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KARIN Hiss, Basel

Lineare Filtration und Kredibilitatstheorie

Einleitung

Der vorliegende Artikel ist eine Zusammenfassung einer Diplomarbeit an
der Universitdat Basel (1990). Er verfolgt, wie der Titel bereits zum Ausdruck
bringt, zwei Ziele:

= eine kurze Darstellung der linearen Filtrationstheorie mit dem Hauptre-
sultat, dem Theorem von Kalman;

- die Anwendung der Filtrationsresultate auf Versicherungsmodelle zur
Ermittlung des Kredibilitatsschitzers.

Im Gegensatz zur Originalarbeit ist hier der erste Teil knapp gehalten. Fiir eine
ausflihrliche Behandlung der linearen Filtrationstheorie sei auf die Literatur
verwiesen, insbesondere auf Davis [3] und Hiss [6]. Das Schwergewicht des
Artikels liegt auf dem zweiten Teil, wo ein allgemeines Kredibilititsmodell
mit stetigem Zeitparameter formuliert und der Kredibilitdtsschiatzer mit dem
Kalman-Filter berechnet wird. Die klassischen Modelle von Biihlmann (1967)
und von Biihlmann/Straub (1970) und das linecare Regressionsmodell von
Hachemeister (1975) werden auf den stetigen Fall iibertragen und stellen so
Spezialfille des allgemeinen Modells dar. Ferner werden noch zwei neue
Modelle vorgestelit.

1 Lineare Filtration
1.1  Grundlagen

Alle im folgenden betrachteten Zufallsvariablen sind auf einem festen
Wahrscheinlichkeitsraum (€, #, P) definiert. Sei # die Menge der quadratisch
integrierbaren Zufallsvariablen und 4" = {X € #|P(X = 0) = 1}. Auf dem
Quotientenraum # = H /A" konnen wir ein Skalarprodukt definieren durch
(X,Y) :=I[E[X - Y]. Damit wird # zu einem Hilbertraum, den wir auch mit
L>(Q, #, P) bezeichnen.
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Ist {x, = (x/, ..., x"), t >0} < # ein n-dimensionaler stochastischer Prozess,
so betrachten wir folgende Unterrdume von 7 :

%': ;:ff{x:l, ...,X?HIOS tk St,k: 1* e ”}

H

m n
=D DY dxkjd e RO<t: <tmeN} |, >0
i=1 k=l ‘

Der Prozess {x; = (%Fs o0 X0), 22 0} besitzt orthogonale Zuwichse, falls fiir
allei=1,...,nund s < t gilt:

i i X
% =x 1

Fir Schatzprobleme ist folgender Satz von zentraler Bedeutung:

1.1.1 Satz
Sei {x, = (x!,..., x"), t > 0} ein Prozess in #. Ist Y € #, so ist der beste
affine Minimum-Quadrat-Schitzer Y von Y, gegeben [x,s < t}, gerade

Y =P"'Y.

D.h. Y ist die Projektion von Y auf # ',

Dabei bezeichnen wir mit #,"' den von {x,s < t} und der konstanten
Zufallsvariablen 1(w) =1 Vo € Q aufgespannten Unterraum von .#. Ferner
ist Pfx‘l der Projektionsoperator von # auf diesen abgeschlossenen Unterraum

X,
#

1.2 Der Kalman-Filter

Das Filtrationsproblem ist im groben folgendes:

Gegeben sind Beobachtungen {y,,s < t}. Welches ist nun die beste
lineare Minimum-Quadrat-Schitzung X, fiir den Zustand x; des Systems
zum Zeitpunkt ¢, basierend auf diesen Beobachtungen?

Wir wollen dieses Problem mathematisch exakt formulieren.
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Sei {x;,t > 0} ein n-dimensionaler Prozess, der den Zustand eines Systems
beschreibt. Der Prozess {x,,t > 0} ist definiert als Losung der folgenden
linearen stochastischen Differentialgleichung:

Systemgleichung dx, = A(t)x; dt + C(t) dv, ;
X9 = X. ( )
Sei {y;,t = 0} der beobachtete m-dimensionale Prozess, der folgender

Gleichung gentigt:
Beobachtungsgleichung dy, = H(t)x, dt + G(t) dw, @
Yo = 0.
Die Prozesse {x;,t > 0} und {y,;,t > 0}, welche durch (1) bzw. (2) definiert
sind, bilden ein sogenanntes dynamisches System.

