ak e 1R.0 < tk < t,m £ Nj f > 0.

1=1 jt=i '

Der Prozess {xt (x', x"), t > 0} besitzt orthogonale Zuwächse, falls für
alle i — 1, n und s < t gilt:

x\-x'±je:.

Für Schätzprobleme ist folgender Satz von zentraler Bedeutung:

1.1.1 Satz

Sei {xt (xj, x"), t > 0} ein Prozess in Jf. Ist Y £ Jf, so ist der beste

affine Minimum-Quadrat-Schätzer Y von Y, gegeben |xs,s < t), gerade

y ptx-lY.

D.h. Y ist die Projektion von Y auf JF?'1.

Dabei bezeichnen wir mit den von [xs,s < t] und der konstanten
Zufallsvariablen 1(«) =1 Vcu £ Q aufgespannten Unterraum von Ferner
ist f."'1 der Projektionsoperator von Jf auf diesen abgeschlossenen Unterraum
T0?X,\

1.2 Der Kaiman-Filter

Das Filtrationsproblem ist im groben folgendes:

Gegeben sind Beobachtungen {.y„s < t}. Welches ist nun die beste
lineare Minimum-Quadrat-Schätzung x, für den Zustand x, des Systems
zum Zeitpunkt t, basierend auf diesen Beobachtungen?

Wir wollen dieses Problem mathematisch exakt formulieren.
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Sei [x,,t > Oj ein n-dimensionaler Prozess, der den Zustand eines Systems
beschreibt. Der Prozess {xt,t > 0} ist definiert als Lösung der folgenden
linearen stochastischen Differentialgleichung:

Systemgleichung dxt A(t)xt dt + C(t)dvt
Xq X. ^

Sei > 0] der beobachtete m-dimensionale Prozess, der folgender
Gleichung genügt:

Beobachtungsgleichung dyt H(t)xt dt + G{t)dwt

yo 0.
(2)

Die Prozesse [x,,t > OJ und {yt,t > 0}, welche durch (1) bzw. (2) definiert
sind, bilden ein sogenanntes dynamisches System.

1.2.1 Annahmen

Wir treffen folgende Annahmen:

(a) {v,,t > 0} und {w,,t > 0} sind /-dimensionale bzw. r-dimensionale
Prozesse mit orthogonalen Zuwächsen und Erwartungswert 0.

(b)
(c) Für die Kovarianzfunktionen von {vt,t > 0} und {wt,t > 0} gilt:

fAi
(i) cov[i>(, t>,] E[y(tij] / S(u)S '(u) du mit einer Diagonalmatrix S(u)

o

mit stückweise stetigen Komponenten.
/Si(«) \

S(u) q o ' wobei S,2(u) > 0 Vu.

V

o

S/(«) /
Also cov[nj,^] ö,j f S,(u)Sj(u) du.

(ii) cov[w;,ws] E[wrwJ] f T(u)T '(u) du mit einer Diagonalmatrix
o

T (m) mit stückweise stetigen Komponenten.

/ Ti(u)

wobei T,2(m) > 0 Vw.T(u) 0

V

0

Tr(u)

Also cov[wJ,w^] E[wjw/] ö,j f T,(u)Tj(u) du.
o
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(d) Die Anfangszufallsvariable xo ist orthogonal zu Jf" und Jf
(e) Die Koeffizientenmatrizen A(t), C(t), H(t) und G(f) sind bekannt und

haben stückweise stetige Komponenten.
Ihre Dimensionen sind: A : n x n, C : n x /, H : m x n, G : m x r.

(f) Die m x m-Matrix G(t)T(t)T'(t)G'(t) ist positiv definit für alle t.

Typische Beispiele, bei welchen die Annahmen (a) und (c) zutreffen, sind die
Brownsche Bewegung oder ein zentrierter Poisson-Prozess.