1.2.1 Annahmen

Wir treffen folgende Annahmen:

(a) {v,t > 0} und {w,t > 0} sind [-dimensionale bzw. r-dimensionale
Prozesse mit orthogonalen Zuwichsen und Erwartungswert 0.

(b) SFrLIE™,

(c)  Fur die Kovarianzfunktionen von {v,,t > 0} und {w,,t > 0} gilt:

tAS
(i) cov[v, vs] = E[vw)] = [ S(u)S'(u) du mit einer Diagonalmatrix S (u)

0
mit stiickweise stetigen Komponenten.
Sy (u)
Sw=1| o . 0 , wobei S?(u) >0 Vu.
Si(u)

tAS

Also cov[v,v/] = E[viv]] = &; [ Si(u)S;(u) du.
0

IAS
(i) cov[wy,ws] = E[ww.] = [ T(u)T'(u) du mit einer Diagonalmatrix
0

T (u) mit stiickweise stetigen Komponenten.
Ty (u)
T(u) = 0 0 ,  wobel Tiz(u) >0 Vu.
T, (u)

LAS

Also cov[w!,w/] = E[wiw/] = 6;; [ T:(u)T;(u) du.
0



(d) Die Anfangszufallsvariable xq ist orthogonal zu # " und # ".

(e) Die Koeflizientenmatrizen A(t), C(t), H(t) und G(¢) sind bekannt und
haben stiickweise stetige Komponenten.
Thre Dimensionen sind: A :nxn, C :n X[, H :mxn, G :mxr.

(f)  Die m x m-Matrix G(t)T ()T '(t)G'(t) ist positiv definit fiir alle ¢.

Typische Beispiele, bei welchen die Annahmen (a) und (c) zutreffen, sind die
Brownsche Bewegung oder ein zentrierter Poisson-Prozess.

Das Ziel ist, die beste lineare Minimum-Quadrat-Schiatzung X, des Zustandes
X , gegeben {y;, s < t}, zu berechnen. Nach Satz 1.1.1 bedeutet das, wir suchen

/)E[ = P,y’lx, . (3)
Unter den Annahmen 1.2.1 liefert uns das Theorem von Kalman den

Schitzer X, als Losung der Filtergleichung, einer linearen stochastischen
Differentialgleichung:

1.2.2 Theorem

X, erfiillt die lineare stochastische Differentialgleichung

d%, =(A— PH'(GTT'G') 'H)%,dt + PH'(GTT'G') " 'dy,

Xo = [Exo = mo, (4)

wobei die Fehlerkovarianzmatrix P(t) = E[(x;, — X;)(x; — X;)’] die Matrix-
Riccati-Gleichung erfillt:

P=CSS'C'—PH(GTT'G")'H'P + AP + PA’
P{0) = cov[x, x] =: Pg. (5)

Eine wichtige Eigenschaft des Schitzers X, ist seine Erwartungstreue:

Ex; = [Ex; Vit > 0.
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2 Kredibilitdtstheorie
2.1  Allgemeines Kredibilititsmodell

Wir formulieren ein allgemeines Kredibilititsmodell mit stetigem Zeitpara-
meter. Dieses enthdlt alle im folgenden betrachteten Modelle als Spezialfalle.
Ein dhnliches Vorgehen findet man bei [7], wo aber ein zeitdiskretes Modell
zugrunde gelegt wird. Dort geht man aus von einem stochastischen Prozess
{z;,t € N}. Die Realisation von z; wird als Beobachtung im Zeitpunkt ¢
interpretiert. Man betrachtet den bedingten Erwartungswert m,(0) := IE[z,|0]
und definiert n, := z, — m(0). Es wird gezeigt, dass dieser Prozess {5, t € N}
ein weisser Rauschprozess ist, das heisst, es gilt:

(@) [E[p]=0firallet € N,
(b)  E[nmn.] = i covln,n] fur alle t,s € IN.

Beim Ubergang von diskretem Zeitparameter ¢ € N zu stetigem Zeitparameter
t € R* ergeben sich hier Probleme: ein Prozess {n,t > 0} mit den
Eigenschaften (a) und (b) ldsst sich ndmlich nur als verallgemeinerter
stochastischer Prozess darstellen. Somit kann auch z, = », + m;(8) nicht als
reellwertiger stochastischer Prozess im iiblichen Sinne betrachtet werden.