Das Ziel ist, die beste lineare Minimum-Quadrat-Schätzung xt des Zustandes

xt, gegeben {ys, s < r}, zu berechnen. Nach Satz 1.1.1 bedeutet das, wir suchen

xt Pty-lxt. (3)

Unter den Annahmen 1.2.1 liefert uns das Theorem von Kaiman den
Schätzer xt als Lösung der Filtergleichung, einer linearen stochastischen

Differentialgleichung:

1.2.2 Theorem

xt erfüllt die lineare stochastische Differentialgleichung

d% (A — PH'{GTT'G')-lH)xt dt + PH '(GTT'G ')~xdyt

3c0 Ex0 mo, (4)

wobei die Fehlerkovarianzmatrix P(t) E[(x, — xt)(xt — x,)'] die Matrix-
Riccati-Gleichung erfüllt:

P CSS'C' - PH(GTT'G'rlH'P + AP + PA'
P(0) cov[x,x] =: P0 • (5)

Eine wichtige Eigenschaft des Schätzers xt ist seine Erwartungstreue:

Ex, Ex, Vf > 0.
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2 Kredibilitätstheorie

2.1 Allgemeines Kredibilitätsmodell

Wir formulieren ein allgemeines Kredibilitätsmodell mit stetigem Zeitparameter.

Dieses enthält alle im folgenden betrachteten Modelle als Spezialfälle.
Ein ähnliches Vorgehen findet man bei [7], wo aber ein zeitdiskretes Modell
zugrunde gelegt wird. Dort geht man aus von einem stochastischen Prozess

{zt,t £ INJ. Die Realisation von z, wird als Beobachtung im Zeitpunkt t
interpretiert. Man betrachtet den bedingten Erwartungswert m,(6) := E[zt|0]
und definiert rjt := z, — m,(6). Es wird gezeigt, dass dieser Prozess {rjt,t £ N}
ein weisser Rauschprozess ist, das heisst, es gilt:

(a) EDj,] 0 für alle t £ N,
(b) E[j7(^J] ötscoy[rit,rit] für alle t,s £ N.

Beim Übergang von diskretem Zeitparameter (eNzu stetigem Zeitparameter
t £ IR+ ergeben sich hier Probleme: ein Prozess [t]t, t > 0} mit den

Eigenschaften (a) und (b) lässt sich nämlich nur als verallgemeinerter
stochastischer Prozess darstellen. Somit kann auch z, r\, + mt(9) nicht als

reellwertiger stochastischer Prozess im üblichen Sinne betrachtet werden.
Um diese Schwierigkeit zu umgehen, schlagen wir im folgenden einen anderen

Weg ein.

2.1.1 Modellannahmen

(a) (Q, P) ist ein fester Wahrscheinlichkeitsraum.
(b) 9 ist eine auf (Q, JF, P) definierte Zufallsvariable.
(c) {m,{9),t > 0} ist ein m-dimensionaler stochastischer Prozess in

(d) |wt,f > 0} ist ein m-dimensionaler stochastischer Prozess in L2(D., P)
mit den folgenden Eigenschaften:

(i) E[wt] =0 Vt > 0.

(ii) {w(,t > 0} hat orthogonale Zuwächse: für disjunkte Intervalle (s,t)
und (s',r') gilt: E[(w, — ws)(w,< — w,*)'] 0.

(iii) cov[wt, ws] E[w,wJ] Jq'As of dr und die Kovarianzmatrix of ist

diagonal.
(iv) {wt,t > 0} ist orthogonal zu mo(0) : E[wtWg(0)] =0 Vt > 0.

(e) Es gibt eine Familie von p-dimensionalen Zufallsvariablen {h,{9),t > 0}
in L2(Q,^, P), welche messbar sind bezüglich der von 0 in erzeugten
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cr-Algebra 91, und eine Familie von Matrizen {H(t),t > 0} c M{mxp.R)
mit Rang7/(f) — p < m für alle t, so dass:

m,(0) H (t)b,(0).

Diese Beziehung wird Regressionsvoraussetzung der Ordnung p genannt.