Um diese Schwierigkeit zu umgehen, schlagen wir im folgenden einen anderen
Weg ein.

2.1.1 Modellannahmen

(a) (Q,#,P) ist ein fester Wahrscheinlichkeitsraum.

(b) 0 ist eine auf (Q, .7, P) definierte Zufallsvariable.

(c) {m(0),t = 0} ist ein m-dimensionaler stochastischer Prozess in
L>(Q, #, P).

(d)  {w,t >0} ist ein m-dimensionaler stochastischer Prozess in L,(Q, #, P)
mit den folgenden Eigenschaften:

(i) [E[w]=0 vt > 0.

(ii) {w,t > 0} hat orthogonale Zuwiichse: fiir disjunkte Intervalle (s, t)
und (s, t') gilt: E[(w, — w)(wy — wy)'] = 0.

(iil) cov[w;, ws] = [E[w,w]] = _Oms o2 dr und die Kovarianzmatrix o] ist
diagonal.

(iv) {w:, t > 0} ist orthogonal zu mg(6) : IE[w,mg(0)] = 0 vVt > 0.

()  Es gibt eine Familie von p-dimensionalen Zufallsvariablen {b,(0),t > 0}
in L,(, %, P), welche messbar sind beziiglich der von 0 in & erzeugten
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o-Algebra 2, und eine Familie von Matrizen {H (t),t > 0} =€ M(mxp,R)
mit RangH (1) = p < m fur alle t, so dass:

m(0) = H(1)b,(0).

Diese Beziehung wird Regressionsvoraussetzung der Ordnung p genannt.

Die Bedingung (e) stellt keine FEinschrinkung dar: wird ndmlich vom
betrachteten Modell her nichts vorgegeben, so setze man H(t) = I,, und
b.(0) = m,(0).

2.1.2 Bezeichnungen

In den folgenden Kapiteln werden wir die nachstehenden Bezeichnungen
verwenden.

At,s) = cov[m,(0), mg(0)] mit Werten in M (m,IR)
w = IE[m,(0)] mit Werten in R"
B: = IE[b;(0)] mit Werten in R?
W(t,s) := cov[b,(0),bs(#)] mit Werten in M (p,R)

2.2 Kredibilititsschitzung mit dem Kalman-Filter

Definiere:

t

Ve = y:(0) i= /ms(()) ds + w,,
0

kurz:
dy, =dy,(0) = m,(0)dt + dw,. (6)

Wenn wir die Ableitung dw,/dt im Sinne der Distributionen auffassen und
den verallgemeinerten stochastischen Prozess z; = dy,/dt = m,(0) +dw,/dt

betrachten, so haben wir eine formale Ubereinstimmung mit dem diskreten
Kredibilitatsmodell bei [7].
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Mit der Definition (6) geniigt der Prozess {y;,t > 0} den folgenden
Beobachtungsgleichungen:

dy, =m(0)dt +dw,, yo =0, (7)
bzw.

Wir nehmen nun an, dass der Prozess {m(0),t > 0} bzw. {b,(0),t > 0} die
nachstehenden Systemgleichungen erfiillt:

dm,(0) = A(t)m,(0) dt + C(1) dv, (9)
bzw.
db,(0) = A(t)b.(0) dt + C(1) dv, . (10)

Dabei treffen wir ausser den Modellannahmen (a) — (¢) von 2.1.1 noch folgende
Annahmen, die fiir die Anwendung des Kalman-Filters benotigt werden:

(f)  {v,t =0} bzw. {1y, > 0} ist ein m-dimensionaler bzw. p-dimensionaler
Prozess mit orthogonalen Zuwichsen und Erwartungswert 0.

(g) AVLAY bzw. AV LAY,

(h) Die Kovarianzmatrix

NS IAS
cov[v,,v;] = /S(u]S’(u)du bzw. cov[t,, 7] = -/g(u)g'(u)du
0 0

ist diagonal und S(u) bzw. S(u) hat stiickweise stetige Komponenten.
(1)  moLlA " bzw. bo LA".

Die restlichen Voraussetzungen des Theorems von Kalman sind nach Modell-
annahme (d) erfillt, falls wir noch fordern:

(j) o} ist positiv definit fur alle t.