Die Bedingung (e) stellt keine Einschränkung dar: wird nämlich vom
betrachteten Modell her nichts vorgegeben, so setze man H(t) Im und
bt(0) mt(0).

2.1.2 Bezeichnungen

In den folgenden Kapiteln werden wir die nachstehenden Bezeichnungen
verwenden.

A(t,s) := cov[mt(0),ms(0)] mit Werten in M(m,IR)

pt := E[mt(0)] mit Werten in Rm

ß, := E[h((0)] mit Werten inRp

¥(£,5) := cov[ht(0),hs(0)] mit Werten in M(p,lR)

2.2 Kredibilitätsschcitzung mit dem Kaiman-Filter

Definiere:

t

yt yt{0) J ms{0)ds + wt,
0

kurz:

dyt := dy,(6) := mt(6) dt + dw,. (6)

Wenn wir die Ableitung dw,/dt im Sinne der Distributionen auffassen und
den verallgemeinerten stochastischen Prozess zt := dyt/dt mt{0) + dw,/dt
betrachten, so haben wir eine formale Übereinstimmung mit dem diskreten
Kredibilitätsmodell bei [7].
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Mit der Definition (6) genügt der Prozess {yt,t > 0} den folgenden
Beobachtungsgleichungen:

dy, mt(0) dt + dwt, y0 0, (7)

bzw.

dyt H(t)bt{6) dt + dwt, y0 0. (8)

Wir nehmen nun an, dass der Prozess (mt(6),t > 0} bzw. {b,(9),t > 0} die
nachstehenden Systemgleichungen erfüllt:

dm,(9) A{t)mt{9) dt + C(t) dvt (9)

bzw.

db,(9) Ä(t)b,(9) dt + C(t) dv,. (10)

Dabei treffen wir ausser den Modellannahmen (a)-(e) von 2.1.1 noch folgende
Annahmen, die für die Anwendung des Kaiman-Filters benötigt werden:

(f) {v,,t > 0J bzw. {v,,t > 0} ist ein m-dimensionaler bzw. p-dimensionaler
Prozess mit orthogonalen Zuwächsen und Erwartungswert 0.

(g) Jf "_LJf w bzw. w.

(h) Die Kovarianzmatrix

tAs IAS

cov[i;s, ur] J S(u)S'(u)du bzw. cov[i;s,ü,] J S(u)S'(u)du
o o

ist diagonal und S(u) bzw. S(u) hat stückweise stetige Komponenten.
(i) mo-LJfv bzw. "
Die restlichen Voraussetzungen des Theorems von Kaiman sind nach
Modellannahme (d) erfüllt, falls wir noch fordern:

(j) aj ist positiv definit für alle t.

(k) Die Matrizen A(-), C( /!(•), C(-) und H(-) haben stückweise stetige
Komponenten.

Die Forderung (j) ist sicher gerechtfertigt, denn J"0'As a} dr cov[vv,,ws] ist als

Kovarianzmatrix von w, ohnehin schon positiv semidefinit.
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Bei diesem dynamischen System, bestehend aus den Gleichungen (7) und
(9) bzw. (8) und (10) setzen wir folgende Grössen, die Strukturparameter, als

bekannt voraus:

G2.

HW' „/4(f) und C(t) bzw. /4(f) und C(f),
Ho und 2(0,0) bzw. ßo und ff^O),

S(u) bzw. S{u).

Das Theorem von Kaiman liefert uns nun den besten linearen Kredi-
bilitätsschätzer mt{9) bzw. b,(9) als eindeutige Lösung der linearen stochasti-
schen Differentialgleichung (11) bzw. (13). Damit die Gleichungen übersichtlicher

werden, lassen wir die Argumente bei den Matrizen weg.

dm,(6) (A - P{of)~l)m,(6) dt + P(o?)~l dy,

nto(0) E[mo(0)] po.

Dabei ist P(f) E[(m,(9) — fh,(9))(mt(0) — m,(0))'] Lösung der Matrix-Riccati-
Gleichung:

P CSS'C'-P((t2)-|P + /1P+P/1'
P(0) cov[mo(0),mo(0)] 2(0,0).

dbt(0)= (A-PH'(aj)-lH)bt(0)dt + PH'(a^rl dy,

bo(9) E[fco(0)] ßo-

Dabei ist P E[(h,(ö) — b,(0))(bt(0) — bt(0))'] Lösung der Matrix-Riccati-
Gleichung:

P(t) CSS'C'-PH'(aj)~lHP + AP + PA'
(14)

P(0) cov[bo{9),b0(9)] *P(0,0).

In Spezialfällen, insbesondere für m p 1 und konstante Koeffizienten,
lassen sich diese linearen stochastischen Differentialgleichungen einfach lösen.
Im allgemeinen erhält man die Lösungen mit numerischen Methoden.

Bei den folgenden Modellen werden wir meist die Filtergleichung für m,(9)
lösen. Lässt sich jedoch mt(9) in der Form

m,(9) H(t)b,(0) H (t)b(9)

bzw.
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mit zeitunabhängigem bt{9) b{9) schreiben, so erfüllt b,(9) die triviale
Systemgleichung

dbt(9) 0.

In diesem Fall berechnen wir bt(9) aus der Filtergleichung (13), die hier eine

einfachere Gestalt hat als (11). Auch die Matrix-Riccati-Gleichung (14) für
P(t) ist einfacher zu lösen als diejenige für P(t). Wir erhalten dann den

gesuchten linearen Kredibilitätsschätzer mt(9) und die Fehlerkovarianz P(t)
aus den Beziehungen:

Unter gewissen zusätzlichen Annahmen (siehe [6]), die beispielsweise im
eindimensionalen Fall stets erfüllt sind, lässt sich der lineare Kredibilitätsschätzer
in der Form

darstellen. Dabei ist Kt eine reguläre m x m-Matrix mit Eigenwerten im
Intervall (0,1) und Im die m x m-Einheitsmatrix. Die Matrix Kt wird auch
Kredibilitätsmatrix genannt; die m x m-Matrix F(£,s) hat die Bedeutung einer
Gewichtsmatrix.

2.3 Vier bekannte Kredibilitätsmodelle

Die wohl bekanntesten Kredibilitätsmodelle sind das Biihlmann-Modell (1967),
[1], das Bühlmann/Straub-ModeW (1970), [2], und das lineare Regressionsmodell

von Hachemeister (1975), [3]. Bei allen Modellen werden m Risiken
während n Perioden betrachtet. Die Zufallsvariable z{ bedeutet dabei die
Schadenhöhe des Risikos j in der Periode s. Die unbekannten Risikoparameter

für die Risiken 1, m werden durch die zeitunabhängige Zufallsvariable
9 (0i, 9m) beschrieben.
Wir übertragen nun diese Modelle auf den stetigen Fall: der Zeitparameter soll
nicht nur natürliche Zahlen s G N sondern beliebige nichtnegative reelle Werte
s G R+ annehmen. Mit dieser Verallgemeinerung stellen die drei Modelle
Spezialfälle unseres allgemeinen Kredibilitätsmodells dar, und wir können die
Resultate des Kaiman-Filters für die Kredibilitätsschätzung anwenden.

mt(9) H(t)bt(9)

P(t) H(t)P(t)H'(t).
(15)

(16)

(17)

o
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2.3.1 Das Bühlmann-Modell

Neben den Voraussetzungen (a) - (k) des allgemeinen Modells wird zusätzlich

angenommen:

mt(9) : m(9) unabhängig vonf,
2 ^-2

o, —. a lm

Daraus folgt:

/.i, E[m,(d)] =: jU unabhängig vonf,
Ä(r, s) cov[mr(0),/ns(ö)] =: k.