(k) Die Matrizen A(-), C(-), A("), C(-) und H() haben stiickweise stetige
Komponenten.

Die Forderung (j) ist sicher gerechtfertigt, denn foms o2 dr = cov[w,, wy] ist als
Kovarianzmatrix von w, ohnehin schon positiv semidefinit.
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Bei diesem dynamischen System, bestehend aus den Gleichungen (7) und
(9) bzw. (8) und (10) setzen wir folgende Grossen, die Strukturparameter, als
bekannt voraus:

0.2

s
H (1),
A(t) und C(t) bzw. A(t) und C(1),
o und A(0,0) bzw. By  und ¥(0,0),
S(u) bzw. S(u).
Das Theorem von Kalman liefert uns nun den besten linearen Kredi-
bilitidtsschitzer m, (0) bzw. /5,(0) als eindeutige Losung der linearen stochasti-

schen Differentialgleichung (11) bzw. (13). Damit die Gleichungen ubersicht-
licher werden, lassen wir die Argumente bei den Matrizen weg.

din(6) = (A~ P(o}) ") A (0) di + P(o?) "' dy,
g (0) = Elmo(0)] = po.

Dabei ist P (t) = IE[(m,(0) — m,(0))(m,(0) —m,(0))'] Losung der Matrix-Riccati-
Gleichung:

(11)

P=CSS'C'—P(c})'P+ AP + PA

(12)
P(0) = cov[mo(0), mo(0)] = A(0,0).

bzw.
db(0) = (A — PH'(¢?) "H)b,(0)dt + PH'(c}) " dy:
bo(60) = E[bo(0)] = o

Dabei ist P = E[(h,(0) — b:(8))(h(0) — b.(0))'] Losung der Matrix-Riccati-
Gleichung:

(13)

~

P(t)=CSS'C' — PH'(62)'"HP + AP + PA’

(14)
P(0) = cov[bo(0), bo(6)] = ¥(0,0).

In Spezialfallen, insbesondere fiir m = p = 1 und konstante Koeffizienten,
lassen sich diese linearen stochastischen Differentialgleichungen einfach 16sen.
Im allgemeinen erhélt man die Losungen mit numerischen Methoden.

Bei den folgenden Modellen werden wir meist die Filtergleichung fir m,(6)
16sen. Lisst sich jedoch m,(0) in der Form

m(0) = H(t)b,(0) = H(t)b(0)
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mit zeitunabhidngigem b,(0) = b(0) schreiben, so erfiillt b, (0) die triviale
Systemgleichung

db;(0) = 0.

In diesem Fall berechnen wir b,(0) aus der Filtergleichung (13), die hier eine
einfachere Gestalt hat als (11). Auch die Matrix-Riccati-Gleichung (14) fur
P(1) ist einfacher zu 16sen als diejenige fiir P(r). Wir erhalten dann den
gesuchten linearen Kredibilitatsschitzer m,(0) und die Fehlerkovarianz P(t)
aus den Bezichungen:

i (0) = H(1)b,(0) (15)
P(t) = H@)P(t)H'(1). (16)

Unter gewissen zusitzlichen Annahmen (siehe [6]), die beispielsweise im eindi-
mensionalen Fall stets erfullt sind, lasst sich der lineare Kredibilititsschiatzer
in der Form

t

#1,(0) = (In — Ko + Ko f C(t,s) dy, 17
0

darstellen. Dabei ist K, eine regulire m x m-Matrix mit Eigenwerten im
Intervall (0,1) und I, die m x m-Einheitsmatrix. Die Matrix K; wird auch
Kredibilititsmatrix genannt; die m x m-Matrix I'(t,s) hat die Bedeutung einer
Gewichtsmatrix.

2.3 Vier bekannte Kredibilititsmodelle

Die wohl bekanntesten Kredibilitdtsmodelle sind das Biihlmann-Modell (1967),
[1], das Biihlmann/Straub-Modell (1970), [2], und das lineare Regressions-
modell von Hachemeister (1975), [3]. Bei allen Modellen werden m Risiken
wihrend n Perioden betrachtet. Die Zufallsvariable z/ bedeutet dabei die
Schadenhohe des Risikos j in der Periode s. Die unbekannten Risikoparame-
ter fir die Risiken 1, ..., m werden durch die zeitunabhingige Zufallsvariable
6 = (0, ..., 0,) beschrieben.