Da m,(0) m(9) unabhängig von t ist, haben wir folgende System- und
Beobachtungsgleichungen:

dm,{9) 0 (18)

dy, m(9) dt + dwt. (19)

Für den linearen Kredibilitätsschätzer erhalten wir die lineare stochastische

Differentialgleichung:

dm,(0) —P(t)(a2Im)~lm,(9) dt + P(t)(a2Im)~l dy,

m0{9) n,

und für P(t) E[(m(9)—m,(0))(m(0)—m,(()))'] die Matrix-Riccati-Gleichung:

P(t) -P(t)(o2ImriP(t)
P (0) /.

Betrachten wir den Spezialfall m= 1, so erhält man als Lösung:

(22)

m,(0) ' (23)

Das Resultat entspricht genau der Formel, die man im diskreten Fall mit
Normalgleichungen erhält (siehe [7], S. 40).
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2.3.2 Das Bühlmann/Straub-Modell

Im Unterschied zum vorangehenden Modell wird in diesem Modell die

Zeithomogenität abgeschwächt und die Risiken werden gewichtet.
Zu den Voraussetzungen (a) - (k) des allgemeinen Modells kommen nun
folgende Annahmen hinzu:

mt(9) =: m(8) unabhängig vonf,
of =: a2 ßr' für eine Gewichtsmatrix

(24)

•ÖlW \
Q,:=Q«):= | 0 ••• 0

Qm{t) /

mit Qj(t) > 0

und Qi(r) £ Li [0, f] für alle f.

Daraus ergibt sich:

j.it E[mr(0)] =: /.i unabhängig vonf,
Ä(r,s) cov[mr(0),ms(0)] =: Ä.

Auch bei diesem Modell ist m,(0) m(6) zeitunabhängig, so dass wiederum
die Systemgleichung (18) und Beobachtungsgleichung (19) vorliegen.
Die Filtergleichung für den Kredibilitätsschätzer lautet nun:

dm,(0) -P(t)(<r2Q7lrlm,(0) dt + P(t)(a2Q-l)~l dyt

mo(0) i.i,

und für P(f) E[(m(0) — fht{9)){m(8) — m,(0))'] gilt die Matrix-Riccati-
Gleichung:

P(t) -P(t)(a2Q;lrlP(t)
P(0) ;.. (26)

Betrachten wir wiederum nur ein Risiko, also m 1, so ergibt dies die

Lösungen:

Act2

P{t)
-> _i_ i fi n

(27)
ff- +/J0 Qr dr

m (0)
°2 \ u +

X&Qrdr \ •

fö Ql dyr
nz\

\ff2 + Ä /0'ßrf/rJ \ff2 + Ä /o' Qr dr / /0' Qr dr
V Y—

\ — K{ ='kt
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Vergleichen wir unser Resultat mit demjenigen bei diskreter
Betrachtungsweise, so erkennt man sofort, dass unser Ergebnis für das stetige Modell
exakt jenen Formeln entspricht, die mit Normalgleichungen ermittelt wurden
(siehe [7], S. 40).

2.3.3 Das lineare Regressionsmodell von Hachemeister

Dieses Modell verallgemeinert das Biihlmann/Straub-Modell. indem es die
zeitliche Stationarität von mt(0) abschwächt.
Folgende Annahmen werden zusätzlich neben (a)-(k) getroffen:

bt(0) b(0) unabhängig von t,

of wie in (24).

Daraus folgt :

ßt lE[Af (ö)] =: ß unabhängig von t,

^(bs) cov[br(0),M0)] =:

Wir wenden nun das Theorem von Kaiman auf folgendes dynamische System
an:

dbt(9) 0 (29)

dyt H(t)b(9)dt + dwt. (30)

Die Filtergleichung für die Schätzung bt(9) ist demnach:

dbt{ß) -p//Ver'rl//M0) dt + p/zVer1)-1 dy,

bo(0) ß
(31)

Für die Fehlerkovarianz P(t) IE[(b(0) — bt(9))(b(9) — bt(9))'] haben wir die

Matrix-Riccati-Gleichung:

i> =-PH'{o2Q^r'HP
(32)

P(0) y.

Der gesuchte lineare Kredibilitätsschätzer mt{0) und seine Fehlerkovarianz
P(t) lassen sich aus den Grössen b,(9) und P(f) berechnen:

fht(9) H(t)bt(9)

P(t) H(t)P(t)H'(t).
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Die Filter- und Riccati-Gleichung sind für den Spezialfall m p 1 leicht
lösbar. Man erhält:

P(t) 7, (33)
+ .lo H2{r)Qrdr

„2
bt{6) [o2 + A> f^H2(r)Qrdr'

ß

1 -K,

Vf^H2(r)Qrdr \ J^H(r)Qrdyr

"V
<r2 + «P ,/0' H2{r)Qr dr H2(r)Qr dr

K' =Y,

(34)

Auch hier führt unsere Berechnung im stetigen Fall mit der Methode des

Kaiman-Filters auf das dem diskreten Modell entsprechende Resultat, das

wieder mit der Methode der Normalgleichungen berechnet wurde (siehe [8],
S. 209).

2.3.4 Ein Spezialfall des exponentiellen Regressionsmodells

Bei diesem Modell wird ein exponentielles (ungestörtes) Wachstum von
mt(9) angenommen. Das hier beschriebene Modell ist ein Spezialfall des

exponentiellen Regressionsmodells von de Vylder in der stetigen Version (siehe
[4], S. 61).
Zusätzlich zu den Annahmen (a)-(k) des allgemeinen Kredibilitätsmodells
soll hier noch gelten:

dm,(6) A(t)m,(9)dt mit einer m x m-matrixwertigen Funktion A(-),

a2 wie in (24).

Um eine explizite Formel zu erhalten, betrachten wir wieder den Spezialfall
m 1. In diesem Fall gilt:

m,(9) exp ^ I A(s)ds^m0(6). (35)

o

Wir werden nun den Kaiman-Filter nicht auf das System

dm,(9) A(t)m,(9) dt

dy, m,(9)dt + dw,
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anwenden, sondern betrachten b(9) := mo(9) und die Gleichungen

dbt(9) 0 (36)
t

dy,=exp^j A(s) dsSjb(9) dt + dwt, (37)

o

Damit haben wir gerade die Voraussetzungen des Regressionsmodells von
Hachemeister mit

t

H(t) := exp ^ J /l(s)ds^.
o

Wir können also die Resultate und Bezeichnungen aus dem vorangehenden
Modell unverändert übernehmen. Zur Vereinfachung setzen wir noch A(t)
A =f= 0 für alle t.

Mit den Bezeichnungen von 2.3.3 erhalten wir dann:

o2yV
P(t)

a2 + A> £ e2ArQr d ro'
a2xVe2At

P(t) eMP(t)eA< (38)W W
a2 + A> £e2A'Qrdr

1 '

bto) [
ff2

ß + l vfyAr&dr ,/o ßArQr chr

\(T2+ *¥ £ e2ArQr dr J \a2 + W £ e2ArQr dr J £e2ArQrdr
v v ' y

-y ' v
y

'
l-Kt =:K, ='Y[

(39)

fht(9) eA,bt(9). (40)

Das exponentielle Regressionsmodell von de Vylder betrachtet (im Fall m 1)

anstelle unserer Annahme (35) die Voraussetzung:

mt(9) ft(b(9)) mit b(9) (b[ (6),b2(9)) und ft((a,b)):=ab'.

Unser Modell stellt also den Spezialfall

b(9) (m0{9),eÄ)

dar.
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Wie beim Hachemeister-ModeW entspricht auch hier unser Resultat genau dem

Ergebnis im diskreten Fall.

2.4 Zwei weitere Kredibilitätsmodelle

2.4.1 Neues Modell

Wie das Hachemeister-ModeW lässt auch dieses Modell die Voraussetzung,
dass mt(0) zeitlich konstant ist, fallen und verallgemeinert diesbezüglich das

Bühlmann/Straub-Modell.
Zu den allgemeinen Voraussetzungen (a)-(k) nehmen wir hinzu:

m,(0) mo(0) + vh wobei cov[mo(0), mo(0)] 0,

> 0} ein Prozess mit den Eigenschaften (f)-(i) in 2.2,

cov[u(, r,] S2 t A s,

of wie in (24).