Wir tibertragen nun diese Modelle auf den stetigen Fall: der Zeitparameter soll
nicht nur natiirliche Zahlen s € N sondern beliebige nichtnegative reelle Werte
s € R* annehmen. Mit dieser Verallgemeinerung stellen die drei Modelle
Spezialfille unseres allgemeinen Kredibilitdtsmodells dar, und wir konnen die
Resultate des Kalman-Filters flr die Kredibilititsschiatzung anwenden.
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2.3.1 Das Biihlmann-Modell

Neben den Voraussetzungen (a) — (k) des allgemeinen Modells wird zusitzlich
angenommen:

m(0) =: m(0) unabhdngig vont,

2 __. .2
g, =:0"Ip.

Daraus folgt:

u, = IE[m;(0)] =: 1 unabhingig vont,
A(r,8) = cov[m,(0),ms(0)] =: 4.

Da m,(0) = m(0) unabhdangig von t ist, haben wir folgende System- und
Beobachtungsgleichungen:

dm,(0) =0 (18)

dy, =m(0)dt + dw,. (19)

Fir den linearen Kredibilitatsschitzer erhalten wir die lineare stochastische
Differentialgleichung:

din (0) = —P(t)(c*L,) ', (0) dt + P(t)(c” L) " dy,

m

: (20)
no(0) = p,

und fir P (t) = E[(m(0) —m,(0))(m(0) —m,(0))'] die Matrix-Riccati-Gleichung:

P(t)=—P)(c’L,) "' P(1)

21
P0) = A S

Betrachten wir den Spezialfall m = 1, so erhdlt man als Losung:

D)
A0
P(t) = 22
() At + o2 (22)
N o’ At Ve
m,(0) = LA 2
«(6) (it+az>“+ (Az+oz> t ()
\ ~ J AL ~ J\_‘—/
I_Kf =:Kf =:YE

Das Resultat entspricht genau der Formel, die man im diskreten Fall mit
Normalgleichungen erhilt (siehe [7], S. 40).



93

2.3.2 Das Biihlmann/Straub-Modell

Im Unterschied zum vorangehenden Modell wird in diesem Modell die
Zeithomogenitiat abgeschwicht und die Risiken werden gewichtet.

Zu den Voraussetzungen (a)— (k) des allgemeinen Modells kommen nun
folgende Annahmen hinzu:

m,(0) =: m(0) unabhingig vont,
—:¢°-Q;" fiir eine Gewichtsmatrix

(24)
Qi (1)

Q=0 = 0 0
Qm(1)

mit Q;(t) > 0
und Q;(r) € L[0,¢] fur alle t.

Daraus ergibt sich:

u, = [E[m;(0)] =: 1 unabhangig vont,
Ar,s) = cov[m,(0),ms(0)] =: A
Auch bei diesem Modell ist m,(0) = m(0) zeitunabhingig, so dass wiederum

die Systemgleichung (18) und Beobachtungsgleichung (19) vorliegen.
Die Filtergleichung fiir den Kredibilititsschitzer lautet nun:

din(0) = —P(t)(a?Q; ) 'm(0) dt + P(t)(a>Q; ") " dy,

25
mo(0) = w, ey

und fur P(r) = E[(m(0) — m(0))(m(0) — m,(0))] gilt die Matrix-Riccati-
Gleichung:

P(t)=—P(t)(c?Q, ")

P(0) = A (26)
Betrachten wir wiederum nur ein Risiko, also m = 1, so ergibt dies die
Losungen:

hn_2
£0°
P(t) = _ (27)

o2+ 4 [, Q,dr

; y ! ,d 't rI"r
,/,3[(9):(7 La )H( i fy Qdr ) lthc,x | o5
o244 [, Q,dr g o —|—ﬂ] Q,dr ‘[0 Q,dr

Y Y
1—K; = l\ =Y,
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Vergleichen wir unser Resultat mit demjenigen bei diskreter Betrach-
tungsweise, so erkennt man sofort, dass unser Ergebnis fiir das stetige Modell
exakt jenen Formeln entspricht, die mit Normalgleichungen ermittelt wurden
(siche [7], S. 40).

2.3.3 Das lineare Regressionsmodell von Hachemeister

Dieses Modell verallgemeinert das Biihlmann/Straub-Modell, indem es die
zeitliche Stationaritdt von m,(0) abschwicht.
Folgende Annahmen werden zusitzlich neben (a) — (k) getroffen:
b;(0) = b(0) unabhingig vont,
o’ wie in (24).