Es folgt:

j.i, E[m,(0)] E[mo(0)] =: n unabhängig vont.

Die System- und Beobachtungsgleichungen lauten in diesem Modell:

dmt(9) dvt (41)

dy, m, (0) dt + dwt. (42)

Wir finden daraus die Filtergleichung für m,(0):

dfh,(d) -PWtfQT^mtMdt + P(t)(c2Q7lyl dy,

mo(0) B-

Hier ist P(t) E[(m,(0) — fht(8))(mt{0) — m,(0))'] Lösung der Matrix-Riccati-
Gleichung:

p(t) s2-p(t)(o2Q/lrlP(t)
P(0) 0.

Diese Gleichungen kann man für den Spezialfall m n 1 und eine konstante
Gewichtsfunktion Q, Q lösen. Man erhält:

6itt
i

1 tanh(£t), mit £ := S\f^ > 0 (45)
eZ?1 +1 V

- ta\ -
1 "\ (cos(^) - Jo sinh(^s) dys

m' j,cosh(Qt)J^ jy cosh(^t) )/ Jo( sinh(^s) ds
'

V

Y ' V

Y v
V- '

1 — K-t ='-K-t =Y{
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2.4.2 Allgemeines Modell

Wir verallgemeinern das vorangehende Modell, indem wir ein zeitliches
Wachstum von mt(0) einbeziehen:
Ausser den allgemeinen Voraussetzungen (a)-(k) soll hier gelten:

dm,(9) Am,(0)dt + C dvt, wobei A,C =f= 0 konstante Matrizen,
{v,,t > 0} ein Prozess mit den Eigenschaften (f)-(i) in 2.2,

cov[yf, rs] S2 t A s,

of wie in (24),

2(0,0) cov[mo(d),mo(0)] :2.

Es folgt:

H, E[mt(0)] exp(dt)IEmo(0) exp(dt)^0.

Wir haben damit folgendes dynamische System:

dmt(0) Am,{0) dt + C dv,

dyt mt(9) dt + dwt.

Wir stellen die Filtergleichung für dieses Modell auf:

dm,(9) {A - P(t)(o2Q~i)~l)fht(9)dt + P(t)(o2Q~l)~l dy,

m0(9) E[mo(0)] Mo-

Dabei ist P{t) E[(m,(9) — m,(9))(m,(9) — m,(9))'] Lösung der Matrix-Riccati-
Gleichung

P(t) CS2C' - P{t){o2Q-[rlP(t) + AP(t) + P(t)A'

P(0) 2.

Wir betrachten wieder der Einfachheit halber den Fall m n 1 und eine

zeitunabhängige Gewichtsfunktion Q, Q. In diesem Spezialfall lauten die

Lösungen:

(47)

(48)

(49)

(50)

P(t)
ot\ — Ka2exp

1 - Kexpf <«-

r* =d• Q

wobei <
<x\ := A32

a.2 '.= A32

K := A—oc2

(51)

+ ös/A2ö2 + C2S2
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Für

(a2 - a,)
<52

„ s/A2ö2 + C2S2
2— t :2£r» 1

\ö\
(52)

—v—
£

gilt:

P(t) |ai <5<0j=a.= aö2 + \ö\^A2ö2 + c2S2 ö2(A + 0- (53)
[ a.2 o > 0 J

Beachte, dass stets gilt d + <i; > 0, denn A + E, A+^jA2 + > zl + MI > 0.

Unter der Voraussetzung (52), d.h. für £t > 1 erhalten wir dann:

mt(0) ~ + (1 - •

e~ilJ°e^dys
(54)1

1 ' 1 J f^e^+^ds

Karin Hiss
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Universität Basel
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Zusammenfassung

Der Artikel ist m zwei Teile gegliedert Zuerst wird die in Betracht gezogene Klasse von
stochastischen Prozessen vorgestellt Es wird gezeigt, wie die Schätzung von Zufallsvariablen
im Hilbertraum L2<£i, 3F, B) als Projektion auf einen geeigneten Unterraum aufgefasst werden
kann Es folgt eine kurze Darstellung der linearen Filtrationstheone mit dem Hauptresultat, dem
Theorem von Kaiman
Im zweiten Teil werden die Filtrationsresultate fur die Kredibihtatsschatzung in
versicherungsmathematischen Modellen verwendet. Nach der Aufstellung eines allgemeinen Kredibihtatsmo-
dells und der Überprüfung der erforderlichen Voraussetzungen werden die klassischen Modelle
von Buhlmann (1967) und von Buhlmann/Straub (1970), das lineare Regressionsmodell von
Hachemeister (1975) sowie ein Spezialfall des exponentiellen Regressionsmodells von de Vylder (1986)
auf den stetigen Fall ubertragen und der Kredibihtatsschätzer X mit der Methode des Kalman-
Filters berechnet In allen vier Modellen erhalt man ein Resultat der Gestalt X (1 — K)/i + K V,
mit dem a priori Erwartungswert ji, einem gewichteten Mittel Y der Beobachtungen und einem
Faktor K mit Norm zwischen 0 und 1. Die mit dem Kaiman-Filter ermittelten Ergebnisse im
stetigen Fall entsprechen exakt den Resultaten bei diskreter Betrachtungsweise Weiter folgen
noch zwei neue Kredibihtatsmodelle

Resume

L'article comporte deux parties. La premiere presente la classe des processus aleatoires consideree
On y montre que l'estimation de variables aleatoires de l'espace de Hrfbert P) peut etre
consideree comme une projection sur un sous-espace convenablement choisi. Suit une presentation
succincte de la theone des liltres hneaires comprenant comme resultat principal le theoreme de

Kaiman
En seconde partie l'auteur applique lesdits resultats aux operations d'estimation par credibihte
dans le cadre de modeles actuanels L'auteur presente tout d'abord un modele general de credibihte
satisfaisant aux hypotheses necessaires Sur cette base ll transpose dans le cas continu plusieurs
modeles connus, puis determine par la methode du filtre de Kaiman l'estimateur de credibihte X
desdits modeles, qui sont les modeles classiques de Buhlmann (1967) et Buhlmann/Straub (1970),
le modele de regression hneaire de Hachemeister (1975), amsi qu'un cas particulier du modele de

regression exponentiel de de Vyhler (1986) Dans le cas de ces quatre modeles, l'auteur obtient un
resultat de la forme X (1 — K)/i + K Y, construit sur l'esperance mathematique a priori ji, une

moyenne ponderee Y des observations et un facteur K de norm comprise entre les valeurs 0 et 1

Les resultats obtenus par le filtre de Kaiman dans le cas continu correspondent exactement aux
resultats obtenus dans le cas discret Enfin l'auteur propose deux nouveaux modeles de credibihte

Summary

The paper is divided into two parts. First a class of stochastic processes is presented which is

considered in more detail later It is shown that the estimation of random variables in the Hilbert
space ,P) can be looked upon as a projection onto a suitable subspace There follows a
short presentation of the linear filtration theory and its main result, the theorem of Kaiman
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In the second part the results from filtration theory are applied to obtain credibility estimators in
actuarial models Following the presentation of a general credibility model, the classical models
of Bühlmann (1967) and Buhlmann/Straub (1970), the linear regression model of Hachemeister

(1975) and a special case of the exponential regression model of de Vylder (1986) are carried over
to the continuous case, and the credibility estimator X is calculated by means of the Kaiman filter
method In all four models a result of the form X (1 — K)/i + K Y is obtained with the a prion
mean ft, a weighted average Y of the observations and a factor K of norm between 0 and 1 The
results determined in the continuous case by means of the Kaiman filter correspond exactly to
those obtained by the discrete approach Finally, two new credibility models are presented
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