Daraus folgt:
p: = EE[b; (())] =: [ unabhingig von ¢,
W(r,s) = cov[b,(0), bs(0)] =: VY.

Wir wenden nun das Theorem von Kalman auf folgendes dynamische System
an:

db,(0) =0 (29)
dy, = H(t)b(0) dt + dw,. (30)

Die Filtergleichung fiir die Schédtzung E,(()) ist demnach:

b(0) = —PH'(62Q; ") "Hb,(0) dt + PH'(c*0;") " dy, A1)
) =

bo(0) = 8.

Fir die Fehlerkovarianz F’(t) [E[(b(0) — b, (D)) (b(O) — B,({?))’] haben wir die
Matrix-Riccati-Gleichung:

B Bua2a-hv-lgp
P=—PH(07)'HP 55
P(0) = V.

Der gesuchte lineare Kredibilitatsschitzer m, () und seine Fehlerkovarianz
P (t) lassen sich aus den Grossen b, () und P (t) berechnen:

i (0) = H(t)b,(0)
P(t) = HOP(OHH'(t).
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Die Filter- und Riccati-Gleichung sind fiir den Spezialfall m = p = 1 leicht
losbar. Man erhilt:

- oY
P(t) = 3 (33)
o +V¥ |, HX(r)Q, dr

-~ 0'2
br =
©) \( R 4 fo 2(n 0, dr) p

lk,

+( ¥ [, H2(r)Q, dr ) fo’ (10, dy,
a2+ V¥ [y HX(r)Q, dr 2(r )Q, dr

_Kl ?

(34)

\

Auch hier fiihrt unsere Berechnung im stetigen Fall mit der Methode des
Kalman-Filters auf das dem diskreten Modell entsprechende Resultat, das
wieder mit der Methode der Normalgleichungen berechnet wurde (siehe [8],
S. 209).

2.3.4 Ein Spezialfall des exponentiellen Regressionsmodells

Bei diesem Modell wird ein exponentielles (ungestortes) Wachstum von
m,(0) angenommen. Das hier beschriebene Modell ist ein Spezialfall des
exponentiellen Regressionsmodells von de Vylder in der stetigen Version (siche
[4], S. 61).
Zusitzlich zu den Annahmen (a)— (k) des allgemeinen Kredibilititsmodells
soll hier noch gelten:
dm(0) = A(t)m,(0)dt mit einer m X m-matrixwertigen Funktion A(-),

ol wie in (24).
Um eine explizite Formel zu erhalten, betrachten wir wieder den Spezialfall
m = 1. In diesem Fall gilt:

t

m,(0) = exp (/A(s) ds)mo(()). (35)
0

Wir werden nun den Kalman-Filter nicht auf das System

dm,(0) = A(t)ym,(0) dt
dy, = m(0)dt + dw,
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anwenden, sondern betrachten b(6) := my(f) und die Gleichungen

db,(0) =0 (36)

t
dy, = exp (fA(s) ds) b(0)dt + dw,. (37)
0

Damit haben wir gerade die Voraussetzungen des Regressionsmodells von
Hachemeister mit

H(t) == exp ( A(s) ds).
/

Wir konnen also die Resultate und Bezeichnungen aus dem vorangehenden
Modell unverindert iibernehmen. Zur Vereinfachung setzen wir noch A(t) =
A # 0 fur alle t.

Mit den Bezeichnungen von 2.3.3 erhalten wir dann:

~ P 4
P(t) = T
o2+ | 240 dr
" 2{{1 2At
P(1) = e" P (t)e = olli. (38)
o2 + ¥ 5 240, dr
b(0) = ( : ) B+ ( ¥ o Oyir ) JoeQdy,
a2+ [y Q. dr o2+ [y Q,dr) [, e Q. dr
G N J L% ~ P v &
1-K; =K, —F,
(39)
. (0) = e b, (0). (40)

Das exponentielle Regressionsmodell von de Vylder betrachtet (im Fall m = 1)
anstelle unserer Annahme (35) die Voraussetzung:

m,(0) = f,(b(0)) mit b(0) = (b'(0),b*(®)) und f,((a,b)) := ab'.
Unser Modell stellt also den Spezialfall
h(0) = (mo(0),e”)

dar.
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Wie beim Hachemeister-Modell entspricht auch hier unser Resultat genau dem
Ergebnis im diskreten Fall.

2.4  Zwei weitere Kredibilitcitsmodelle
2.4.1 Neues Modell

Wie das Hachemeister-Modell ldsst auch dieses Modell die Voraussetzung,

dass m,(0) zeitlich konstant ist, fallen und verallgemeinert diesbeziiglich das
Biihlmann /Straub-Modell.

Zu den allgemeinen Voraussetzungen (a)— (k) nehmen wir hinzu:

m(0) = mo(0) + v, wobei cov[mg(0), mo(0)] = 0,
{vi,t > 0 ein Prozess mit den Eigenschaften (f)— (i) in 2.2,
covlu,vs] = S? - tAs,

o’ wie in (24).

Es folgt:

u; = E[m(0)] = E[mo(0)] =: u unabhidngig vont.
Die System- und Beobachtungsgleichungen lauten in diesem Modell:

dm,(0) = dv, (41)

dy, = my(0)dt + dw;. (42)

Wir finden daraus die Filtergleichung fiir mi,(0):

din (0) = —P () (a*Q; )~ me(0) dt + P(1)(a°Q; )™ dy

nig(0) = .
Hier ist P(t) = [E[(m,(0) — m,(0))(m,(0) — m,(0))'] Losung der Matrix-Riccati-
Gleichung:

P(t)=8"—P@)(a*Q ) P(1)

P{0) ='0.

Diese Gleichungen kann man fiir den Spezialfall m = n = 1 und eine konstante
Gewichtsfunktion Q, = Q 16sen. Man erhilt:

(43)

(44)

B et —1 B B L Q

P(t) = i tanh(t), mité = S\/; >0 (45)

P 1 cos(&r) — 1) for sinh(&s) dy,

0] = \( cosh(&t) )JH T \( cosh(&t) )J \fot sinh(¢s) dsj' (46)
1K, =k =

= Z?{



100

24.2 Allgemeines Modell

Wir verallgemeinern das vorangehende Modell, indem wir ein zeitliches
Wachstum von m,()) einbeziehen:
Ausser den allgemeinen Voraussetzungen (a) — (k) soll hier gelten:

dm,(0) = Am,(0)dt + C dv,, wobei A, C # 0 konstante Matrizen,
{vr,t > 0} ein Prozess mit den Eigenschaften (f)— (i) in 2.2,
covlv,vs] = S? -t A,

o} wie in (24),

A(0,0) = cov[mgy(0),me(0)] =: A.

Es folgt:

wy = E[m(0)] = exp(At)Emy(0) = exp(At)uo.
Wir haben damit folgendes dynamische System:

dm(0) = Am,(0)dt + C dv, (47)

dy, = m(0)dt + dw,. (48)

Wir stellen die Filtergleichung fiir dieses Modell auf:

din(0) = (A= P(@)(o*Q7 ) ") (0) dt + P(1)(a*Q, ") dy,

mo(0) = E[mo(0)] = wo.

Dabei ist P(t) = [E[(m,(0) —m,(0))(m,(0) —m,(0))'] Losung der Matrix-Riccati-
Gleichung

P(t) = CS>’C' — P(1)(6?Q, ") 'P(1) + AP(t) + P()) A’

P(0) = A
Wir betrachten wieder der Einfachheit halber den Fall m = n = | und eine

zeitunabhingige Gewichtsfunktion Q, = Q. In diesem Spezialfall lauten die
Losungen:

(49)

(50)

oy — Koo exp (%ﬁt)
Pt) =

1 — Kexp (ma%f)t)

-5
WObei o1 = A52 — 6\/ A252 + CZSZ
ay = A8% 4 5/ A25% + C282

E =22
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Fur
- A757 ¥ (257
L] S A R (52)
o |0]
o J
Yv
=2¢
gilt:

P(1) ~ {“‘ ?ig} = o 1= A% + |8|\/A202 + C282 = 8% (A + &). (53)

o2

Beachte, dass stets gilt A+¢& > 0, denn A+¢& = A+4/ A% + %ZS—Z > A+|A| > 0.
Unter der Voraussetzung (52), d.h. fiir £t > 1 erhalten wir dann:

5. (0 (E+A) At 1 (E+ A g jor et dys 54
~ g' - e -+ — e . =
i e W"MG \( ’ ) fot e—(E+As g (4]
e 2
i Lt e —— % e
L =;Kt =_?
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Zusammenfassung

Der Artikel ist in zwei Teile gegliedert. Zuerst wird die in Betracht gezogene Klasse von
stochastischen Prozessen vorgestellt. Es wird gezeigt, wie die Schitzung von Zufallsvariablen
im Hilbertraum L;(Q,.%, P) als Projektion auf einen geeigneten Unterraum aufgefasst werden
kann. Es folgt eine kurze Darstellung der linearen Filtrationstheorie mit dem Hauptresultat, dem
Theorem von Kalman.

Im zweiten Teil werden die Filtrationsresultate fiir die Kredibilitidtsschitzung in versicherungs-
mathematischen Modellen verwendet. Nach der Aufstellung eines allgemeinen Kredibilititsmo-
dells und der Uberpriifung der erforderlichen Voraussetzungen werden die klassischen Modelle
von Biihlmann (1967) und von Biihlmann/Straub (1970), das lineare Regressionsmodell von Hache-
meister (1975) sowie ein Spezialfall des exponentiellen Regressionsmodells von de Fylder (1986)
auf den stetigen Fall iibertragen und der Kredibilitdtsschitzer X mit der Methode des Kalman-
Filters berechnet. In allen vier Modellen erhiilt man ein Resultat der Gestalt X = (1 — K)u+ K'Y,
mit dem a priori Erwartungswert u, einem gewichteten Mittel ¥ der Beobachtungen und einem
Faktor K mit Norm zwischen 0 und 1. Die mit dem Kalman-Filter ermittelten Ergebnisse im
stetigen Fall entsprechen exakt den Resultaten bei diskreter Betrachtungsweise. Weiter folgen
noch zwei neue Kredibilititsmodelle.

Résume

Larticle comporte deux parties. La premiere presente la classe des processus aléatoires considérée.
On y montre que I'estimation de variables aléatoires de I'espace de Hilbert L,(,.7, P) peut étre
considérée comme une projection sur un sous-espace convenablement choisi. Suit une presentation
succincte de la théorie des filtres lincaires comprenant comme résultat principal le théoréme de
Kalman.

En seconde partie I'auteur applique lesdits resultats aux opérations d’estimation par crédibilite
dans le cadre de modéles actuariels. Cauteur présente tout d’abord un modele général de crédibilité
satisfaisant aux hypothéses necessaires. Sur cette base il transpose dans le cas continu plusieurs
modéles connus, puis détermine par la méthode du filtre de Kalman I'estimateur de crédibilité X
desdits modéles, qui sont: les modeles classiques de Biihlmann (1967) et Biihlmann/Straub (1970),
le modéle de régression linéaire de Hachemeister (1975), ainsi qu'un cas particulier du modele de
regression exponentiel de de Vylder (1986). Dans le cas de ces quatre modéles, I'auteur obtient un
résultat de la forme X = (1 — K)u + K'Y, construit sur 'espérance mathématique a priori y, une
moyenne pondérée Y des observations et un facteur K de norm comprise entre les valeurs 0 et 1.
Les resultats obtenus par le filtre de Kalman dans le cas continu correspondent exactement aux
resultats obtenus dans le cas discret. Enfin 'auteur propose deux nouveaux modeles de credibilité.

Summary

The paper is divided into two parts. First a class of stochastic processes is presented which is
considered in more detail later. It is shown that the estimation of random variables in the Hilbert
space L>(Q,.% , P) can be looked upon as a projection onto a suitable subspace. There follows a
short presentation of the linear filtration theory and its main result, the theorem of Kalman.



103

In the second part the results from filtration theory are applied to obtain credibility estimators in
actuarial models. Following the presentation of a general credibility model, the classical models
of Biihlmann (1967) and Biihlmann/Straub (1970), the linear regression model of Hachemeister
(1975) and a special case of the exponential regression model of de Vylder (1986) are carried over
to the continuous case, and the credibility estimator X is calculated by means of the Kalman filter
method. In all four models a result of the form X = (1—K)u+ KY is obtained with the a priori
mean yu, a weighted average Y of the observations and a factor K of norm between 0 and 1. The
results determined in the continuous case by means of the Kalman filter correspond exactly to
those obtained by the discrete approach. Finally, two new credibility models are presented.
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